
Adaptive Neural Network Identification for Robust
Multivariable Systems

Felipe Osorio-Arteaga, Eduardo Giraldo

Abstract—This paper proposes a robust identification and
control-based on a neural network method for a Twin Rotor
Multivariable System (TRMS) using a recursive adaptive
training algorithm. The algorithm is based on a recursive
least squares approach with an additional steepest descent
stage. An Adaline neural network is used for modeling the
system, and a robust structure is selected based on a linear
auto-regressive structure with exogenous inputs (ARX) related
to the estimation error. The identification is performed online
and the system is controlled under a polynomial structure
by pole placement with a dead-beat strategy. The method
is evaluated in terms of estimation and tracking error in
the presence of external additive disturbances, parametric
disturbances, and sinusoidal reference signals. The Root-Mean
Square Error (RMSE) is used to evaluate the estimation
performance and the Integral-Time Absolute Error (ITAE) is
used to evaluate the tracking performance. As a result, a novel
robust controller based on a neural network is designed where
the best results are obtained for a training recursive least
squares algorithm with an additional steepest descent stage.

Index Terms—Neural Network, Adaline, robust identification,
multivariable system, Twin Rotor.

I. INTRODUCTION

ENhancing the control of real multivariable physical
systems holds significant importance in the field

of engineering, due to the nonlinearity in their region
of operation, uncertainties in the system parameters,
actuator constraints, response delay times, and the presence
of external disturbances. To tackle these complexities,
several authors have studied different adaptive control
approaches that estimate the controller gains from the
input and output measurements and solve some of these
difficulties [1]. In [2], an adaptive predictive control method
based on the ARX-Laguerre mathematical model for
multivariable systems is implemented that guarantees a
simple recursive representation, however, it is quite sensitive
to the signal-to-noise ratio. In [3], an adaptive control
multivariable strategy is proposed based on a polynomial
structure where the exogenous inputs are considered in
order to obtain the robustness of the identified model.

In [4], an adaptive observer for a class of multivariable
nonlinear systems is presented considering unknown
parameters of the state and output equations but obtaining a
continuous-time model. In [5], an adaptive fuzzy dynamic
fuzzy surface control for multivariable nonlinear systems
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is designed, although it improves the system performance,
work must be done on the selection of the design parameters.
[6] presents a sliding plane control for nonlinear systems
with the use of smooth functions for decreasing chattering
and [7] implements an adaptive neural controller with
fewer learning parameters designed for a class of nonlinear
systems but both only applied to scalar systems. In [8],
a model-based polynomial control is designed for a
nonlinear buck converter, however, the training of the model
is developed offline. In [9], an adaptive strategy for a
multivariable microgrid system is proposed by considering
a deterministic approach in state space, and in [10], a linear
state-space identification is applied for control of a Twin
Rotor MIMO System (TRMS) by state feedback.

Neural networks have been widely used in machine
learning as a complement to the control of complex
systems in different research fields such as stabilization
or control of nonlinear systems [11]. In [12] an adaptive
control with backward step based on neural networks
using a neural network to guarantee controller tracking
is presented, in [13] the use of neural networks with
reinforcement learning and Liapunov functions for the
control of nonlinear systems is proposed, in [14] a discrete
adaptive dynamic decoupled controller is designed for
a multivariable nonlinear system using neural networks
for the convergence to zero of the tracking error, and
in [1] a constrained adaptive controller with backward
step capable of guaranteeing asymptotic stability is shown,
however, they do not take into account external disturbances.

