
 

  

Abstract— Human activities on the surface, including 

municipal garbage disposal, pesticide usage, and fertilizer use, 

can contaminate groundwater. Long-term groundwater quality 

investigations near landfill sites necessitate the use of 

mathematical models. Research on the environmental impacts 

of projects, including landfills, depends on the long-term 

expansion of groundwater quality. Analyzing the quality of 

groundwater employed an advection-diffusion equation (ADE) 

in one dimension to describe the quantity of pollution in the 

groundwater. In this research, numerical simulations for a one-

dimensional mathematical model for a long-term contaminated 

groundwater pollution measurement around landfills are 

proposed. The finite difference and the natural cubic spline 

techniques are approximated by the model solution. In a given 

scenario, the approximate solutions are compared with the 

exact solutions. The proposed finite difference analysis 

provides close-to-exact and properly accurate solutions. 

Numerous varieties of soil physics can be used for the 

suggested numerical simulation. The simulations can be used to 

assess the quality of groundwater that becomes contaminated 

in the future. It is demonstrated that the cubic spline method 

yields acceptable approximations. It is an alternate finite 

difference technique. 

 
Index Terms—groundwater pollution, contamination, 

advection-diffusion equation, finite difference method, natural 

cubic spline method 

 

I. INTRODUCTION 

ollutants are released into the ground and into aquifers, 

which are natural underground water reserves, causing 

groundwater contamination. When contaminants that are 

discharged enter groundwater, they contaminate it. 

Groundwater pollution is an issue that has numerous causes, 

including trash dumping, municipal solid waste, hazardous 

materials from industry and landfills, etc. There are several 

mathematical models used to save the environment for 

humans, such as [1-5]. In [6], we analyze nitrogen pollutant 

models from the advection-dispersion-reaction equation to 

estimate pollutant concentrations in terms of total nitrogen, 

organic nitrogen, ammonia, nitrite, and nitrate 

concentrations. In [7], a mathematical simulation of water 

quality over a long period of flooding is performed using a  
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couple of different models: the one-dimensional shallow 

water equations that provide the water's elevation and 

velocity, and the one-dimensional advection-dispersion 

equation that provides the water's pollutant concentrations 

after the sandbag dike has been destroyed. [8] The purpose 

of this research was to develop a numerical model of the 

one-dimensional advection-diffusion equation for estimating 

salinity levels in the Lower Chao Phraya River, Thailand. 

Recent research involves mathematical models for 

groundwater-quality assessment. The mathematical model 

[9-11] is used to simulate the salinity in the groundwater 

with varied flow velocities. The mathematical simulation of 

groundwater management in drought areas is used to 

optimize the management of the water injection stations to 

achieve minimum cost [12]. The transient two-dimensional 

groundwater flow model and the transient two-dimensional 

advection diffusion equation use the explicit method, which 

was described in [13]. In [14], they have presented a 

measured nitrogen dispersion on total nitrogen 

transformation effects models. The mathematical models 

[15] presented the effects of landfill construction on 

groundwater quality in rural areas. In [16], they explain the 

one-dimensional groundwater pollution measurement 

around landfills through heterogeneous soil. In [17], they 

have used mathematical models to explain the groundwater 

contamination with chloride and its substances. Two-level 

explicit methods and the Lax-Wendroff method [18] are 

used to approximate groundwater quality assessment. In 

[19], they proposed the effects of pumping water to adjacent 

settlements on groundwater flow and the quality of the 

water. In this case, long-term groundwater quality 

investigations near waste sites necessitate the use of 

mathematical models. Reports on the environmental effects 

of projects, including landfills, are based on the growth of 

long-term groundwater quality. Analyzing the quality of 

groundwater employed an advection-diffusion equation 

(ADE) in one dimension to describe the quantity of 

pollution in the groundwater. The groundwater pollutant 

concentration is expressed using the one-dimensional 

advection-diffusion equation (ADE). 

In this research, we studied the groundwater dispersion 

flow through an inhomogeneous soil model. The finite 

difference method, which is the natural cubic spline, is used 

to obtain the approximated solutions. The accuracy of the 

intended numerical methods is tested by an analytical 

solution. 
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II. GOVERNING EQUATION 

A. The inhomogeneous soil model allows groundwater 

contamination dispersion flow to occur 

A partial differential equation of one-dimensional 

advection-diffusion governs a groundwater efficiency model 

as [20]; 

       ( )
( )

( )
( ) ( )

, ,
, , , ,

C x t C x t
D x t u x t C x t

t x x

  
= − 

   

