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Abstract—In computed tomography, there is often a need
to reduce the amount of radiation used due to its potential
to alter living tissue properties, especially in the patient or in
vivo samples. To achieve this reduction, a method of measuring
objects through sparse sampling can be employed. However, in
mathematics, this problem leads to an ill-posed inverse problem
due to limited measurement data. To address this issue, a
regularization method is proposed, where the constraint for a
regularized solution is enforced by utilizing Daubechies wavelet
expansion coefficients. In this work, the algorithm is iteratively
computed, employing a soft-thresholding operation for the
coefficients, with the thresholding parameter automatically
selected. For the purpose of biomedical imaging, we propose
incorporating prior knowledge of the thresholding parameter
value based on a biological object. The method is tested on
simulated data using the chest phantom and real data obtained
from the ladybug X-ray measurements.

Index Terms—computed tomography, wavelets, Daubechies,
sparsity, regularization, adaptive, under-sampled data, biomed-
ical imaging

I. INTRODUCTION

X -RAY tomography imaging, also known as computed
tomography (CT), has found extensive applications in

various fields such as medicine and industry. In this imaging
techniques, an object is exposed to X-rays from multiple
angles, and the resulting data for each angle is recorded [1],
[2], [3], [4]. Subsequently, a computer processes the recorded
data to generate a reconstructed image, which is the displayed
on a screen. The conventional approach to reconstructing the
image from complete sets of projections is well understood
and considered as a well-established area of research [2].

Unfortunately, in the field of biomedical imaging, the
arrangement of the measurement setup often hinders the
acquisition of complete sets of projections. This limitation
is evident in dental imaging and mammography, where only
specific areas of the patient can be exposed to X-rays [5],
[6]. Similarly, when dealing with living organisms, excessive
exposure to X-ray radiation can be harmful. As a result,
the conventional reconstruction technique, which requires
complete sets of projections, can no longer be simply called.
In mathematics, this problems is ill-posed, which means the
problem either has no solution or has many solutions, or the
solution procedure is unstable [7].

This paper introduces a variational mathematical model for
image reconstruction. The primary objective of this proposed
approach is to address the ill-posedness of the problem
by incorporating sparsity constraints on the image using a
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linear sparsifying transform. Several well-known techniques
that employ sparsity-based inversion have been extensively
explored in previous studies [8], [9], [10], with applications
specifically focused on under-sampled computed tomogra-
phy investigated in [11], [12]. In this work, we consider
orthonormal Daubechies wavelets basis as the sparsifying
transform due to its cost-effectiveness and its ability to
preserve reconstruction quality [13], [14]. The Daubechies
wavelet, known for its vanishing moments property, offers
superior performance when applied to natural images [9].

The resulting a functional form is as follows

fS = argmin
f∈RN2 , f≥0

{
1

2
‖Af − y‖22 + µ‖WDf‖1

}
, (1)

where f is the unknown object, A is tomographic mea-
surement matrix, y is the tomographic measured data, WD

is Daubechies wavelet matrix and µ as a regularization
parameter.

To address the solution of the variational model 1, CWDS
algorithm [15], a recently controlled method for regular-
ization parameter is implemented. The algorithm enables
to find a thresholding value µ automatically to a desired
sparsity level of the sparsifying coefficient. In this work, we
propose a desired sparsity that is investigated for biomedical
imaging purposes. In many biomedical applications, CT is
used to reveal internal organs such as bone, soft tissue,
and blood vessel [11], [16]. Computational experiments are
performed on both simulated and real data, an insect ladybug,
as it supports the motivation in this paper. The real data is
measured with a µCT system at the Department of Electrical
Engineering, Aalto University (Finland).

Under-sampled CT problem is always receiving attention,
however, the use of Daubechies wavelet with automatic
choice for thresholding parameter µ for biological tissue
image has never been done before. A prior information of
the desired sparsity level of the thresholding parameter based
on biological object is also a new concept. The computation
results are compared to the traditional reconstruction method
so-called filtered backprojection (FBP) [2].