In this work, a robust identification and control method
based on a neural network structure is proposed. The
robustness of the model is achieved by considering
exogenous inputs related to the estimation error. The
identification is performed online by adding a steepest
descent algorithm to the recursive least squares algorithm.
The proposed controller is designed based on the weights
of the robust neural network and is also computed online
by considering a dead-beat strategy for pole placement. The
proposed approach is evaluated over a TRMS for simulation,
where the root mean square error is used to evaluate the
estimation error, and the integral time absolute error is
used to evaluate the tracking error. The system is evaluated
under sinusoidal reference signals in terms of estimation and
tracking error, and by considering external disturbances and
parametric disturbances. The paper is organized as follows:
in section II are presented the theoretical framework for
the TRMS, the neural network identification stage, and the
control design. In section III is presented the evaluation
of the proposed approach over the TRMS simulation in
the presence of external and parametric disturbances and
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sinusoidal reference signals. And finally, in section IV are
presented the conclusions and final remarks.

II. THEORETICAL FRAMEWORK

A. Adaline Neural Network

It consists of a neuron with a linear activation function.
Since its development in 1960, it has been used in a wide
range of both linear and nonlinear applications. Since it has
a linear activation function, it can be represented as a neuron
with no activation function, as shown in Figure 1.

Fig. 1. Lineal Neural Network (Adaline).

The mathematical model of an Adaline neuron, without
bias:

y =
m∑
j=1

wjxj = xTw (1)

Consider a single layer Adaline neural network with one
layer:

y = xTW (2)

B. Steepest Descent Algorithm

It is a classical optimization approach widely used for
minimizing or maximizing functions. Applied to the learning
of an Adaline network, the update of the weights is in the
opposite direction of the gradient of the cost function E and
is given by the equation:

Wk+1 = Wk − η ∇E(W)

∣∣
Wk

(3)

where η is known as the learning rate, which must be positive
and must have a sufficiently small value for the convergence
to the optimal solution will be smooth and non-oscillatory.

C. Least Squares Algorithm

The least squares algorithm is given by an error function
as:

E(W) =
1

2

∑
j

e2j (4)

=
1

2

∑
j

(dj − xTwj)
2 (5)

=
1

2
(d− xTW)(d− xTW)T (6)

The derivative of the error function with respect to the
weights is obtained as:

∂E(W)

∂W
= −xd+ xxTW = −x(d− xTW) = 0 (7)

Therefore, the optimal value for the weight vector of the
neural network is obtained as follows:

W∗ = (xxT )−1xd (8)

where ∂E(W)

∂W is the instantaneous gradient estimate. As a
result, the weights update equation from (3) is given by:

Wk+1 = Wk − η
∂E(W)

∂W

∣∣∣∣
Wk

(9)

= Wk + ηx(d− xTWk) (10)

The aforementioned method is also known as the
stochastic gradient. It is worth noting that in the least
squares method, the weight of the net follows a stochastic
trajectory, in contrast with the steepest descent method
where a definite trajectory is followed. This behavior
makes the least squares method more appropriate for some
applications [15].

The least squares algorithm is also known as the
delta learning algorithm, which when applied to nonlinear
activation functions turns into the Backpropagation learning
algorithm [16].

D. Recursive least squares algorithm

In order to obtain an online training algorithm for the
neural network, a recursive version of the least squares
algorithm is presented in [17]. This is performed by using
the solution obtained in (8), as follows:

Wk =
(
XkX

T
k

)−1
XkDk = PkFk (11)

The matrices Pk and Fk are defined as:

Pk =
(
XkX

T
k

)−1
Fk = XkDk (12)

By considering that Xk is Xk−1 and xk, as follows:

XkX
T
k = Xk−1X

T
k−1 + xkx

T
k (13)

Equation (13) can be rewritten as:

P−1
k = P−1

k−1 + xkx
T
k (14)

And by using the matrix-inversion-lemma (Woodbury
equivalence), the following result is obtained:

(A+BCD)
−1

= A−1−

A−1B
(
C−1 +DA−1B

)−1
DA−1

(15)

where

A = P−1
k+1

B = xk

C = 1

D = xTk

From (14), is given that:

Pk = Pk−1 −Pk−1xk
(
1 + xTkPk−1xk

)−1
xTkPk−1 (16)