    (1) 

for all ( )    , 0, 0, ,x t L T  where ( ),C x t  is the 

dispersing concentration of groundwater pollutant at 

position x  along the longitudinal direction at time ,t D  is 

the pollutant method’ s dispersion coefficient, u  is a 

uniform flow velocity, L  is the distance in the examined 

region measured from the origin of the pollution to the 

endpoint, and T  is the rate of change simulation time. The 

in homogeneity of the soil causes variation in the 

groundwater flow velocity. Kumar et al. [20] proposed a 

variation of increasing nature. They also believed that 

functions were given to the dispersion parameter and the 

velocity parameter ( )1 ,f x t  and ( )2 , .f x t  It is possible to 

rewrite Eq. (1) as [21]; 
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Eq. (2) can be written in the following form; 
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In the equation above, 
0D  and 0u  are constants, the 

dimensions of which depend on the expression ( )1 ,f x t  and 

( )2 , .f x t  The inhomogeneity of the soil allows the rate of 

flow to differ. A difference in the growing dispersion of 

groundwater contaminants in heterogeneous soil has been 

considered by Kumar et al. [21]. The dispersion parameter is 

often believed to be proportional to the velocity square. 

Consequently, Eq. (2) is becoming; 

           ( ) ( )
2

1 , 1 ,f x t ax= +  and ( )2 , 1 ,f x t ax= +        (4) 

the parameter a  with the ( )
1

length
−

 dimension accounts 

for the inhomogeneity of the soil, Eq. (3) is becoming; 
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where 

                           ( ) ( )( )0 01 2 ,g x ax aD u= + −                 (7) 

                              ( ) ( )
2

0 1 ,h x D ax= +                          (8) 

                                      
0 ,K au=                                       (9) 

                                    ( ) ,g x− =                                  (10) 

                                       ( ).h x =                                   (11) 

 

B. Initial and boundary conditions  

The initial condition described by the soil's groundwater-

contaminated free state of concentration is as follows: 

                ( ) ( ),0 , 0 , 0.C x r x x L t=   =            (12) 

where ( )r x  is a given initially measured groundwater 

pollutant function. The average chance rate of groundwater 

pollutant concentration surrounding them, which is 

described by the following boundary conditions, determines 

the concentration gradient at the end point; at the origin, 

groundwater pollutant concentration is introduced due to a 

continuous input; 

                         ( ) 00, ,C t C=  0,t                           (13) 

                   
( ),

,s

C x t
C

x


=


 ,x L=  0.t                (14) 

where 
0C  is a given average groundwater pollutant 

concentration at the considered landfill, and 
sC  is the rate 

of change of the pollutant concentration in the area around 

the far field monitoring station. 

  

III. NUMERICAL TECHNIQUES 

The domain is now discretized by dividing the interval 

 0, L  into M  subintervals such that M x L =  and the 

time interval  0, L  into N  subintervals such that 

.N t T =  The grid points ( ),i nx t  are defined by 

ix i x=   for all 0,1,2,...,i M=  and nt n t=   for all 

0,1,2,...,n N=  in which M  and N  are positive integers. 

We can then approximate ( ),i nC x t  by ,n

iC  value of the 

difference approximation of ( ),C x t  at point x i x=   and 

,t n t=   where 0 i M   and 0 .n N   We will employ 

the forward time central space finite difference scheme 

(FTCS) into Eq. (2). 

 

A. Forward Time Central Space Finite Difference 

Scheme 
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Substituting Eqs. (15)-(18) into Eq. (6), we get the finite 

difference equation, 
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                        ,n
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for all 1,2,3,...,i M=  and 0,1,2,..., 1n N= −  Then the 

explicit finite difference equation becomes 
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The initial condition Eq. (12) for Eq. (19) can be expressed 

in the finite difference form as; 

                 ( ) ( )0 , 0, 0.i iC r x r i x r x t= =  =  =           (25) 

In the finite difference form, Boundary Condition Eq. (13) 

can be written as; 

                                       
0 0.
nC C=                                  (26) 

If we utilize the forward space method in Eq. (14) to the 

right boundary condition, we have; 

                               
1 .n n

N N sC C xC−= +                          (27) 

 The finite difference formula Eq. (22) has been derived in 

[22] that the truncation error for this method is 

( ) 2
,O x t   

 

B. The Natural Cubic Spline Method 

The definition of the natural cubic spline for this study 

includes: 

(i) The interpolating spline regions are cubic 

polynomial functions on each sub-interval 

1, , 1, 2,..., ,j jx x j N+
  =  and all of them match the 

function values at the grid-points; 

(ii) The first and second derivatives of the cubic 

spline regions are continuous at the inner points; and 

(iii) The second derivatives of the cubic spline regions 

are equal to zero at the first and last grid points. 