The paper is organized as follows. In Section II a mini-
mization formulation for the 2D under-sampled CT problem
by enforcing sparsifying is introduced. The algorithm to
overcome the variational problem is addressed in Section IV.
Section V shows the results of the proposed method with
a comparison to the FBP approach. Lastly, the discussion
and some conclusions are in Section VI and Section VII,
respectively.
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Fig. 1. A representation of X-ray tomographic measurement.

II. SPARSITY REGULARIZATION FOR UNDER-SAMPLED
CT DATA

In X-ray tomography, the incoming photons of X-ray is
recorded in a detector and the X-ray measurement data are
put together from the intensity losses of X-rays from different
angles of view. In this case, the number of angles of view
is sparse. Given an unknown attenuation coefficient function
f(x) of the tissue or inner material at the point x. The beam
L represents a straight line that carries intensity that passed
the object. The X-ray measurement data is modeled by a line
integral of f(x). From this integral, we reconstruct the object
f .

Let Ω ⊂ R2 as a physical domain and f : Ω ⊂ R2 → R+

as a non-negative attenuation function. In practice, a discrete
model is necessary. In two-dimensional, f is represented by
a matrix f = [f̃ij ] ∈ RN×N . It is represented in Figure 1.

The measurements after calibration can be modeled as
follows ∫

L

f(x) ds =
N∑
i=1

N∑
j=1

aij f̃ij , (2)

and aij is the length in which the X-ray line L travels through
the pixel (i, j).

Tomographic measurement data is then given as:

y = Af , (3)

where A = [aij ] ∈ RM×N2

is the measurement matrix, and
y ∈ RM is the measured data.

It is well understood that for under-sampled data, the linear
system in 3 leads to highly ill-posed discrete inverse problem.
In this case, the solution is not unique (has many solutions).
Hence, this problem calls for regularization. Consider a
variational functional of the form

R(f) =
1

2
‖Af − y‖22 +R1(f). (4)

being R1(f) incorporates a priori information on the un-
known object. We consider `1-norm of a sparsifying trans-
form. We are interesting in denoising and to this end,
Daubechies wavelet is used. Thus, our proposed regulariza-
tion term has the following form:

R1(f) = µ‖WDf‖1, (5)

where µ is the regularization parameter, WD is the matrix
of the underlying Daubechies wavelet transform and f is the
discrete representation of the unknown object. All together,
the proposed constrained minimization problem reads as:

argmin
f∈RN2 , f≥0

1

2
‖Af − y‖22 + µ‖WDf‖1, (6)

where we use the non-negativity solution for f . We consider
the prior knowledge of f that measures the incoming photon,
not strengthening or producing photon.

III. 2D DAUBECHIES WAVELETS

In this section, we briefly discuss here the main ideas about
Daubechies wavelets.

Consider the two real-valued functions ϕ(x) and ψ(x)
defined on the interval [0, 1]. Generally, ϕ(x) is referred to as
a scaling function and ψ(x) as a mother wavelet. A discrete
Daubechies wavelet system, where discrete means that the
transform is associated with a discrete parameter set, is built
by appropriately scaling and translating the mother wavelet
ψ(x):

ψjk(x) := 2j/2ψ(2jx− k) for j ≤ 0, 0 ≤ k ≤ 2j − 1,

and the scaling function ϕ(x):

ϕjk(x) := 2j/2ϕ(2jx− k) for j ≤ 0, 0 ≤ k ≤ 2j − 1,

where ϕ(x) = 0 for x < 0 and x > 1. Here, j, k ∈ Z. The
shape of the mother wavelet and scaling function are shown
in Figure 2 and Figure 3.