If Kk is defined as:

Kk = Pk−1xk
(
1 + xTkPk−1xk

)−1
(17)
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From (16), Pk can be obtained as follows:

Pk = Pk−1 −Kkx
T
kPk−1 (18)

Similarly for Dk, the following equivalence can be
defined:

XkDk = Xk−1Dk−1 + xkdk (19)

Where (19) can be rewritten as:

Fk = Fk−1 + xkdk (20)

And by clearing Fk from (11), the following equation is
obtained:

Fk−1 = P−1
k−1Wk−1 (21)

where ek is defined as:

ek = dk − xTkWk−1 (22)

In addition, by clearing dk from (22) and replacing (20)
and (21) in (11):

Wk = Pk

(
P−1
k−1Wk−1 + xk

(
xTkWk−1 + ek

))
(23)

By clearing P−1
k−1 from (14) and replacing in (23), the

following equation is obtained for weights update:

Wk = Wk−1 +Pkxkek (24)

By considering Kk from (17), the following equation is
obtained

Kk = Pk−1xk −Kkx
T
kPk−1xk (25)

Kk =
(
Pk−1 −Kkx

T
kPk−1

)
xk Kk = Pkxk (26)

Therefore, equation (24) can be rewritten as:

Wk = Wk−1 +Kkek (27)

E. Robust neural network based polynomial control

Consider a neural network Adaline, which represents
the dynamics of a physical system, linear or nonlinear,
including some possible noise dynamics, some nonlinear
characteristics, or parameter variation. From the equation (2),
it is defined:

x = [yk−1, . . . ,yk−n,uk−1, . . . ,uk−n, ek−1, . . . , ek−m]

W = [Wa1 , . . . ,Wan ,Wb1 , . . . ,Wbn ,Wc1 , . . . ,Wcm ]

Where m is the number of samples of the estimation error
e and n is the number of samples for the input u and output
y. From the knowledge of the neural network weights W, it
is possible to design a polynomial controller with direct-loop
tracking gain that allows tracking constant reference signals.
Defining the control algorithm as an Adaline neural network:

u = xf
TWg (28)

xf = [uk−1,uk−2, . . . ,uk−n, ek−1, ek−2, . . . , ek−n]

Wg = [WL1 ,WL2 , . . . ,WLn ,WP1 ,WP2 , . . . ,WPn ]

Where

ek = rk − yk rk = kry
∗
k (29)

The neural network weights of the controller Wg are
calculated in an intermediate step with the update of the
neural network weights W. Defining:

Wa = [Wa1 , . . . ,Wan ] Wb = [Wb1 , . . . ,Wbn ]

WL = [WL1 , . . . ,WLn ] WP = [WP1 , . . . ,WPn ]

W∗
a =

[
W∗

a1
, . . . ,W∗

a2n

]
The following polynomial equation arises:

Wa(z−1)WL(z−1) +Wb(z−1)WP(z−1) = W∗
a(z−1) (30)

Which can be organized in a matrix form:

M



WL1

WL2

·
WLn

WP1

WP2

·
WPn


=



W∗
a1

W∗
a2

·
·
·
·
·

W∗
a2n


(31)

M =



I
Wa1 Wb1

Wa2 Wb2

· · ·
· · · · ·
· · · I · · ·

Wan · · Wa1 Wbn · · Wb1

· · Wa2 · · Wb2

· · · · · ·
· · · · · ·

· · · ·
Wan Wbn



(32)

Where W∗
a can be rewritten as follows:

W∗
a1

W∗
a2

·
·
·
·
·

W∗
a2n


=



α1 −Wa1

α2 −Wa2

·
αn1 −Wan

αn1+1

αn1+2

·
αn1+n2


(33)

where αi are the coefficients of the polynomial which
contains the poles of the closed-loop system, giving as
solutions the values of WP and WL [18]. The value of the
tracking gain kr is calculated from the closed-loop transfer
function formed by Wa, Wb, WP and WL as shown:

kr = I+
(I+Wa1 · · ·+Wan) (I+WP1 + · · ·+WPn)

(Wb1 + · · ·+Wbn) (WL1 + · · ·+WLn)
(34)

A block diagram representation of the proposed robust
identification and control can be visualized in Figure 2.
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Fig. 2. Robust identification and control based neural networks.

