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Abstract—A generalized autoregressive (GNAR) model 

fusing both linearity and nonlinearity is proposed to solve the 

complex nonlinear time series modeling problem. First, the 

mathematical model of the GNAR model is established while 

the mathematical mechanism and physical meaning of the 

GNAR model are both expounded from the two aspects of 

Weierstrass theory and Volterra theory. Then, an improved 

least squares parameter estimation method, namely robust 

Residuals Adjusted Least Squares (RALS) method, is 

introduced and its process is successionally proposed to 

improve the anti-outlier performance of the GNAR model. 

Next, the mathematical model of the computational complexity 

for the GNAR model is established and the complexity model 

is introduced into the AIC to propose an improved AIC (iAIC). 

Finally, a dataset containing 23 records is established and 

experiments are carried out. The results show that the GNAR 

model with RALS estimator has high fitting accuracy. The 

Mean Square Error (MSE) of the series predicted by the 

GNAR model with Least Squares (LS) estimator is 325.3% 

higher than that of the series predicted by the GNAR model 

with RALS estimator at most. The effectiveness of order 

determination method reaches 82.61%. Therefore, the GNAR 

model together with its parameter estimation method and 

order determination method proposed in this paper are 

effective. 

 

Keywords—Autoregressive model; nonlinear time series; 

residual autocovariance; anti-outlier; AIC 

I. INTRODUCTION 

At present, while the energy situation is increasingly grim, 

the pace of new energy substitution is accelerating. By the 

end of 2020, China's Internet rental bicycles had reached 

19.5 million, covering 360 cities nationwide, with more than 

300 million registered users and 47 million daily orders [1]. 
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According to the data of iiMedia Group, the number of 

shared electric bikes in China was nearly 4 million in 2021, 

and its revenue was 9.36 billion yuan. It is estimated that it 

will exceed 20 billion yuan in 2025. By June 2022, the 

number of new energy vehicles in China had reached 10.01 

million, accounting for 3.23% of the total number of 

vehicles. New energy vehicles, shared bicycles and shared 

electric bicycles have become indispensable important 

means of transportation. The shared transport facilities have 

brought great convenience to people's travel, but also caused 

related problems. For example, the supply of shared 

charging stations for new energy vehicles cannot meet the 

increasing demand of users [2], and the imbalance between 

shared bicycle distribution and user demand leads to a 

serious waste or shortage of shared bicycles [3]. Based on 

the survey of more than 300 cities, simply increasing or 

reducing the number of shared bicycles according to the 

traditional demand function cannot fundamentally solve the 

growing problem of utilization because of the dynamic 

demand of shared transportation facilities [4]. It is well 

known that, the confirmation of demand for shared transport 

facilities is the primary basis for optimal allocation and 

efficient management of shared transport resources. 

Nevertheless, it is a time series modeling and prediction 

problem to forecast the future usages based on the historical 

usages of shared transport facilities as the historical trip data 

of shared transport facilities is complex and nonlinear. 

Furthermore, the traditional linear or nonlinear 

autoregressive (AR) models for time series were usually 

proposed to solve a certain type of problem or even a 

specific problem. Therefore, in this paper, we start with 

specific problem of demand prediction for the shared 

transport facilities and then explore a generalized 

autoregressive model fusing linearity and nonlinearity, 

which is applicable to solve various problems. The main 

contributions are as follows: 

• The mathematical expression of the GNAR model is 

derived, and the mathematical mechanism and physical 

meaning of the GNAR model are expounded respectively 

based on Weierstrass theory and Volterra theory. 

•  A robust RALS parameter estimation method is 

introduced to raise the anti-outlier ability of the GNAR 

model, and the process of RALS method is subsequently 

proposed. 

• During determining the order of the GNAR model, the 

problem is considered that the computational complexity of 

the GNAR model increases sharply due to the nonlinearity 

of the GNAR model, so as to present an iAIC method. 
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• The experimental results indicate that the MSE of the 

series predicted by the GNAR model with LS estimator is 

325.3% higher than that of the series predicted by the GNAR 

model with RALS estimator while the effectiveness of order 

determination method reaches 82.61%. 

