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Abstract—Linear regression models are commonly used to
determine the quantitative relationships between variables and
utilize the resulting regression equations to make predictions.
This paper proposes a fully informative multiple imputation
method based on a linear regression model with a missing re-
sponse variable, utilizing all observable data to obtain estimates
of the regression coefficients and thereby the predicted values
of the missing response variable. This not only provides a good
explanation of the relationship between the response variable
and their respective variables, but also effectively enhances the
imputation accuracy of the response variable. The stability
and sensitivity of the fiMI method are evaluated through a
simulation study. Subsequently, the proposed method is applied
to two real data sets, the admission prediction data set and the
goalkeeper data set, and is discussed and analyzed.

Index Terms—linear regression models, missing response
variables, full information, multiple imputation.

I. INTRODUCTION

WE consider the following linear regression model

Y = Xβ + ε, (1)

where X = (Xij) ∈ Rn×p is the independent variable,
Xi. = (Xi1, Xi2, · · · , Xip) represents the i − th row of
matrix X(i = 1, · · · , n), X.j = (X1j , X2j , · · · , Xnj)

⊤

represents the j − th row of matrix X(j = 1, · · · , p),
β = (β1, β2, · · · , βp)

⊤ ∈ Rp×1 is a vector of unknown
parameters, Y = (Y1, Y2, · · ·Yn)

⊤ ∈ Rn×1 is the response
variable, and ε = (ε1, ε2, · · · εn)⊤ ∈ Rn×1 is the residual
vector. εi ∼ N(0, σ2In) and independent of each other.

Suppose there are imperfectly independent and identi-
cally distributed samples {(Xi., Yi, δi), 1 ≤ i ≤ n},where
{Xi., 1 ≤ i ≤ n} is fully observable, {Yi, 1 ≤ i ≤ n} is
missing, and δi is the variable indicating that Yi is missing,
i.e.

δi =

{
0, if Yi is missing;
1, if Yi is not missing.

Assume that Y satisfies the MAR mechanism, i.e.

P (δi = 1|Xi., Yi) = P (δi = 1|Xi., Yi) = P (Xi.),

i.e. under a given Xi., Yi is conditionally independent of δi.
The number of cells in the response variable Y with no

missing data and the number of cells with missing data to be
denoted nOB =

∑n
i=1 δi and nNA = n− nOB, respectively.
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Define the observable and missing values in the response
variable Y to be denoted Yobs and Ymis, respectively, the
parts of the matrix X corresponding to Yobs and Ymis to be
denoted Xobs and Xmis, respectively.

For addressing the imputation problem of missing response
variables in linear regression models, the most common
methods are mean imputation and regression imputation, but
these approaches also have some disadvantages. For instance,
mean imputation can reduce the correlation between vari-
ables, while regression imputation can artificially increase
this correlation. Wang et al. [1] (2009) used the expectation
and maximization (EM) method to calculate the asymptotic
variances and standard errors of the maximum likelihood
estimator (MLE) for linear models with missing data for the
missing response variable. However, the standard deviation
can only be calculated after the operations have converged
and cannot be obtained directly. Liu (2012) proposed a new
expectation recursive least squares (ERLS) method based on
the EM algorithm for linear regression models. Avoiding the
difficulty of finding the inverse of the correlation matrix of
high-dimensional data. However, the calculation of regres-
sion coefficients requires several iterations, which increases
the computational time.

The method for dealing with missing data has under-
gone two main methods: single imputation and multiple
imputation. The emergence of multiple imputation methods
has addressed the shortcomings of single imputation. Rubin
[4] (1987) proposed a multiple imputation procedure that
involves replacing each missing data point with a range
of potential data sets (thus also reflecting the uncertainty
associated with the imputed values); subsequent to this,
analyzing these multiple imputed data sets using standard
procedures applicable to complete data sets; and ultimately
generalizing and consolidating the findings from these anal-
yses. Buuren et al. [2] (2011) used the R package mice to
impute incomplete multivariate data using chained equations,
providing a practical step-by-step approach to addressing the
issue of missing data in applications. The mice package is
commonly used to impute missing response variables under
linear regression models, with the most commonly used
methods being predictive mean matching multiple imputation
(PMMMI) method, bayesian multiple imputation (BayesMI)
method, and bootstrap multiple imputation (bootstrapMI)
method. Rubin [6] (1999) and Schafer [7] (1997) have
conducted a series of studies on Bayesian multiple impu-
tation methods, where the imputation accuracy is strongly
influenced by the missing data mechanism. Little [8] (1988),
Morris et al. [9] (2015), and Buuren [10] (2018) further
discussed the predictive mean multiple imputation methods
and found that the missing data mechanism has a small
impact on the imputation accuracy. Chang et al. [5] (2020)
studied the problem of missing data for independent variables
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in a distributed methods environment, and developed an
efficient distributed multiple imputation method for horizon-
tally divided incomplete data communication. However, no
solution is provided when the response variable is missing.