III. RESULTS

In order to evaluate the performance of the proposed
approach, an evaluation over a nonlinear multivariable
model is considered. In this case, a TRMS is used for
validation. Three stages are considered, model identification,
identification and control based on robust neural network,
and identification and control based on robust neural network
under parametric disturbances.

A. TRMS Mathematical model

The TRMS has two inputs, the armature winding voltage
of the DC motors that move the propellers, and two outputs,
the elevation (pitch) and direction (yaw) angles. From
Figure 3, the moment equations for vertical and horizontal
motion are:

I1ψ̈ = M1 −MFG −MBψ −MG (35)

I2φ̈ = M2 −MBϕ −MR (36)

Fig. 3. TRMS variables.

Where M1 y M2 are caused by DC motors:

M1 = a1τ
2
1 − b1τ1 M2 = a2τ

2
2 − b2τ2 (37)

MFG is the gravitational momentum:

MFG = Mg sinψ (38)

MBψ y MBφ are due to the frictional forces for each of
the outputs:

MBψ = B1ψψ̇ +B2ψsign
(
ψ̇
)

(39)

MBφ = B1φφ̇+B2φsign (φ̇) (40)

MG is the gyroscopic momentum:

MG = KgyM1φ̇ cosψ (41)

And MR is the cross-reacting moment:

MR =
kc (Tos + 1)

(Tps + 1)
τ1 (42)

Where τ1 and τ2 are the torques of the DC motors, which
relate the above equations to the inputs:

τ1 =
k1

T11s + T10
u1 τ2 =

k2
T21s + T20

u2 (43)

The experimental values of the parameters of the above
equations are in [19].

B. Model identification based on robust neural networks

To obtain a model for the TRMS, a high order Adaline
neural network is considered. As a result, the nonlinear
dynamics are modeled by using a higher-order linear model
with time-varying parameters. Thus, the neural network is
designed based on a 8-th order model. Figure 4 shows the
real outputs of the system, as well as the estimated outputs by
using the neural network without robustness. The recursive
least squares algorithm is used to perform an online training
of the weights of the neural network.

Fig. 4. Real and estimated outputs of the TRMS by using a neural network
without robustness.
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A detailed view of the first 20 seconds of Fig. 4 is shown
in Fig. 5.

Fig. 5. Detailed view of the first 20 seconds of real and estimated outputs
of the TRMS from Fig. 4.

To generate a robust model of the system, an exogenous
input by considering a second-order model is included in
the estimation. To this end, the estimation error defined by
eest = y− ŷ is considered as the exogenous input, resulting
in a robust neural network. In Fig. 6 are shown the real and
estimated outputs of the TRMS by considering an additive
stochastic disturbance with zero mean and 10% amplitude
(in terms of the output signal). The recursive least squares
algorithm is also used for online training of the robust neural
network weights.

Fig. 6. Real and estimated outputs of the TRMS by considering a robust
neural network with the recursive least squares algorithm.

A detailed view of the first 20 seconds of Fig. 6 is shown
in Fig. 7.

Fig. 7. Detailed view of the first 20 seconds of real and estimated outputs
of the TRMS by considering a robust neural network with the recursive
least squares algorithm from Fig. 6.

Fig. 8 shows the time evolution of the weights of the robust
neural network related to the exogenous inputs model.

Fig. 8. Robust neural network weights related to the exogenous input e.g.
estimation error.