Fig. 2. Mother wavelet

Fig. 3. Scaling function
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It is well known that the above 1D construction leads to an
orthonormal system. In 2D, we consider the standard tensor-
product extension of the 1D Daubechies wavelet transform.
In detail, a 2D Daubechies system is spanned by four types
of functions. Three of these types have the following form:

ϕjk(x)ψjk(y), ψjk(x)ϕjk(y), ψjk(x)ψjk(y), (7)

and the fourth type is given by ϕj0k(x)ϕj0k(y). Notice
that the fourth type describes the coarsest scale j0. The
associated matrix underlying the discrete wavelet transform
of a function f is given by

WD =

[
Wϕ WV

ψ

WH
ψ WD

ψ

]
∈ RN

2×N2

where

Wϕ =
1√
RS

R∑
r=1

S∑
s=1

f{q}ϕj0k{r}ϕj0k{s} (8)

WH
ψ =

1√
RS

R∑
r=1

S∑
s=1

f{q}ψjk{r}ϕjk{s} (9)

WV
ψ =

1√
RS

R∑
r=1

S∑
s=1

f{q}ϕjk{r}ψjk{s} (10)

WD
ψ =

1√
RS

R∑
r=1

S∑
s=1

f{q}ψjk{r}ψjk{s} (11)

being q = r+R ∗ (s− 1), and the brackets {·} indicate that
we now intend also φ and ψ as discrete functions defined in
the intervals [1, R] or [1, S], being R, S ∈ Z.

Thus, the vector collecting all the wavelet coefficients is
given by:

WDf ∈ RN
2

. (12)

With the above notation, the minimization problem (4)
reads as

fS = argmin
f∈RN2

+

{
1

2
‖Af − y‖22 + µ‖WDf‖1

}
. (13)

One of the main benefit of wavelets is that the transform
coefficients are easy to compute and many fast algorithmic
implementation are available.

For more information about the Daubechies wavelet trans-
form, and its implementation, we refer to the classic text [14].

IV. ADAPTIVE ITERATIVE THRESHOLDING ALGORITHM

A. Controlled Wavelet Domain Sparsity Algorithm
We use a recently algorithm Controlled Wavelet Domain

Sparsity (CWDS) algorithm for the solution of the optimiza-
tion problem 1 as studied in [15] by exploiting different
basis. A step-by-step algorithm is outlined in Algorithm 1.
It is a primal-dual method [17] in which the regularization
parameter µ is determined automatically using a control
algorithm driving the sparsity of the image reconstruction
to an a priori known level of sparsity. The minimizer of (1)
can be computed as:

y(i+1) = PC
(
f (i) − τ∇g(f (i))− λWT

Dv(i)

)
v(i+1) =

(
I − Tµ

)(
WDy(i+1) + v(i)

)
f (i+1) = PC

(
f (i) − τ∇g(f (i))− λWT

Dv(i+1)

) (14)

where τ and λ are positive parameters, g(f) = 1
2‖Af−y‖22,

and T is a soft-thresholding operator and reads as

Tµ(c) =


c+ µ

2 if c ≤ −µ2
0 if |c| < µ

2

c− µ
2 if c ≥ −µ2 .

(15)

Regularization parameter µ > 0 represents the thresh-
olding parameter. Parameters τ and λ are parameters
which guarantee convergence. In detail, 0 < λ <
1/λmax(WDW

T
D), where λmax is the maximum eigenvalue,

here 0 < τ < 2/τlip, and τlip is the Lipschitz constant
for g(f). Notation C = RN2

+ represents the non-negative
quadrant and PC is the Euclidian projection.

B. Adaptive thresholding parameter µ

The idea using proportional-integral-derivative (PID) con-
trollers [18], [19], [20] is considered to change parameter µ
adaptively. Some recent applications may be found in [21],
[22]. Assume that if Cpr is the known degree of sparsity
and Ci is the degree of sparsity at ith iteration, then the µ
changes as follows:

µ(i+1) = µ(i) + β(C(i) − Cpr),

where β is tuning parameter of the controller. The value of
β is determined based on Daubechies wavelet coefficients of
the backprojection reconstruction of the object.