In employing the cubic spline approach, the approximate 

solution of the governing problem satisfies: 

           
( )
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for 1,2,..., 1; 0,1,2,...j N n= + =  where 
n

jP  is the first 

derivative and 
n

jQ  the second derivative of the cubic spline 

function at the point 
jx  at time .n t  Eq. (29) can be 

written in the explicit form:  

 ( ) ( ) ( )1 1 ,n n n n

j j j jC t g x P t h x Q t K C+ =   +   + −     (30) 

The values of the slopes 
n

jP  can be obtained by solving the 

following system of simultaneous equations (derived by 

manipulation of the equations which result from the 

continuity conditions for the spline segments; see [23] for 

details of algebraic working): 
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1 1j j jh x x+ += −  and 
1.j j jh x x −= −   

The values of 
n

jQ  are the second derivatives of cubic spline 

at points 
jx  for 2,3,..., ,j N=  at time .n t  For the natural 

cubic spline it is assumed that 

 ( ) ( ) ( )1 1 1 1 10 . . 0 .n n

n n Ns x s x i e Q Q+ +
 = = = =  Then we 

have:  

( )
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1 11

6 4 2

n n n n

j j j jn
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j j j jj j

C C P P
Q

x x x xx x
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+ ++

−
= − −

− −−
      (32) 

for 2,3,..., .j N=  

In this research, the stability condition of the finite 

difference method is applied.  

 

IV. NUMERICAL EXPERIMENTS 

The measured concentration of groundwater pollutants 

C  beneath a landfill and in the area around it. The studied 

area is 1.0 km long overall and aligned with the longitudinal 

distance. Leachate is a pollution source that is released 

underground from a landfill. The pollutant parameters at the 

considered landfill are 2

0 0/ , 0.71 / ,C kg l D km year−=  

and  11 .a km−=  The numerical experiment divides time 

and space using 0.1x km =  and 0.0001t =  year, 

respectively. The concentration of groundwater is estimated 

using the finite difference method and the natural cubic 
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spline method. We obtain an analytical solution of an ideal 

advection-diffusion equation, proposed in [29]; 
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where  
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
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                                           0

0

.
u

aD
 =                               (36) 

If we employ the finite difference method in Eqs. (19)–

(22), we obtain the estimated groundwater pollution along 

the area under consideration for a period of one year, as 

shown in Table I and Figs. 1 and 2. If we use the Natural 

Cubic Spline method in Eqs. (28)–(32), Table II and Figs. 3 

and 4 show the approximated groundwater pollutant 

concentration along the longitudinally considered area. The 

accuracy of the finite difference method and the natural 

cubic spline method are shown in Figs. 1 and 3. The 

accuracy of both approximations is tested by using the 

analytical solution and the absolute error, as shown in 

Tables III and IV and Fig. 5. 

 
TABLE I  

APPROXIMATE CONCENTRATION OF POLLUTANTS IN 

GROUNDWATER USING THE PARTIAL DIFFERENCE METHOD 

FOR A CONSIDERED AREA OF 0.1-1.0 YEARS 

 

( ),C x t  

        x  
t  0.0 0.1 0.2 0.3 0.4 0.5 

0.1 1.0000 0.7862 0.6094 0.4675 0.3567 0.2723 

0.3 1.0000 0.8799 0.7807 0.6997 0.6346 0.5834 

0.5 1.0000 0.9181 0.8519 0.7987 0.7565 0.7236 

0.7 1.0000 0.9358 0.8849 0.8446 0.8130 0.7886 

1.0 1.0000 0.9463 0.9044 0.8717 0.8464 0.8270 

        x  
t  0.6 0.7 0.8 0.9 1.0  

0.1 0.2097 0.1650 0.1349 0.1166 0.1083  

0.3 0.5441 0.5152 0.4952 0.4828 0.4772  

0.5 0.6986 0.6802 0.6675 0.6598 0.6562  

0.7 0.7701 0.7567 0.7474 0.7418 0.7392  

1.0 0.8125 0.8019 0.7947 0.7903 0.7882  

 

As seen from Table I, the effect concentration of the 

pollutant at x = 0.5 and x = 1.0 is small. It can be seen in 

Fig. 1. that the numerical solution of the finite difference 

method indicates that the concentration of the pollutant 

increases while t increasing. 

 

 

 
Fig 1.  Groundwater contaminant at intervals of 0.1, 0.3, 0.5, 0.7 

and 1.0 years using the finite difference method (FTCS). 

 

 

Fig 2. The surface plot of groundwater pollutant by using the finite 

difference method (FTCS). 
 

