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Abstract—The main goal of this article is to investigate
the generalized Hyers-Ulam stability of cubic n-dimensional
functional equation
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in the setting of non-Archimedean Banach spaces(NABS) by
using the direct method and fixed point method.

Index Terms—Cubic n-dimensional Functional Equation(FE),
non-Archimedean Banach Spaces(NABS), Direct Method(DM)
and Fixed Point Method(FPM).

I. INTRODUCTION

THE Ulam-Hyers stability problem is concerned with
establishing the conditions under which, given an

approximate solution of a functional equation(FE), one
can locate an exact key that is closer to it in some way.
The exploration of the stability problem for functional
equations(FEs) is described as a question by Ulam [31]
regarding the stability of group homomorphisms and
affirmatively answered for Banach spaces by Hyers [16].
Several authors([1], [2], [4], [11], [29], [30]) generalized it
an achieved intriguing results.

The method was developed by Hyers and gives the ad-
ditive mapping generated from the approximation additive
mapping, known as the direct method, which may be used
to study the stability of various functional equations. This
method is the most essential and powerful instrument for
studying the stability of various functional equations. Aoki
[4] and Bourgin [7] generalized Hyers’ theorem for additive
mappings by considering an unbounded Cauchy difference.
Rassias [24] presented a generalization of Hyers’ theorem for
linear mapping in 1978, allowing the Cauchy difference to
be unbounded. In 1991, Gajda [14] used the same methods
as [24] and presented an affirmative answer to this question
for p > 1. However, Gajda [14] and Rassias and Semrl [25]
counterexamples that one cannot establish the Rassias’ type
theorem for p = 1 have motivated various mathematicians to
propose new approximately additive or approximately linear
mappings. One of the most famous FE is the additive FE

g(ν + υ) = g(ν) + g(υ) (1)
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Cauchy solved it in the class of continuous real-valued
functions for the first time in 1821. In honor of Cauchy
[31], the additive functional equation is commonly referred
to as a Cauchy additive functional equation. The theory of
additive functional equations is commonly used to develop
theories of other functional equations. Since the function
g(ν) = αν is the solution of the FE (1), every solution of
the additive FE is called an additive function.

Rassias examined the H-U stability for the different FEs
in various spaces [23], [26]. Czerwik [11] investigated the
stability of a quadratic FE with several variables in normed
spaces. Several authors investigated the different stability
outcomes in ([11], [29], [30]).

Park et al. [21] presented an additive s-functional
equation in 2019. He established the H-U stability for the
aforementioned one in complex Banach spaces using the
FPM and DM. In addition, he investigated the H-U stability
of homomorphism and derivations in complex Banach
algebras.

Almahalebi [3] explored the quadratic FE in Banach
spaces in 2018. And using the FPM, he established the hy-
perstability result of the same equation. Radu [22] examined
several stability results utilizing the FPM. He investigated the
stability of the Cauchy FE and Jensen’s FEs using the fixed
point approach. Following his work, a number of authors
investigated different FEs using the FPM [17], [29], [30].
Consider the functional equation

g(ν + υ) + g(ν − υ) = 2g(ν) + 2g(υ) (2)

where g(ν) = αν2 is a solution of this FE, so one can
usually say that the above FE is quadratic. The H-U stability
problem of the quadratic FE was first proved by F. Skof
[27] for functions between a normed space and a Banach
space. Later, the result was explored by S. Czerwisk [12]. A
Stability problem of Ulam for the cubic FE

g(2ν + υ) + g(2ν − υ) = 2g(ν + υ) + 2g(ν − υ) + 12g(ν)
(3)

was introduced by Jun and Kim [19]. Additionally, they
found a solution to Ulam’s stability problem for the gen-
eralized Euler-Lagrange type cubic FE

g(aν + υ) + g(ν + aυ) =(a+ 1)(a− 1)2[g(ν) + g(υ)]

+ a(a+ 1)g(ν + υ) (4)

for fixed integer a with a ̸= 0, 1, and

g(aν + bυ) + g(bν + aυ) =(a+ b)(a− b)2[g(ν) + g(υ)]

+ ab(a+ b)g(ν + υ) (5)
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for integers a,b with a ̸= 0, b ̸= 0, and a ± b ̸= 0, and
the equations being equivalent to (1.3). In a later study, Chu
et al. [9], [10] explored the H-U stability and extended the
cubic FE to the generalized form:
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where n ≥ 2 is an integer. Furthermore, Jung and Chang
the FPM in [18] to examine a generalized H-U-R stability
for a cubic FE.