In this work, we define Cpr differrently as it is done in
[15]. We assume that we have available an object (or objects)
fpr which can be similar to the one we are imaging. In this
case, fpr is the FBP reconstruction image of an axial slice
of the insect using a full angle of data.

For a vector w ∈ RN2

we define the number of elements
larger than ν:

#νw := #{ i |1 ≤ i ≤ N2, |wi| > ν}.

Now, the prior sparsity level is defined by

Cpr =
#ν{WDfpr}

N2
, (16)

where N2 is the total number of coefficients and CCpr is the
largest Cpr Daubechies wavelet coefficients of fpr.

The prior sparsity level Cpr is chosen when ν gives ‖fpr−
IWT (CCpr

)‖ < ε, where IWT is an inverse Daubechies
wavelet transform where the value of ε is set to be very
small but positive.

V. NUMERICAL EXPERIMENTS

In this Section, numerical results are shown for under-
sampled data of simulated data (see section V-B) and real
data (see section V-C). The reconstructions are computed
using 30 and 15 directions. All the algorithms were imple-
mented in Matlab 9.11 (R2021b) and performed on Apple
M1 and CPU 8GB memory. The Daubechies wavelet matrix
WD is generated by using Spot–A Linear-Operator Tool-
box [23]. The number of scales for the wavelet transform is
set equal to 2. In all experiments, parameters ε1 and ε2 that
control the stopping criterion have been set equal to 10−2.
We also set parameters β = 10−3 and µ(0) = 10−4. The
prior sparsity level computed using 16 is 60%.
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Algorithm 1 An Automatic Iterative Thresholding Algorithm
using Daubechies Wavelet

1: Inputs: measurement data vector y, system matrix A,
parameters τ, λ > 0 to ensure convergence, a priori de-
gree of sparsity Cpr, initial thresholding parameter µ(0),
maximum number of iterations Imax > 0, parameter
tolerances ε1, ε2 > 0 for the stopping rule, and control
stepsize β > 0.

2: f (0) = 0, i = 0, e = 1, and C(0) = 1
3: while i < Imax and |e| ≥ ε1 or d ≥ ε2 do
4: e = C(i) − Cpr
5: if sign(e(i+1)) 6= sign(e(i)) then
6: β = β(1− |e(i+1) − e(i)|)
7: µ(i+1) = max{0, µ(i) + βe}
8: y(i+1) = max{0,f (i) − γ∇g(f (i))− λWT

Dv(i)}
9: v(i+1) = (I − Tµ(i)

)(WDy(i+1) + v(i))

10: f (i+1) = max{0,f (i)−γ∇g(f (i))−λWT
Dv(i+1)}

11: C(i+1) = N−2#ν(WDf (i+1))
12: d = ‖f (i+1) − f (i)‖2/‖f (i+1)‖2
13: i := i+ 1

A. Acquisition data

Our proposed approach is tested on simulated data (see
Section V-B) and real data (see Section V-C) test the algo-
rithm using 30 and 15 directions uniformly sampled out of
360 degrees.

B. Simulated data: chest phantom

We use the chest phantom generated with Matlab (see
Figure 4). The phantom is sized N ×N , with N = 128. The
projection data (i.e., sinogram) of the simulated phantom is
corrupted by a white Gaussian noise with zero mean and
0.1% variance. The phantom will be used as a ground truth
of the experiment.

Fig. 4. The chest phantom generated with Matlab. The phantom is used
as a ground truth.

C. Real data: an insect

We use the tomographic X-ray real data of a ladybug (see
Figure 5), consisting of a 2D cross-section of a ladybug
measured with CT device available at Aalto University
(Finland). The dataset is available and freely downloadable

at here. For a detailed documentation of the acquiring setup,
including the specifications of the X-ray systems, see [24].