II. FULL INFORMATION MULTIPLE IMPUTATION

Multiple imputation (MI) is arguably the most popular
method for dealing with missing data. The MI method
replaces each missing value with a sample from its posterior
predictive distribution. The predictive imputation model is
estimated from the observed data and does not use the miss-
ing values. The missing values are imputed multiple times
in order to account for the uncertainty of the imputation,
and each imputed data set is then used to fit an analysis
model. The parameter estimate β is combined with the results
of these analyses to produce a final estimate from multiple
imputed data sets. This method yields estimates that are more
robust than those obtained by using a single value to fill in
for the missing data.

A straightforward method to analyzing data is to aggregate
information from the minimum observable data so that it
will impute by analyzing all observable data. We refer to
this method as full information (fi) method, and next we
will extend it to the full information multiple imputation
(fiMI) method. In linear regression models with missing
response variable, the general linear regression imputation
requires only X⊤

obsXobs and X⊤
obsYobs to obtain least squares

estimates of the regression coefficients, as can be seen from
the following equation:

β̂ = (X⊤
obsXobs)

−1(X⊤
obsYobs). (2)

However, the regression coefficients estimated in equation
(2) may suffer from overfitting, leading to inaccurate pre-
dictions. To address this issue, we propose to fit a linear
regression imputation model using the fi method, which
can be interpreted as fitting the imputation model using all
observable data. By passing the imputed model parameters
to the full observable data set, it is expected to achieve the
best computational performance because it fully exploits all
available information.

According to (1), it follows that Yi ∼ N(Xi.β, σ
2) with

priors
π(σ2) ∝ IG(1/2, 1/2),

β | σ2 ∼ N(0, σ2λ−1I),

where IG and N are denoted as inverse gamma and mul-
tivariate Gaussian distributions, respectively. The posterior
distribution of (σ2, β) is given by

σ2|Xobs ∼ IG((nOB + 1)/2, (SSE + 1)/2),

β|σ2, Xobs ∼ N((X⊤
obsXobs + λI)−1X⊤

obsYobs,

σ2(X⊤
obsXobs + λI)−1)

(3)

where
SSE = ∥Yobs −Xobsβ

∗∥22,

the specific representation of β∗ will be given later. The fiMI
method samples (σ2, β) from (3), imputes the missing values
of the response variable from (1), and fits the analytical linear
regression model using the estimated complete data. This

process is repeated m times. To avoid extraneous complexity,
we assume that nOB > p.

First, we calculate the matrix

A = X⊤
obsXobs + λIp×p,

where λ is the regularization parameter, which allows a
limited solution to the over-fitting problem in (2). The
regression weights

β∗ = (A)−1X⊤
obsYobs

are obtained with reference to (2) and the matrix A. Next,
Choleskey’s decomposition of the positive definite matrix A
yields matrix CA, i.e.

A = (C⊤
ACA),

where CA is the upper triangular matrix. We obtain estimates
of the regression coefficients as follows:

β̂ = β∗ + σ(CA)
−1g, (4)

where g = (g1, g2, · · · , gp)⊤ is a gi ∼ N(0, 1) and mutually
independent p− dimensional variable. At this point

β̂fi = β̂,

Cov(β̂fi) =
1

p− 1

p∑
i=1

((β̂fi)i − ¯̂
βfi).

According to sufficient statistics β̂fi and Cov(β̂fi) of
the normal distribution, samples β1, · · · , βM are ob-
tained as being independent of each other and obeying
N(β̂fi,Cov(β̂fi)). Send the multiple regression coefficients
β1, · · · , βM to the imputation model and integrate the mul-
tiple imputation results using Rubin’s rule to obtain β̂ and
Cov(β̂). Based on the final obtained β̂, impute the missing
values Ŷmis = Xmisβ̂ of the response variable and expand
to obtain Ŷ .

III. NUMERICAL ANALYSIS

A. Evaluation indicators

1) Mean square error of Ŷ
The mean square error (MSE) calculates the difference

between the imputed value and the original true value.

MSE(Ŷ) =
1

n

n∑
i=1

(Yi − Ŷi)
2,

where Yi and Ŷi denote the original true value and the
imputed value respectively.

2) Mean absolute error of Ŷ
The mean absolute error (MAE) is the average of the

absolute differences between each predicted value and the
corresponding actual value.