In this current work, we present a cubic n-dimensional FE
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(7)

where t ≥ 2 is a positive integer with N − {0, 1}, and
obtain its general solution. The objective of this work is to
investigate the H-U stability of equation (7) by using the DM
and FPM in NABS. It is clear that the mapping g(ν) = αν3

is a solution of (7).

II. PRELIMINARIES

In this section, we will present some basic definitions and
theorems, which will be essential to prove our main results.

Definition 2.1. [15] Let K be a field. A NA absolute value
on K is a function | | : K → R such that for every ν, υ ∈ K
we have

(i) |ν| ≥ 0 iff ν = 0;
(ii) |νυ| = |ν||υ|

(iii) |ν + υ| ≤ max{|ν|, |υ|}.

Definition 2.2. [15] Let X be a vector space over a scalar
field k with a NA non-trivial valuation |.|. A function ∥.∥ :
X → R+ is a NA norm if it satisfies the following conditions:

(i) ∥ν∥ = 0 iff ν = 0;
(ii) ∥rν∥ = |r| ∥ν∥ for every r ∈ k, ν ∈ X ;

(iii) ∥ν + υ∥ ≤ max {∥ν∥, ∥υ∥} for every ν, υ ∈ X .
Then (X ∥.∥) is called a NA normed space.

Due to the fact that

∥νn−νm∥ ≤ max {∥νj+1 − νj∥ : m ≤ j ≤ n− 1} (n > m)

a sequence {νn} is Cauchy iff {νn+1 − νn} converges
to zero in a NA space. By a complete NA normed space
we mean one in which every Cauchy sequence is convergent.

Example 2.1. [15] Let p be a fixed prime number. For any
non-zero rational number ν, there is a unique integer nν ∈ Z
such that

ν =
s

t
pnν ,

where s and t are integers not divisible by p. Then, the
function |.|p : Q → [0,+∞) defined by

|ν| =
{

0, ν = 0,
p−nν , ν ̸= 0

is a NA valuation on Q.
Example 2.2. [15] Let ν =

60

7
. Suppose we want to find its

5-adic absolute value (hence p = 5). Expressed in the p-adic
form, we have

ν =
60

7
= 51.

12

7

which mean |ν|5 =
1

5
or5−1.

7-adic absolute value for ν. It will be simple to |ν|7 = 7,
because

ν = 7−1.60

|ν|7 =
1

7−1
= 7.

which mean |ν|7 = 7.

Definition 2.4. [13] Let X be a set. A function ρ : X ×X →
[0,∞] is called a generalized metric on X if ρ fulfills the
following conditions:

(i) ρ(ν, υ) = 0 iff u = υ;
(ii) ρ(ν, υ) = ρ(υ, u) for every u, υ ∈ X ;

(iii) ρ(ν, ω) ≤ ρ(ν, υ) + ρ(υ, ω) for every ν, υ, ω ∈ X .

We recall some of the following fundamental results.

Theorem 2.1. [8], [13] Let (X , ρ) be a complete generalized
metric space(CGMS) and let ∆ : X → X be a strictly
contractive with £ < 1. Then, for each given element u ∈ X ,
either ρ(∆nν,∆n+1ν) = ∞ for all n ≥ 0 or there is a
n0 ∈ N satisfies

(i) ρ(∆nν,∆n+1ν) < ∞, for every n ≥ n0;
(ii) the sequence {∆nν} converges to a fixed point υ∗ of

∆;
(iii) υ∗ is the unique fixed point of ∆ in the set Y =

{υ ∈ X / ρ(∆n0ν, υ) < ∞};
(iv) for every υ ∈ Y , we have

ρ(υ, υ∗) ≤ 1

1−£
ρ(υ,∆υ).

The use of FEs to prove new fixed point theorems with
applications was first made possible by Isac and Rassias
in 1996 [17]. Several researchers have thoroughly explored
the stability problems of several FEs using fixed point
techniques (see [5], [6], [8], [13], [18], [28]).

For coding simplicity, we can define a function g : X → W
by

Dg (ν1, ν2, ..., νk)

= g

(
t

k−1∑
i=1

νi + νk

)
+ g

(
t

k−1∑
i=1

νi − νk

)
+ 2t

k−1∑
i=1

g(νi)

− 2t3g

(
k−1∑
i=1

νi

)
− t

k−1∑
i=1

[
g(νi + νk) + g(νi − νk)

]
(8)

for every ν1, ν2, ..., νk ∈ X , where t ≥ 2 is a positive integer
number.
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III. GENERAL SOLUTION

Lemma 3.1. Let X and W be linear space. A mapping
g : X → W satisfies the FE (7) if and only if g is cubic.