An additional training method for the robust neural
network is considered to improve the performance of the
recursive least squares algorithm. This is achieved by using
the steepest descent method. It is worth noting that this
method is added as a second stage of the recursive least
squares algorithm. The real and estimated outputs of the
TRMS by considering an additive stochastic disturbance with
zero mean and 10% amplitude (in terms of the output signal)
are shown in Fig. 9 by using the recursive least squares
method with steepest descent stage. A detailed view of the
first 20 seconds of Fig. 9 is shown in Fig. 10.

To perform a quantitative comparison of the algorithms,
the root mean squared error (RMSE) is used, as presented
in (44). In Table I are presented the obtained results for each
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Fig. 9. Real and estimated output of the TRMS by considering a robust
neural network trained by using recursive least squares with steepest descent.

Fig. 10. Detailed view of the first 20 seconds of real and estimated output of
the TRMS by considering a robust neural network trained by using recursive
least squares with steepest descent from Fig. 9.

output signal by using each identification method and model,
for a time window of 100 s.

RMSE =

√∑n
j=1 (xj − x̂j)

2

n
(44)

TABLE I
RMSE COMPARISON OF THE IDENTIFICATION ALGORITHMS.

RMSE Pitch Yaw
ψ φ

Robust recursive least squares 1.0577 1.9058
Robust recursive least squares + steepest descent 0.7197 1.8732

From Table I it can be observed the similarities among the
estimation methods. It can be observed that for the robust
neural network model the best result is obtained by using
the recursive least squares algorithm with steepest descent
for both angles: pitch and yaw.

C. Identification and control based on robust neural
networks

Once the TRMS is adequately identified by the robust
neural network, a polynomial controller is defined in the
same order as the robust neural network. Since the TRMS
is identified online, each time an instant is obtained a robust
model, and therefore the controller is also calculated. In this
case, the closed-loop design is performed by considering
a dead-beat strategy (poles at the origin of the complex
plane) [18] and control signals saturated in the range ±2.5,
according to the allowed range of the manufacturer [19].

Fig. 11. Tracking response of the identification and control of the TRMS
without robustness (references: ϕ∗ and φ∗, outputs: ϕ and φ).

In Fig. 11 it can be seen the tracking response (references
and outputs) of the identification and control based on neural
networks without exogenous inputs related to the robustness
of the model. In addition, in Fig. 12 it is shown the tracking
response (references and outputs) of the identification and
control of the robust neural networks. It is worth noting that
the weights of the neural networks are adequately adjusted
during the first 20 s of the test. This is performed by
considering an additive disturbance of zero means and 10%
noise level (in terms of the amplitude of the reference signal).
It is worth mentioning that the references are time-varying
defined as a sum of sinusoidal signals.
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Fig. 12. Tracking response of the identification and control of the TRMS
with a robust neural network (references: ϕ∗ and φ∗, outputs: ϕ and φ).

Figure 13 shows the tracking response of the identification
and control by using the robust neural network with the
recursive least squares method and the steepest descent
stage. Figure 14 shows a PID tracking response with an
additive disturbance in each output Feedback.

Fig. 13. Tracking response identification and control of the TRMS with a
robust neural network by using recursive least squares with steepest descent
stage (references: ϕ∗ and φ∗, outputs: ϕ and φ).

A comparison analysis is performed in terms of the
integral time absolute error criterion (ITAE) as described
in (45). Table II shows the obtained results for each
signal output by considering the reference tracking with
each method of identification and control. This analysis is
performed by using a time window of 100 s.

Fig. 14. Tracking response of the TRMS by using a PID controller
(references: ϕ∗ and φ∗, outputs: ϕ and φ).