MAE(Ŷ) =
1

n

n∑
i=1

|Ŷi − Yi|.

When the difference between the predicted and true values
is smaller, it means that the imputation is better.
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B. Simulation

Firstly, the initial parameters have been fixed at
(n, p,MR) = (1000, 5, 10%), and the values of MSE(Ŷ)
and MAE(Ŷ) have been calculated for the fiMI method and
the comparison method under missing response variables.
According to Table I, when there is a missing response
variable in the linear regression model, the fiMI method has
the lowest values for MSE and MAE. Overall, for imputation
of linear regression models with missing response variables,
the fiMI method has the highest imputation accuracy for
the parameter combination (n, p,MR) = (1000, 5, 10%) ,
meaning that the imputed values from the fiMI method are
closest to the true values.

TABLE I
MSE AND MAE VALUES OF FIMI METHOD AND COMPARISON

METHODS IN SIMULATED DATA

Indicators fiMI ERLS EMRE PMMMI BayesMI bootstrapMI

MSE
(10−4)

1.0472 1.2040 1.224 1.7151 2.3004 2.1565

MAE
(10−2)

8.0541 8.5226 8.6269 1.0401 1.2393 1.1368

Next, the parameters (n, p,MR) are varied to examine the
MSE, MAE, and MRE values of the fiMI method and the
comparison method under different sample sizes, numbers
of variables, and missing ratios for sensitivity and stability
analysis.

Case 1. Varying n with fixed (p,MR)

The parameter values are set as (p,MR) = (5, 10)% and
n = (300, 500, 1000, 1500, 2000) . The comparison results
are shown in Fig. 1 and Fig. 2.
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Fig. 1. Results of MSE and MAE values obtained by the fiMI method
and multiple comparison methods in simulated data with different n values
(case 1)

Upon observing Fig. 1(a) and 2(a), it is found that the
MSE value of the fiMI method gradually decreases from
2.2493e-04 to 4.9658e-05 as the sample size n increases
for the fixed parameter (p,MR); the MSE values of all
other comparison methods are noticeably higher than the
fiMI method. Observing Fig. 1(b) and 2(b) reveals that the
MAE value of the fiMI method tends to flatten out, indicating
that the increase of the sample size n does not have much
impact on the MAE value. The fluctuation of the MAE value
of the fiMI method is the smallest, and the MAE values of
the other methods are higher than the fiMI method.
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Fig. 2. Results of MSE and MAE values obtained by fiMI, ERLS, and
EMRE methods in simulated data with different n values

Case 2. Varying p with fixed (n,MR)
The parameter values are set as (n,MR) = (1000, 10%)

and p = (3, 5, 10, 15, 20). The comparison results are shown
in Fig. 3 and Fig. 4.
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Fig. 3. Results of MSE and MAE values obtained by fiMI method and
multiple comparison methods in simulated data with different p values (case
2)
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Fig. 4. Results of MSE and MAE values obtained by fiMI, ERLS, and
EMRE methods in simulated data with different p values

Upon observing Fig. 3(a) and Fig. 4(a), it is found that the
MSE value of the fiMI method fluctuates within the range
of 1.047241e-04 to 1.12679e-04 as the number of variables
p increases for the fixed parameter, indicating that it is less
affected by the number of variables p. The MSE value of
the other compared methods is higher than the fiMI method.
Observing Fig. 3(b) and 4(b) reveals that the change in the
MAE value of the fiMI method is more gradual, indicating
that the increase in the number of variables p has less impact
on the MAE value. The MAE value of the fiMI method
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fluctuates within the range of 8.04380e-02∼8.3516e-02, with
the smallest range of fluctuation; the MAE values of the other
methods are higher than the fiMI method.

Case 3. Varying MR with fixed (n, p)
The parameter values are set as (n, p) = (1000, 5) and

MR = (10%, 20%, 30%, 40%, 50%) . The results are shown
in Fig. 5 and Fig. 6.
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●BayesMI bootstrapMI fiMI PMMMI

Fig. 5. Results MSE and MAE values obtained by fiMI method and
multiple comparison methods in simulated data with different MR values
(case 3)
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Fig. 6. Results of MSE and MAE values obtained by fiMI, ERLS, and
EMRE methods in simulated data with different MR values

Upon observing Fig. 5(a) and Fig. 6(a), it can be seen
that the MSE values of both the fiMI method and the other
comparative methods show an overall increasing trend with
the increase of the MR for the fixed parameter (n, p), with
the MSE value of the fiMI method fluctuating within the
range of 1.0472e-04 to 5.1215e-04; the other imputation
methods have higher MSE values than the fiMI method.
Observing Fig. 5(b) and Fig. 6(b) reveals that the MAE
values of both the fiMI method and the other comparative
methods roughly increase linearly with the increase of the
MR, but the MAE value of the fiMI method is the smallest
among all the imputation methods, and the fluctuation range
is also the smallest.