The remainder of this paper is organized as follows. The 

section II reviews the related works in the time series 

modeling. The section III describes the GNAR model. The 

section IV gives the experimental results and discussion. 

Finally, the conclusions are presented. 

II. RELATED WORKS 

A. Distribution Point Location and Demand Forecast of 

Shared Transport Facilities 

The location of distribution points for shared transport 

facilities and the demand forecast of shared transport 

facilities are all attributed to the problem of facility location. 

According to the parameters of the location models, the 

location problems of shared bicycles were divided into 

demand certain type and demand uncertain type [5]. 

According to the characteristics of the areas, the location 

problems were divided into discrete type, continuous type 

and network type. According to the number of facilities, the 

location problems were divided into single-facility location 

problem and multi-facilities location problem. There are 

heuristic algorithm, projection algorithm, branch and bound 

algorithm for solving the multi-facilities location problems 

[6]. According to the charging characteristics of different 

types of electric vehicles, Zheng Chun et al. [7] built a 

demand forecasting model for electric vehicle charging 

facilities based on data fusion. Yang Zhenzhen et al. [8] 

proposed a data-driven location method for electric vehicle 

charging stations by calculating the traffic demand of each 

site of grid map. Tian Feng et al. proposed a bi-objective 

model on the basis of considering user preferences and the 

model was solved by using multi-objective particle swarm 

optimization algorithm to obtain the optimal node location 

and number of charging stations [9]. The mathematical 

models of P-center and P-median were selected by 

Suleyman et al. to allocate the alternative points and demand 

points of shared facilities [10]. The maximum coverage 

model was established by Frade et al. on the basis of 

considering the cost and service level of the lease point to 

obtain the location and capacity of each power distribution 

station [11]. Liu et al. proposed a seasonal grey Markov 

model to predict the demand for shared bicycles on the basis 

of the periodicity, nonlinearity and randomness of usages of 

shared bicycles [12]. Gao et al. proposed a hybrid method 

combining genetic algorithm based on fuzzy C-means and 

back-propagation network to predict the demand for shared 

bicycles [13]. 

Some models were established and solved for the location 

and layout of the shared transport facility distribution 

centers. All these models are basically based on the certain 

demands, but the demands are often unknown in the 

application. Therefore, the research on the location and 

layout of shared transport facility distribution centers is 

essentially to provide more accurate demand prediction. 

B. Linear and nonlinear AR models 

In 2020, the COVID-19 has brought a serious impact to 

the world, thus time series modeling plays an important role 

in forecasting the trend of epidemic development and 

assisting in accurate prevention and control [14-18]. 

Sunayana et al. used nonlinear autoregressive neural model 

to forecast the municipal solid waste generation [19]. Razzaq 

A. et al. analyzed and studied the dynamic and causality 

interrelationships from municipal solid waste recycling to 

economic growth, carbon emissions and energy efficiency 

using a novel bootstrapping autoregressive distributed lag 

model [20]. Rahmoune M. B. et al. studied the identification 

method of dynamic characteristics of rotating machinery 

using a nonlinear autoregressive with exogenous input 

(NARX) model [21]. Khraief N. et al. studied the 

movements of oil prices and exchange rates in China and 

India by the estimations of the wavelet-based, non-linear, 

autoregressive distributed lag model [22]. Berninger C. et al. 

proposed a bayesian time-varying autoregressive model for 

improved short- and long-term prediction of German 

exchange rate [23]. Zhang X. et al. refined the impact of 

adverse weather conditions such as rain, snow and wind on 

highway safety through the spatial polynomial Logit model 

[24]. Zhang F. et al. proposed a dynamic adaptive stepwise 

parameter estimation method of autoregressive model in 

real-time wind power forecasting [25]. Yano M. O. et al. 

used autoregressive model to predict the damage index of 

building structure [26]. Zhang Y. et al. adopted the spatial 

time series model to study and draw the conclusion that 

neighborhood socio-economic factors have the largest 

contribution to Toronto's house price [27]. To determine the 

best process control model thus to improve the yield of ester, 

a linear autoregressive with exogenous input (ARX) model 

and a NARX model were developed and compared by 

Zulkeflee S. A. et al. [28]. 