TABLE II  
APPROXIMATE CONCENTRATION OF POLLUTANTS IN 

GROUNDWATER USING THE NATURAL CUBIC SPLINE METHOD 

FOR A CONSIDERED AREA OF 0.1-1.0 YEARS 

 

( ),C x t  

        x  
t  0.0 0.1 0.2 0.3 0.4 0.5 

0.1 1.0000 0.7936 0.6175 0.4762 0.3664 0.2841 

0.3 1.0000 0.8930 0.8024 0.7297 0.6727 0.6293 

0.5 1.0000 0.9310 0.8737 0.8287 0.7939 0.7678 

0.7 1.0000 0.9463 0.9025 0.8686 0.8428 0.8236 

1.0 1.0000 0.9540 0.9170 0.8887 0.8675 0.8518 

        x  
t  0.6 0.7 0.8 0.9 1.0  

0.1 0.2252 0.1859 0.1629 0.1535 0.1532  

0.3 0.5978 0.5765 0.5639 0.5587 0.5586  

0.5 0.7489 0.7363 0.7288 0.7258 0.7257  

0.7 0.8099 0.8007 0.7954 0.7932 0.7931  

1.0 0.8406 0.8332 0.8289 0.8271 0.8271  
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Fig 3.  Groundwater contaminant at intervals of 0.1, 0.3, 0.5, 0.7 

and 1.0 years using the natural cubic spline method. 

 
 

 
 

Fig 4. The surface plot of groundwater pollutant by using the 

natural cubic spline method. 

 
TABLE III  

THE ASOLUTE ERROR OF THE FINITE DIFFERENCE METHOD 

APPROXIMATION WHERE ( ) ( ) ( ), , ,e x t C x t C x t= − %  

( ),C x t  

      x    
t  0.0 0.1 0.2 0.3 0.4 0.5 

0.1 1.00000 0.00011 0.00009 0.00044 0.00077 0.00098 

0.3 1.00000 0.00001 0.00002 0.00002 0.00002 0.00003 

0.5 1.00000 0.00008 0.00012 0.00013 0.00013 0.00012 

0.7 1.00000 0.00010 0.00015 0.00017 0.00017 0.00015 

1.0 1.00000 0.00011 0.00017 0.00018 0.00018 0.00016 

       x   
t  0.6 0.7 0.8 0.9 1.0  

0.1 0.00102 0.00091 0.00067 0.00036 0.00000  

0.3 0.00003 0.00003 0.00002 0.00001 0.00000  

0.5 0.00010 0.00008 0.00006 0.00003 0.00000  

0.7 0.00013 0.00010 0.00007 0.00003 0.00000  

1.0 0.00014 0.00011 0.00007 0.00004 0.00000  

 
 
 

 

TABLE IV 
THE ABSOLUTE ERROR OF THE NATURAL CUBIC SPLINE 

METHOD APPROXIMATION WHERE ( ) ( ) ( ), , ,e x t C x t C x t= − %  

( ),C x t  

    x      
t  0.0 0.1 0.2 0.3 0.4 0.5 

0.1 1.00000 0.00490 0.00245 0.00202 0.00880 0.01805 

0.3 1.00000 0.00983 0.02282 0.03466 0.04550 0.05544 

0.5 1.00000 0.00778 0.01834 0.02774 0.03615 0.04373 

0.7 1.00000 0.00612 0.01500 0.02300 0.03018 0.03676 

1.0 1.00000 0.00502 0.01278 0.01978 0.02617 0.03206 

     x     
t  0.6 0.7 0.8 0.9 1.0  

0.1 0.02987 0.04426 0.06111 0.04495 0.00000  

0.3 0.06454 0.07283 0.08035 0.05436 0.00000  

0.5 0.05058 0.05681 0.06249 0.04223 0.00000  

0.7 0.04281 0.04842 0.05364 0.03636 0.00000  

1.0 0.03754 0.04268 0.04753 0.03228 0.00000  

 

 
 

Fig 5.  The comparison of finite difference method (FTCS) and the 

natural cubic spline method and analytical solution at 0.1, 0.3 and 

0.5 years. 

V. DISCUSSION 

In numerical experiment, the approximated groundwater 

pollutant concentration using the finite difference method 

and the natural cubic spline method are give good agreement 

in 5 cases as show in Table I-II and Fig.1 and Fig.3. The 

surface plot of groundwater pollutant by using the finite 

difference method and the natural cubic spline method as 

shown in Fig.2 and Fig.4. The absolute error of the 

approximation as shown in Table III-IV, the finite difference 

method gives better than the natural cubic spline method. 

The comparison of both approximation and analytic solution 

at 0.1, 0.3 and 0.5 years as shown in Fig.5. 

VI. CONCLUSION 

A one-dimensional groundwater pollutant concentration 

model was approximately simulated by the numerical 

model. Utilizing both the natural cubic spline approach and 

the finite difference method, the numerical solutions of 

contaminants in groundwater are approximated. An 
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acceptable approximation was obtained by the alternative 

finite difference method, which uses a natural cubic spline 

technique. The quality of groundwater that has been 

contaminated for more than ten years can be assessed using 

the simulation that is being presented. The numerical 

methods that are suggested provide a good approximation. 

We can see that the cubic spline method gives acceptable 

approximate solutions. It is an alternative finite difference 

method. 
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