Proof. Assume that the function g satisfies the FE (7). By
taking νi = 0, (i = 1, 2, ..., k), we get g(0) = 0, and by
setting 2νi = 0, (i = 1, 2, ..., k − 1), and νm = ν, we may
conclude that

g(−ν) = −g(ν) for every ν ∈ X ,

i.e., g is a function. Now, we will show νm = υ in the
equation (7), we obtain

g(2ν+υ)+g(2ν−υ)+4g(ν) = 16g(ν)+2[g(ν+υ)+g(ν−υ)]

for every ν, υ ∈ X . Thus g is cubic.

g(tν+υ)+g(tν−υ)+2tg(ν) = 2t3g(ν)+t[g(ν+υ)+g(ν−υ)]

for every ν, υ ∈ X . Conversely, since g is cubic, we have
the FE

g(2ν + υ) + g(2ν − υ) = 12g(ν) + [g(ν + υ) + g(ν − υ)]
(9)

Then obtaining the following characteristics is simple:
1) g(0) = 0
2) g(−υ) = −g(υ)
3) g(tν) = t3g(ν)
4) g(ν+2υ)+g(ν−2υ)+6g(ν) = 4[g(ν+υ)+g(ν−υ)]

this will be demonstrated through induction on k ≥ 2. It
holds on k = 2: see [19]. Suppose it is true in the case when
k = m; that is, we get

g

(
t
m−1∑
i=1

νi + νm

)
+ g

(
t
m−1∑
i=1

νi − νm

)
+ 2t

m−1∑
i=1

g(νi)

= 2t3g

(
m−1∑
i=1

νi

)
+ t

m−1∑
i=1

[
g(νi + νm) + g(νi − νm)

]
for every ν1, ν2, ..., νm ∈ X . Now, letting ν1 = ν1 + υ and
νi = ν, (i = 2, 3, ...,m), we get

g

(
m−1∑
i=1

tνi + tυ + νm

)
+ g

(
m−1∑
i=1

tνi + tυ − νm

)
+

2tg(ν1 + υ) + 2t
m−1∑
i=2

g(ν1 + υ) = 2t3g

(
m−1∑
i=1

νi + υ

)
+ tg(ν1 + υ + νm) + tg(ν1 + υ − νm)

+ t
m−1∑
i=2

[
g(νi + υm) + g(νi − νm)

]
(10)

since g is cubic, the following equation is possible:

g(ν + υ + 2ω) + g(ν + υ − 2ω) + g(2ν) + g(2υ)

= 2[g(ν + υ) + 2g(ν + ω) + 2g(ν − ω)

+ 2g(υ + ω) + 2g(υ − ω)] (11)

for every ν, υ, ω ∈ X . By Putting ν = 2ν1, υ = 2υ and
ω = νm in the equation (11) and using the property (3), we
get

8g(ν1 + υ + νm) + 8g(ν1 + υ − νm) + 8g(2ν1) + 8g(2υ)

= 2[g(2ν1 + 2υ) + 2g(2ν1 + νm) + 2g(2ν1 − νm)

+ 2g(2υ + νm) + 2g(2υ − νm)]

for every ν, υ, νm ∈ X . Thus we get

2g(ν1 + υ + νm) + 2g(ν1 + υ − νm) + 2g(2ν1) + 2g(2υ)

= 4g(2ν1 + 2υ) + g(2ν1 + νm) + g(2ν1 − νm)

+ g(2υ + νm) + g(2υ − νm)

for every ν, υ, νm ∈ X . From the equation (9), we may have

2g(ν1 + υ + νm) + 2g(ν1 + υ − νm) + 16g(ν1) + 16g(υ)

= 4gh(ν1 + υ) + 2[g(ν1 + νm) + g(ν1 − νm)]

+ 2[g(υ + νm) + g(υ − νm)] + 12g(ν1) + 12g(υ)

for every ν1, υ, νm ∈ X . Hence the equation (10) will be

g

(
m−1∑
i=1

tνi + tυ + νm

)
+ g

(
m−1∑
i=1

tνi + tυ − νm

)

+ 2tg(ν1 + υ) + 2t
m−1∑
i=2

g(ν1 + υ)

= 2t3g

(
m−1∑
i=1

νi + υ

)
+ tg(ν1 + υ + νm)+

tg(ν1 + υ − νm) + t

m−1∑
i=2

[
g(νi + νm) + g(νi − νm)

]

= 2t3g

(
m−1∑
i=1

νi + υ

)
− 2tg(ν1)− 2tg(υ)

+ 4g(ν1 + υ) + tg(υ + νm) + g(υ − νm)

+ t

m−1∑
i=1

[
g(νi + νm) + g(νi − νm)

]
for every ν1, ν2, ..., νm ∈ X and υ ∈ X . As a result, if g is
cubic, we get the required equation (7).