The time series modeling is widely used in various sectors 

of national economy, such as ecological protection and 

environmental governance, healthcare, manufacturing, 

finance, communications and transportation industry, power 

industry, construction, real estate industry, animal husbandry 

and so on. There are various kinds of time series models for 

the specific problems including both linear and nonlinear 

models. 

Stationary linear time series models such as classical AR 

models are still widely used. However, in the face of 

increasingly complex economic and social problems and 

engineering problems, linear time series models show their 

own shortcomings. The main reason is that the classical 

stationary linear time series models are based on the 

normality and stationarity of the system and are expressed 

by linear difference equations which can only be applied to 

linear systems. When a system has strong nonlinear 

components, it is difficult to obtain good results by using 

linear time series model for system identification. Therefore, 

since the 1980s, experts in various fields have been 

committed to the research of nonlinear models. There are 

some classical nonlinear models including threshold AR 

model, exponential AR model, bilinear model, 

state-dependent model, etc. In recent years, some new 

nonlinear models have also emerged, such as nonlinear 

autoregressive (NAR) model and NARX model. 
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The output of solid waste can be expressed by a nonlinear 

function of some historical observations and the above 

nonlinear relationship can be implicitly expressed by neural 

network, namely the NAR model [19]. Li et al. also used the 

NAR model to solve the output optimization problem of 

nuclear power turbine units [29]. The nonlinear 

approximation property of neural network was employed 

into the NARX model to make the NARX model better 

adapt to industrial processes with strong nonlinear 

characteristics than ARX. Zulkeflee et al. applied the 

low-order NARX model with higher fitting accuracy to the 

control of ester production process [28]. A new dynamic soft 

measurement system based on the NARX model was 

established by Xiong et al. which solved the problem of 

relying on the real-time measurement of the dominant 

variables [30]. 

However, in most cases, both linearity and nonlinearity 

exist simultaneously. To solve the coexistence of linearity 

and nonlinearity problems, the strategy of selecting different 

models separately was mainly adopted. Considering the 

characteristics of the coexistence of linearity and 

nonlinearity for daily tourist numbers, Yao L. [31] proposed 

a hybrid model, which combines the rescaled range method 

(R/S), the support vector regression (SVR) and the 

autoregressive integrated moving average model (ARIMA), 

in which the SVR performs well in nonlinear prediction, 

while ARIMA performs well in linear prediction. 

The theoretical research and practical application of 

classical nonlinear time series models have reached a certain 

level, and the emerging nonlinear time series models have 

also been applied to certain problems. However, the above 

nonlinear time series models are proposed by researchers in 

combination with their own engineering background, aiming 

at solving a certain kind of problems, or even a specific 

problem, but not universal. Therefore, it is necessary to 

explore a form of time series model, which combines linear 

time series model and nonlinear time series model, and is 

suitable for solving different problems or various 

applications, that is, a universal and effective model 

expression, which has been pursued in the field of applied 

mathematics and engineering. 

III. AUTOREGRESSIVE MODEL FUSING BOTH LINEARITY AND 

NONLINEARITY 

A. GNAR Model Establishment 

1) Analysis of GNAR Model Based on Weierstrass 

Function Approximation Theory 

According to the theory of time series modeling, when the 

system inputs are white noise with zero mean value, the 

system outputs are the observed values {w t} satisfying the 

following relationship: 

 
       

       

1 , 2 , ,

1 , 2 ,

w t f w t w t w t

a t a t a t a t

   

   

 (1) 

where w(t-i) is the system observation value at time t-i, i = 0, 

1, 2, 3, …; a(t-j) is the white noise of the system at time t-j, j 

= 0, 1, 2, 3, …. 