C. Real Data Analysis

In this section, two real data sets are selected: the ad-
mission prediction data set and the goalkeeper data set,
and the data set for this empirical study is obtained from
a third-party data science community, the Heywhale. The
response variable is the chance of admission in the admission
prediction data set. Firstly, correlation analysis is done for

each variable of the admission prediction data set as shown
in Table II:

TABLE II
THE CORRELATION COEFFICIENT AND P-VALUE BETWEEN THE

INDEPENDENT VARIABLES AND RESPONSE VARIABLE IN ADMISSION
PREDICT DATA SET

Statistical
tests

GRE
Score

TOEFL
Score

University
Rating SOP LOR CGPA

CC 0.803 0.792 0.711 0.676 0.670 0.873
P-value 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16

The correlation and significance test analysis show that
these six characteristic variables are all highly correlated with
the response variable chance of admission, so the above six
characteristic variables are selected as independent variables.
The admission prediction data set is suitable for establishing
a multiple linear regression model, our regression model is

Yi =
6∑

j=1

Xijβj + εi, i = 1, 2, · · · 400.

For the admission prediction data set, we set the MR
of admission chances to 50% , then impute with the fiMI
method and comparison method, and finally compare the
imputation methods in terms of imputation accuracy.
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Fig. 7. MSE and MAE values obtained by fiMI method and comparison
methods in admission predict data set

It can be seen from Fig. 7 that the fiMI method has
the lowest MSE and MAE values for the response variable
admission chances of MR = 50%, indicating that the
fiMI method has the best imputation effect. Overall, for the
admission prediction data set with a large ratio of missing
values, the fiMI method has the highest imputation accuracy,
followed by the ERLS and EMRE methods.

The second data set for the empirical study is the goal-
keeper player data set. Rating is the response variable.

Firstly, we perform correlation analysis on each variable of
the goalkeeper data set, and the correlation coefficients and p-
values between each characteristic variable and the response
variable are calculated as shown in Table III below:

TABLE III
THE CORRELATION COEFFICIENT AND P-VALUE BETWEEN THE

INDEPENDENT VARIABLES AND RESPONSE VARIABLE IN GK DATA SET

Statistical
tests Positioning Diving Kicking Handling Reflexes

CC 0.923319 0.9217224 0.7543833 0.9113288 0.9262662
P-value 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16
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The correlation and significance test analysis show that
these five characteristic variables are all strongly correlated
with rating, so the above five characteristic variables are
selected as independent variables. The goalkeeper data set
is suitable for multiple linear regression modeling, so p = 5
, our regression model is as follows:

Yi =
5∑

j=1

Xijβj + εi, i = 1, 2, · · · 2003.

For the goalkeeper data set, we still consider the case of
a large percentage of missing response variables and set the
missing ratio of the response variable rating MR = 50%
then impute with the fiMI method and the comparison
method, and finally compare the imputation methods in terms
of imputation accuracy.
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Fig. 8. MSE and MAE values obtained by fiMI method and comparison
methods in GK data set

Observation of Fig. 8 reveals that the fiMI method has
the lowest MSE and MAE values for the response variable
rating of MR = 50% , indicating that the fiMI method
has the best imputation effect. Overall, for goalkeeper data
set with a large ratio of missing, the fiMI method has the
highest imputation accuracy, followed by the EMRE and
ERLS methods, respectively.

IV. CONCLUSION

Big data statistical analysis has become one of the main-
stream positions in current statistical research. As missing
data in statistical analysis is objective and inevitable in
reality, techniques for dealing with missing data have re-
ceived much attention from the statistical community, and
imputation methods for missing data have been widely used
in many fields. To address this issue, this paper investigates
imputation methods for handling missing response variables
in linear regression models to better improve the imputation
accuracy while interpolating missing data. The work accom-
plished is as follows: the six methods are compared in terms
of method steps, the advantages and disadvantages of the six
methods are summarised, and the six methods are compared
in terms of computational performance.

For the problem of imputation accuracy, the sensitivity and
stability of the method are investigated through simulation,
and real data analysis is carried out to verify the performance
of the method. It is found that the proposed method has
higher imputation accuracy and is more effective in dealing
with data with missing ratios.

The performance of the imputation method discussed in
this paper is mainly verified through a large number of sim-
ulation experiments and real data, mainly from practice and
applications. Next, more attention will be paid to theoretical
support, and the theorem proving of each imputation method
will be studied, which can also serve as a direction for us in
the future.
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