ITAE =
n∑
j=1

kh

∣∣∣∣ej + ej−1

2

∣∣∣∣ (45)

TABLE II
ITAE COMPARISON OF THE IDENTIFICATION AND CONTROL METHODS

USING THE ROBUST NEURAL NETWORK STRUCTURE

ITAE Pitch ψ Yaw φ
Robust recursive least squares 1361.7 8496.1

Robust recursive least squares + steepest descent 2185.3 6251
PID 1214.6 8691.5

According to the results shown in Table II, for the yaw
angle, it can be seen that all the methods show a higher
ITAE value in comparison to the yaw angle. This behavior is
consistent with the results shown in Fig. 11, Fig. 12, Fig. 13
and Fig. ?? where a persistent tracking error is shown. In
terms of the yaw angle, the robust recursive least squares
algorithm with the steepest descent shows the lower ITAE
value.

D. Identification and control based on robust neural
networks with parametric disturbances

The final analysis to evaluate the performance of the
proposed identification and control based on a robust neural
network is the evaluation under parametric disturbances.

IAENG International Journal of Applied Mathematics

Volume 54, Issue 1, January 2024, Pages 68-76

 
______________________________________________________________________________________ 



Fig. 15. Tracking response identification and control of the TRMS with
a robust neural network with a parametric disturbance of Mg from 0.32 to
0.16 (references: ϕ∗ and φ∗, outputs: ϕ and φ).

In Fig. 15 it is shown the tracking response of the
identification and control based on robust neural networks,
where the parameter Mg changes 50% of its value.
According to (35), this parameter is directly related to
the ψ angle. In Fig. 15 it is shown that the parametric
disturbance is applied at time instant 70 s. It can be seen
that the tracking error is increased during 30 s. Since the
weights of the robust neural network are trained online, the
model of the TRMS is adequately updated, and therefore
the tracking error is successfully reduced.

Fig. 16. Tracking response identification and control of the TRMS with
a robust neural network with a parametric disturbance of B1ψ from 0.1 to
0.2 (references: ϕ∗ and φ∗, outputs: ϕ and φ).

In Fig. 16 it is shown the tracking response of the
identification and control based on robust neural networks,
where the parameter B1ψ changes 100% of its value.
According to (36), this parameter is directly related to the φ
angle. In Fig. 16 it is shown that the parametric disturbance
is applied at time instant 70 s. It can be seen that the tracking
error is increased during 30 s but only for the φ angle. Since
the weights of the robust neural network are trained online,
the model of the TRMS is adequately updated, and therefore
the tracking error is successfully reduced.

IV. CONCLUSIONS

In this work, an Adaline neural network structure for the
identification of a nonlinear MIMO system is proposed. A
robust for the neural network is proposed by considering as
exogenous inputs the estimation error. Three methods for
online identification of the system are analyzed to obtain
the neural network training algorithm: the recursive least
squares algorithm, and the recursive least squares algorithm
with the steepest descent stage. It can be seen that by
considering the RMSE performance criterion, the lower
estimation error is achieved by the recursive least squares
algorithm with the steepest descent stage. This behavior
is validated by considering additive noise disturbances. It
is worth noting that the robust neural network is trained
at each time sample, therefore obtaining a time-varying
adapted model.

In addition, a polynomial multivariable control is also
applied based on the robust neural network, where the
parameters of the controller are computed online at each
time sample by using a dead-beat pole placement strategy.
The performance of the proposed method is evaluated by
considering the tracking performance of the method under
the ITAE criterion. This behavior is validated under additive
disturbances where the recursive least squares algorithm
with the steepest descent stage achieves the lower tracking
error.

The proposed approach is also evaluated by considering
parametric disturbances. Two disturbances are considered
which are directly related to the pitch and yaw angles. It
can be seen that the proposed approach effectively updates
the weights of the robust neural network since the training
is performed online. And, once the model is identified
adequately, the tracking error is effectively diminished.

In future works, a multi-layer robust neural network will
be proposed where the closed-loop control must be designed
according to the neural network structure. This work will be
developed by considering the online training structure which
effectively tracks any parameter variation of the model to be
controlled.
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