Fig. 5. Full-data-reconstructed axial slice of ladybug using FBP.

D. Numerical results

In this section, the results of the experiments using the
proposed method are reported. Figure 7 and Figure 6 presents
the reconstruction images of the chest phantom using tomo-
graphic data addressed in Section V-B. In the columns, left
and right, we collect results from traditional reconstruction,
filtered backprojection (FBP), and the proposed method.
Table I shows the figure of merits for chest phantom recon-
struction. We report the relative error, peak-signal-to-noise
ratio (PSNR), and the structural similarity index (SSIM) in
Table I.

The image reconstructions of the insect (ladybug) are
shown in Figure 8 for 30 directions and Figure 9 for 15
directions. As in real data, the ground truth is not as at
our disposal, figures of merit are not available. We do,
however, present FBP reconstructions from complete and
dense projections for qualitative analysis. The reconstructions
of the insect using FBP and the proposed approach are shown
on the left image (a) and the right image (b), respectively.

The proposed method, as discussed in Section IV-B,
implements a controlled wavelet domain sparsity (Algorithm
1). The matrix A is the measurement matrix generated in 2.
The measurement data vector y is obtained from V-B and
V-C . The parameters τ and λ are chosen to be 1 and 0.99,
respectively.

Figure 10 shows the plot of the sparsity levels as the
iteration progresses. The stopping rule is satisfied when
the error between the degree of sparsity and the a priori
degree of sparsity is less than ε1 = 10−2. The sparsity level
increases initially and then rapidly decreases toward the a
priori degree of sparsity level. This confirms that the sparsity
level converges to the desired sparsity after 60 iterations for
30 projections data and 100 iterations for 15 projections data.

The computation time are reported in Table II and Ta-
ble III. It is shown that the proposed approach require long
computation time compared to FBP method.

VI. DISCUSSION

In this paper, we propose a novel approach for recon-
structing CT images from under-sampled measurement data
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(a)

(b)
Fig. 6. (a) The FBP reconstruction of the chest phantom using 30
projections. (b) The proposed approach reconstruction of the chest phantom
using 30 projections.

TABLE I
FIGURES OF MERIT FOR THE CHEST PHANTOM RECONSTRUCTIONS

USING FBP AND PROPOSED APPROACH WITH 30 PROJECTIONS.

Methods Relative Error PSNR SSIM
FBP 0.08 22.12 0.46

Proposed approach 0.04 27.31 0.72

TABLE II
COMPUTATION TIME (IN SECONDS) FOR THE CHEST PHANTOM

RECONSTRUCTIONS USING FBP AND PROPOSED APPROACH WITH 30
AND 15 PROJECTIONS.

Methods 30 projections 15 projections
FBP 0.12 0.08

Proposed approach 81 202

TABLE III
COMPUTATION TIME (IN SECONDS) FOR THE LADYBUG

RECONSTRUCTIONS USING FBP AND PROPOSED APPROACH WITH 30
AND 15 PROJECTIONS.

Methods 30 projections 15 projections
FBP 1.4 0.17

Proposed approach 64 96

(a)

(b)
Fig. 7. (a) The FBP reconstruction of the chest phantom using 15
projections. (b) The proposed approach reconstruction of the chest phantom
using 15 projections.

using an adaptive wavelet domain sparsity algorithm. The
Daubechies wavelet is implemented. Our proposed approach
is evaluated on simulated chest data as described in V-B
and real data, an axial slice of an insect, a ladybug, which
contains biological tissue, as described in V-C, using only 15
and 30 projection views. The mathematical model is formu-
lated as a minimization constraint with a linear sparsifying
wavelet transform in the penalty term. Among many kinds
of wavelets, Daubechies wavelet transform is chosen. To
address the solution, the thresholding parameter that appears
in the regularization term is set adaptively.