IV. H-U STABILITY IN NON-ARCHIMEDEAN BANACH
SPACES

In this section, X and W are considered as NANS and
NABS, respectively.

A. Stability Results:Direct method

In this part, we examine the H-U stability of the FE (8)
by using the direct method.

Theorem 4.1. Let a mapping φ : X k → [0,∞) and a
mapping g : X → W be a mapping that satisfies g(0) = 0
and

∥Dg(ν1, ν2, ..., νk)∥ ≤ φ(ν1, ν2, ..., νk) (12)

for every ν1, ν2, ..., νk ∈ X , with

lim
l→∞

|t|3lφ
(ν1
tl
,
ν2
tl
, ...,

νk
tl

)
= 0 (13)

Then, there is a unique cubic mapping C3 : X → W that
satisfies

∥g(ν)− C3(ν)∥ ≤ sup
l∈N

{
1

2
|t|3(l−1)φ

( ν
tl
,
ν

tl
, 0, ..., 0

)}
(14)

for every ν ∈ X .
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Proof: Replacing (ν1, ν2, ..., νk) by (ν, ν, 0, ..., 0) in (8),
we get ∥∥2g(tν)− 2t3g(ν)

∥∥ ≤ φ(ν, ν, 0, ..., 0) (15)

for every ν ∈ X . This implies∥∥∥g(ν)− t3g
(ν
t

)∥∥∥ ≤ 1

2
φ
(ν
t
,
ν

t
, 0..., 0

)
for every ν ∈ X . Hence∥∥∥t3mg

( ν

tm

)
− t3ng

( ν

tn

)∥∥∥
≤ max

{∥∥∥t3mg
( ν

tm

)
− t3(m+1)g

( ν

tm+1

)∥∥∥
, ...,

∥∥∥t3(n−1)g
( ν

tn−1

)
− t3ng

( ν

tn

)∥∥∥}
≤ max

{
|t|3m

∥∥∥g( ν

tm

)
− t3g

( ν

tm+1

)∥∥∥
, ..., |t|3(n−1)

∥∥∥g( ν

tn−1

)
− t3g

( ν

tn

)∥∥∥}
≤ sup

l∈{m,m+1,...}

{
1

2
|t|3lφ

( ν

tl+1
,

ν

tl+1
, 0, ..., 0

)}
(16)

for any n > m > 0 and for any ν ∈ X . Therefore, we
conclude from (16) and (13) that the sequence

{
t3lg

( ν
tl

)}
is a Cauchy in W for every ν ∈ X . Since W is complete,
the sequence

{
t3lg

( ν
tl

)}
converges in W for every ν ∈ X .

Consequently, the mapping C3 : X → W might be defined

C3(ν) = lim
m→∞

t3mg
( ν

tm

)
, ν ∈ X .

Taking m = 0 and the limit n → ∞ in (16), we get (14). It
follows from (12) and (13), we get

∥DC3(ν1, ν2, ..., νk)∥ = lim
l→∞

|t|3l
∥∥∥Dg

(ν1
tl
,
ν2
tl
, ...,

νk
tl

)∥∥∥
≤ lim

l→∞
|t|3lφ

(ν1
tl
,
ν2
tl
, ...,

νk
tl

)
= 0

for every ν1, ν2, ..., νk ∈ X . Thus, we get

DC3(ν1, ν2, ..., νk) = 0.

From Lemma (1), the function C3 : X → W is cubic. If C′

3

is another cubic mapping satisfies (14), then

∥C3(ν)−C
′

3(ν)∥

=
∥∥∥t3sC3 ( ν

ts

)
− t3sC

′

3

( ν

ts

)∥∥∥
≤ max

{∥∥∥t3sC3 ( ν

ts

)
− t3sg

( ν

ts

)∥∥∥ ,∥∥∥t3sg( ν

ts

)
− t3sC

′

3

( ν

ts

)∥∥∥}
≤ sup

l∈N

{
1

2
|t|s+l−1φ

( ν

ts+l
,

ν

ts+l
, 0, ..., 0

)}
,

→ 0 as k → ∞

for every ν ∈ X . So C3(ν) = C′

3(ν).

Corollary 1. If a function g : X → W with g(0) = 0 and
satisfies

∥Dg(ν1, ν2, ..., νk)∥ ≤ β

(
k∑

i=1

∥νi∥αγ +
k∏

i=1

∥νi∥γ
)

for every ν1, ν2, ..., νk ∈ X , then there is a unique cubic
mapping C3 : X → W satisfying

∥g(ν)− C3(ν)∥ ≤ β

|t|αγ
∥ν∥αγ (17)

for every ν ∈ X , where αγ < 3, t ≥ 2 and β are in R+.

Theorem 4.2. Let a mapping φ : X k → [0,∞) and a
mapping g : X → W be a mapping that satisfies f(0) = 0
and

∥Dg(ν1, ν2, ..., νk)∥ ≤ φ(ν1, ν2, ..., νk) (18)

for every ν1, ν2, ..., νk ∈ X , with

lim
l→∞

1

|t|3l
φ
(
tl−1ν1, t

l−1ν2, ..., t
l−1νk

)
= 0 (19)

Then, there is a unique cubic mapping C3 : X → W that
satisfies

∥g(ν)− C3(ν)∥ ≤ sup
l∈N

{
1

2

1

|t|3l
φ
(
tl−1ν, tl−1ν, 0, ..., 0

)}
(20)

for every ν ∈ X .
Proof: It follows from (15) that∥∥∥∥g(ν)− 1

t3
g(tν)

∥∥∥∥ ≤ 1

2

1

|t|3
φ(ν, ν, 0, ..., 0) (21)

for every ν ∈ X . Hence∥∥∥∥ 1

t3m
g (tmν)− 1

t3n
g (tnν)

∥∥∥∥
≤ max

{∥∥∥∥ 1

t3m
g (tmν)− 1

t3(m+1)
g
(
tm+1ν

)∥∥∥∥
, ...,

∥∥∥∥ 1

t3(n−1)
g
(
tn−1x

)
− 1

t3n
g (tnν)

∥∥∥∥}
≤ max

{
1

|t|3m

∥∥∥∥g (tmν)− 1

t3
g
(
tm+1ν

)∥∥∥∥
, ...,

1

|t|3(n−1)

∥∥∥∥g (tn−1ν
)
− 1

t3
g (tnν)

∥∥∥∥}
≤ sup

l∈{m,m+1,...}

{
1

2

1

|t|3(l+1)
φ
(
tlν, tlν, 0, ..., 0

)}
(22)

for any n > m > 0 and for any ν ∈ X . Therefore, we

conclude from (22) and (19), that the sequence
{

1

t3l
g
(
tlν
)}

is Cauchy in W for every ν ∈ X . Since W is complete, the

sequence
{

1

t3l
g
(
tlν
)}

converges in W for every ν ∈ X .

Consequently, the mapping C3 : X → W might be defined

C3(ν) = lim
m→∞

1

t3m
g (tmν) , ν ∈ X .

Taking m = 0 and the limit n → ∞ in (22), we get (20). As
a result of (18) and (19), we get

∥DC3(ν1,ν2, ..., νk)∥

= lim
l→∞

1

|t|3l
∥∥Dg

(
tlν1, t

lν2, ..., t
lνk
)∥∥

≤ lim
l→∞

1

|t|3l
φ
(
tl−1ν1, t

l−1xν2, ..., t
l−1νk

)
= 0

for every ν1, ν2, ..., νk ∈ X . Thus, we get

DC3(ν1, ν2, ..., νk) = 0.

IAENG International Journal of Applied Mathematics

Volume 54, Issue 1, January 2024, Pages 92-99

 
______________________________________________________________________________________ 



From Lemma (1), the function C3 : X → W is cubic. If C′

3

is another cubic mapping satisfies (20), then

∥C3(ν)−C
′

3(ν)∥

=

∥∥∥∥ 1

t3s
C3 (tsν)−

1

t3s
C

′

3 (t
sν)

∥∥∥∥
≤ max

{∥∥∥∥ 1

t3s
C3 (tsν)−

1

t3s
g (tsν)

∥∥∥∥ ,∥∥∥∥ 1

t3s
g (tsν)− 1

t3s
C

′

3 (t
sν)

∥∥∥∥}
≤ sup

l∈N

{
1

2

1

|t|3(s+l)
φ
(
ts+l−1ν, ts+l−1ν, 0, ..., 0

)}
,

→ 0 as s → ∞

for every ν ∈ X . So C3(ν) = C′

3(ν).