For 30 projections of X-ray tomographic data, the pro-
posed technique reduces the relative error of the chest phan-
tom reconstruction to half that of the FBP reconstruction.
The PSNR of the proposed approach is 27.31. It is higher
than PSNR in the FBP reconstruction, 22.12. The higher the
PSNR, the better is the quality of the image. The relative
error of the proposed approach is 0.04, half that of the
FBP reconstruction. In the proposed approach, the SSIM is
reported 0.72, and the FBP reconstruction has lower value
of SSIM, 0.46. Overall, quantitatively, the reconstruction
of the proposed approach, the adaptive wavelet domain
sparsity algorithm, shows better results quality in terms
of image quality metrics. The result demonstrates that the
reconstruction of simulated data using the proposed method
outperforms FBP reconstructions in terms of relative error,
PSNR, and SSIM.

IAENG International Journal of Applied Mathematics

Volume 54, Issue 1, January 2024, Pages 25-32

 
______________________________________________________________________________________ 



(a)

(b)
Fig. 8. (a) FBP reconstructions of an axial slice of ladybug using 30
projection. (b) Proposed approach reconstruction of an axial slice of ladybug
using 30 projections.

The FBP reconstruction of the chest phantom using 15
projections yields only artifacts almost in all regions. Using
the proposed method, the chest reconstruction from 15 pro-
jection data recovers the singularity well, including the edges
inside and outside the object. The reconstruction image is not
dominated by artifacts.

In the FBP reconstruction, the image is dominated by
artifacts. It is also evident that, because a non-negativity
constraint is not available in the FBP algorithm, pixels
with zero or extremely low attenuated values are poorly
represented. As we can see from the results of the pro-
posed approach, the artifacts are considerably less visible. A
deeper examination reveals that the non-negativity constraint
enhances the reconstructions. It is noticeable in the FBP
reconstruction that the thin long line on the bottom area of
the chest is covered by line artifacts, mostly to the angular
sub-sampling, whilst with the proposed approach the thin
line has recovered with visible edges.

In real data reconstruction, the FBP reconstruction is
more dominated by artifacts than the proposed-approach
reconstruction. In particular, the reconstructions produced by
the proposed approach yield finer features in the image with
fewer artifacts. The image quality is also improved since the
background of the image and certain interior regions of the
object that correspond to zero-attenuation coefficients were
projected to zero values using the non-negativity penalty.
Dominant features of the ladybug, such as the axial slicing

(a)

(b)
Fig. 9. (a) FBP reconstructions of an axial slice of ladybug using 15
projection. (b) Proposed approach reconstruction of an axial slice of ladybug
using 15 projections.

of the eyes and the body, are also well recovered.
Despite its success, the computational burden of the pro-

posed method is high (up to 81 and 202 seconds), as it can
be seen in Table II and Table III. However, the computation
time could be sped-up by implementing paralellized GPU
code.

VII. CONCLUSION

This paper presents a novel approach for reconstructing CT
images from under-sampled data. The method incorporates
adaptive tuning on the regularization parameter through
the use of a sparsity-promoting penalty, employing an or-
thonormal wavelet basis known as Daubechies. Comparative
evaluations demonstrate that the reconstructed images from
simulated data obtained using the proposed method exhibit
superior image quality compared to the conventional FBP
algorithm. The evaluation metrics used to assess image
quality include relative error, PSNR, and SSIM.

The algorithm is tested as well on real tomographic data
of an insect. The optimal values for sparsity and thresholding
parameters could be utilized to reconstruct X-ray tomo-
graphic data from various biological tissues. Nonetheless, it
is worth noting that the same algorithm and procedures can
be applied to various other tomographic applications.
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Fig. 10. The ratio of nonzero Daubechies wavelet coefficients as the
iteration progresses for the chest phantom data using 30 and 15 projections
data ((a) and (b)). The ratio of nonzero Daubechies wavelet coefficients as
the iteration progresses for the ladybug data using 30 and 15 projection data
((c) and (d)).
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