Corollary 2. If a function g : X → W with g(0) = 0 and
satisfies

∥Dg(ν1, ν2, ..., νk)∥ ≤ β

(
k∑

i=1

∥νi∥αγ +
k∏

i=1

∥νi∥γ
)

for every ν1, ν2, ..., νk ∈ X , then there is a unique cubic
mapping C3 : X → W satisfying

∥g(ν)− C3(ν)∥ ≤ β

|t|3
∥ν∥αγ , (23)

for every ν ∈ X , where αγ > 3, t ≥ 2 and β are in R+.

Example 4.1. Let p > 2 be a prime number and X = W =
Qp. Define g : X → W by g(ν) = ν3 + ν for every ν ∈ X .
Since |2| = 1, In particular k = 2 and t = 2

∥Dg(ν1, ν2)∥
= |12|.∥ν1∥ ≤ β (∥ν1∥αγ + ∥ν2∥αγ + ∥ν1∥γ∥ν2∥γ)

for every ν1, ν2 ∈ X , where β is a positive number and
αγ > 0.

(i) g(ν) = ν3 + ν, C3(ν) = ν3

∥g(ν)− C3(ν)∥ ≤ β

|2|αγ
∥ν∥αγ

∥ν∥ ≤ β∥ν∥ (put αγ = 1, |2| = 1)

(ii) g(ν) = ν3 + ν, C3(ν) = ν3

∥g(ν)− C3(ν)∥ ≤ β

|2|3
∥ν∥αγ

∥ν∥ ≤ β∥ν∥4 (put αγ = 4, |2| = 1)

Therefore, equation (17) and (23) are satisfied.

B. Stability Results:Fixed point method

Theorem 4.3. Let φ : X k → [0,∞) be a function such that
there is a constant £ < 1 with

φ
(ν1

t
,
ν2
t
, ...,

νk
t

)
≤ £

|t|3
φ(ν1, ν2, ..., νk) (24)

for every ν1, ν2, ..., νk ∈ X . Let g : X → W be a mapping
satisfying

∥Dg(ν1, ν2, ..., νk)∥ ≤ φ(ν1, ν2, ..., νk) (25)

for every ν1, ν2, ..., νk ∈ X . Then there is a unique cubic
mapping C : X → W such that

∥g(ν)− C3(ν)∥ ≤ £

|t|3(1−£)

1

2
φ(ν, ν, 0, ...0) (26)

for every ν ∈ X .
Proof: Replacing (ν1, ν2, ..., νk) by (ν, ν, 0, ..., 0) in

(25), we have ∥∥2g(tν)− 2t3g(ν)
∥∥ ≤ Ψ(ν)∥∥g(tν)− t3g(ν)
∥∥ ≤ 1

2
Ψ(ν) (27)

for every ν ∈ X . Where

Ψ(ν) =
1

2
φ(ν, ν, 0, ..., 0)

for every ν ∈ X . Consider the set

Ω = {q : X → W, q(0) = 0}

as well as the generalized metric ρ on Ω:

ρ(p, q) = inf{σ ∈ R+ : ∥p(ν)−q(ν)∥ ≤ σ.Ψ(ν), ∀ ν ∈ X},

where, as usual, inf ϕ = +∞. It is simple to show that (Ω, ρ)
is complete(see [20], Lemma 2.1).
Now, we take the linear mapping ∆ : Ω → Ω such that

∆p(ν) = t3 p
(ν
t

)
(28)

for every ν ∈ X . Let p, q ∈ Ω be given such that ρ(p, q) = ε.
Then, we get

∥p(ν)− q(ν)∥ ≤ ε Ψ(ν) (29)

for every ν ∈ X . Hence

∥∆p(ν)−∆q(ν)∥ =
∥∥∥t3p(ν

t

)
− t3q

(ν
t

)∥∥∥
≤ |t|3 ε Ψ

(ν
t
,
ν

t
, ..., 0

)
≤ |t|3 ε

£

|t|3
Ψ(ν)

≤ ε £ Ψ(ν)

for every ν ∈ X .
By definition ρ(∆(p),∆(q)) ≤ £ ε. Therefore

ρ(∆(p),∆(q)) ≤ £ρ(p, q) for every p, q ∈ Ω

This means that ∆ is a Lipschits constant £ strictly contrac-
tive self-mapping of V .
It follows form (27) that∥∥g(tν)− t3g(ν)

∥∥ ≤ 1

2
φ
(ν
t
,
ν

t
, 0, ..., 0

)
≤ 1

2

£

|t|3
φ(ν, ν, 0, ..., 0)

for every ν ∈ X . So ρ(g,∆g) ≤ 1

2

£

|t|3
.

By Theorem 2.1, there is a cubic mapping C3 : X → W
satisfying the following:

(i) C3 is a fixed point of ∆ in the set

δ = {p ∈ Ω : ρ(p, q) < ∞}
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C3(ν) = t3 C3
(ν
t

)
(30)

This yields that C3 is a unique mapping satisfying (30)
such that there is a σ ∈ (0,∞) satisfying

∥g(ν)− C3(ν)∥ ≤ σ . Ψ(ν)

for every ν ∈ X .
(ii) ρ(∆ng, C3) → 0 as n → ∞. This indicates inequality

lim
n→∞

t3ng
( ν

tn

)
= C3(ν) ν ∈ X

(iii) Moreover, ρ(g, C3) ≤ 1

1−£
ρ(g,∆g), and it implies

the following:

∥g(ν)− C3(ν)∥ ≤ £

|t|3(1−£)
Ψ(ν)

for every ν ∈ X .
As a result (24) and (25) that

∥DC3(ν1,ν2, ..., νk)∥

= lim
n→∞

|t|3n
∥∥∥D g

(ν1
tn

,
ν2
tn

, ...,
νk
tn

)∥∥∥
≤ lim

n→∞
|t|3n φ

(ν1
tn

,
ν2
tn

, ...,
νk
tn

)
= 0.

for every ν1, ν2, ..., νk ∈ X .

Thus ∥DC3(ν1, ν2, ..., νk)∥ = 0. The mapping C3 : X → W
is cubic.

Corollary 3. If a mapping φ : X → W such that φ(0) = 0
and∥∥∥Dg

(ν1
t
,
ν2
t
, ...,

νk
t

)∥∥∥ ≤ λ

(
k∑

i=1

∥νi∥αβ +

k∏
i=1

∥νi∥β
)

for every ν1, ν2, ..., νk ∈ X , where αβ < 3, λ are in R+

and t ≥ 2, then there is a unique cubic mapping C3 : X →
W satisfying

∥g(ν)− C3(ν)∥ ≤ λ.∥ν∥αβ

2.|t|αβ − |t|3
(31)

for every ν ∈ X .

Proof: Letting

φ(ν1, ν2, ..., νk) = λ

(
k∑

i=1

∥νi∥αβ +
k∏

i=1

∥νi∥β
)

for every ν1, ν2, ..., νk ∈ X .

The proof follows from Theorem 4.3. After that, we may use

£ =
1

2
|t|3−αβ to obtain our required result.

Theorem 4.4. Let φ : X k → [0,∞) be a function such that
there is a constant £ < 1 with

φ (tν1, tν2, ..., tνk) ≤ |t|3£φ(ν1, ν2, ..., νk) (32)

for every ν1, ν2, ..., νk ∈ X . Let g : X → W be a mapping
satisfying

∥Dg(ν1, ν2, ..., νk)∥ ≤ φ(ν1, ν2, ..., νk) (33)

for every ν1, ν2, ..., νk ∈ X . Then there is a unique cubic
mapping C3 : X → W such that

∥g(ν)− C3(ν)∥ ≤ 1

|t|3(1−£)

1

2
φ(ν, ν, 0, ...0) (34)

for every ν ∈ X .
Proof: It follows from (27) that∥∥∥∥g(ν)− 1

t3
g(tν)

∥∥∥∥ ≤ 1

|t|3
1

2
φ(ν, ν, 0, ..., 0) (35)

for every ν ∈ X . Let us denoted by

Ψ(ν) =
1

2
φ(ν, ν, 0, ..., 0)

for every ν ∈ X . Consider the linear mapping ∆ : Ω → Ω
which has the following attribute

∆p(ν) =
1

t3
p (tν) (36)

for every ν ∈ X . Let p, q ∈ Ω be given such that ρ(p, q) = ε.
Then, we get

∥p(ν)− q(ν)∥ ≤ ε Ψ(ν) (37)

for every ν ∈ X . Hence

∥∆p(ν)−∆q(ν)∥ =

∥∥∥∥ 1

t3
p(tν)− 1

t3
q(tν)

∥∥∥∥
≤ 1

|t|3
ε Ψ(tν)

≤ 1

|t|3
ε |t|3Ψ(ν)

≤ ε £ Ψ(ν)

for every ν ∈ X .
By definition ρ(∆p,∆q) ≤ £ ε. Therefore

ρ(∆p,∆q) ≤ £ρ(p, q) ∀ p, q ∈ Ω

This means that ∆ is a strictly contractive self mapping of
V with a Lipschits constant £.
It follows from (35) that∥∥∥∥g(tν)− 1

t3
g(tν)

∥∥∥∥ ≤ 1

2
φ (tν, tν, 0, ..., 0)

≤ 1

2

1

|t|3
φ(ν, ν, 0, ..., 0)

for every ν ∈ X . So

ρ(g,∆g) ≤ 1

2

1

|t|3
.

By Theorem 2.1, there is a cubic mapping C3 : X → W
satisfying the following:

(i) C3 is a fixed point of ∆ in the set

δ = {p ∈ Ω : ρ(p, q) < ∞}

C3(tν) = t3 C3(ν) (38)

This result that C3 being a unique mapping satisfying
(38) such that there is a σ ∈ (0,∞) satisfying

∥g(ν)− C3(ν)∥ ≤ σ . Ψ(ν)

for every ν ∈ X .
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(ii) ρ(∆ng, C3) → 0 as n → ∞. This indicates inequality

lim
n→∞

1

t3n
g (tnν) = C3(ν) ν ∈ X

(iii) Moreover, ρ(g, C3) ≤ 1

1−£
ρ(g,∆g), and it implies

the following

∥g(ν)− C3(ν)∥ ≤ 1

|t|3(1−£)
Ψ(ν)

for every ν ∈ X .
As a results (32) and (33) that

∥DC3(ν1,ν2, ..., νk)∥

= lim
n→∞

1

|t|3n
∥∥D g(tnν1, t

nν2, ..., t
nνk)

∥∥
≤ lim

n→∞

1

|t|3n
|t|3n£nφ(tnν1, t

nν2, ..., t
nνk) = 0.

for every ν1, ν2, ..., νk ∈ X .

Thus ∥DC3(ν1, ν2, ..., νk)∥ = 0. The mapping C3 : X → W
is cubic.

Corollary 4. If a mapping φ : X → W such that φ(0) = 0
and

∥Dg(tν1, tν2, ..., tνk)∥ ≤ λ

(
k∑

i=1

∥νi∥αβ +
k∏

i=1

∥νi∥β
)

for every ν1, ν2, ..., νk ∈ X , where αβ > 3, λ are in R+ and
t ≥ 2, then there is a unique cubic mapping C3 : X → W
satisfying

∥g(ν)− C3(ν)∥ ≤ λ.2.∥ν∥αβ

2|t|3 − |t|αβ
(39)

for every ν ∈ X .

Proof: Letting

φ(ν1, ν2, ..., νk) = λ

(
k∑

i=1

∥νi∥αβ +
k∏

i=1

∥νi∥β
)

for every ν1, ν2, ..., νk ∈ X .
The proof is based on Theorem 4.4. After that, we may use

£ =
1

2
|t|αβ−3 to obtain our required result.

Example 4.2. Let p > 2 be a prime number and X = W =
Qp. Define g : X → W by g(ν) = ν3 + ν for every ν ∈ X .
Since |2| = 1, In particular k = 2 and t = 2

∥Dg(ν1, ν2)∥
= |12|.∥ν1∥ ≤ λ

(
∥ν1∥αβ + ∥ν2∥αβ + ∥ν1∥β∥ν2∥β

)
for every ν1, ν2 ∈ X , where λ is a positive number and
αβ > 0.

(i) g(ν) = ν3 + ν, C3(ν) = ν2, we get

∥g(υ)− C3(ν)∥ ≤ λ.∥ν∥αβ

2.|2|αβ − |2|3
∥ν∥ ≤ λ.∥ν∥ (put αβ = 1, |2| = 1)

(ii) g(ν) = ν3 + ν, C3(ν) = ν3, we get

∥g(ν)− C3(ν)∥ ≤ λ.2.∥ν∥αβ

2.|2|3 − |2|αβ
∥ν∥ ≤ λ.∥ν∥4 (put αβ = 4, |2| = 1)

Therefore, equation (31) and (39) are satisfied.

V. CONCLUSION

Many authors discussed the generalized Hyers-Ulam(H-U)
stability of cubic n-dimensional functional equation in non-
Archimedean Banach space(NABS) in recent years. In this
article, we have studied cubic n-dimensional functional equa-
tion(FE) (8) in non-Archimedean Banach space(NABS) by
using the direct method(DM) and fixed point method(FPM).
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