According to Weierstrass theory, a continuous function 

defined on a closed interval can be approximated arbitrarily 

and accurately by polynomials. Therefore, the nonlinear 

function f(·) can be approximately expanded on a closed 

interval as follows: 

          1 1 2 2w t w t w t        

        1 1 2 2t t     a a  

            1,1 1 1 1,2 1 2w t w t w t w t         

            1,1 1 1 1,2 1 2a t a t a t a t         

            1,1 1 1 1,2 1 2w t a t w t a t         

        1,1,1 1 1 1w t w t w t      

          1,1,1 1 1 1a t a t a t a t       

          ,
i i j

i w t i i j w t i w t j         

          ,
i i j

i a t i i j a t i a t j        

        ,
i j

i j w t i a t j a t      (2) 

where φ(i), φ(i, j), γ(i), γ(i, j), η(i, j),... are the expansion 

coefficients. 

Under the condition that the system described in (2) has 

zero initial state, i.e., w0 = w -1 = w -2 = ···· = 0, and the 

system has no input before zero time, w(t-i) is substituted 

into (2) to obtain (3). , where i = 1, 2, 3,  
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
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
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
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



 (3) 

Then (2) can be rewritten as (4): 

            ,
i i j

w t i w t i i j w t i w t j         

          , ,
i j k

i j k w t i w t j w t k a t      (4) 

2) Analysis of GNAR Model Based on Volterra 

Functional Series Theory 

Nonlinear analysis of mechanical systems or structures is 

a common. When using conventional numerical calculation 

methods to analyze the nonlinear dynamic response of 

structures, it is necessary to study the physical parameters of 

structures and their change rules to accurately analyze them. 

When using Volterra model to analyze the nonlinear 

dynamic response of structures, it is only necessary to 

identify the input and output data. Then, a mathematical 

model describing the nonlinear response characteristics of 

the structure can be established. Using Volterra functional 

series, the following mathematical models can be established 

for any nonlinear system: 

    
1 2

1 1 1

1 2

1 0 0 0 1

( ) , , ,
d d d

d

N N N dN

d j

d r r r j

y k h r r r x k r
  

    

 
   

 
     (5) 

where  1 2, , , dh r r r  is the Volterra kernel of order d. 

The essence of time series modeling is output equivalence. 

The time series model is used to define the equivalent 

system of the original system. Under the action of white 

noise {a(t)}, the equivalent system outputs the observation 

sequence {w(t)}, while the original system outputs the 

observation sequence {w(t)} under the action of {v(t)}. {w(t)} 
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and {a(t)}, which can be expressed by the polynomial of 

w(t-i) according to (3), are substituted into (5) to obtain (4). 

The same time series model is obtained by Volterra theory 

and Weierstrass theory, and the physical meaning of GNAR 

model is introduced from two aspects of system 

identification and mathematical mechanism, respectively. 

For the system described in (4), the more high-order items, 

i.e., the higher the order, the higher the model accuracy, but 

the system complexity rises sharply. The model order often 

takes a finite value in practice. Considering that the 

historical observations far away have little influence on the 

current observation, only some most adjacent observations 

need to be considered during modeling, so (4) can be 

rewritten as follows: 

      
1

1

1 1

1

n

i

w t i w t i


    

      
2 2

1 2

1 2 1 2

1 1

,
n n

i i

i i w t i w t i
 

     

      
1

1 2

1 1 1

, ,
p p

p

n n p

p k

i i k

i i i w t i a t
  

     (6) 

Equation (6) is a one-dimensional GNAR model with 

order p, which fuses both linear and nonlinear autoregressive 

models into a uniform expression. The model is denoted as 

G(p; n1, n2, ···, np) and n1, n2, ···, np are the number of 

historical observations which need to be considered to 

predict the current observation. When p is 1, (6) is a linear 

model. When p is greater than 1, (6) is a nonlinear model. 

B. Parameter Estimation Method 

It is usually assumed that the time series data has 

Gaussian noise and thus the LS method is the most 

commonly used parameter estimation method. However, the 

Gaussian noise assumption is relatively ideal and time series 

data inevitably have two kinds of outliers, mainly including 

innovative outliers and additive outliers, resulting in poor 

robustness of the LS parameter estimation method [32]. To 

address the problems, some robust parameter estimation 

methods were studied, mainly including M estimation based 

on maximum likelihood estimation, L estimation based on 

linear combination and R estimation based on rank test. M 

estimation transforms the parameter estimation problem into 

the minimum value problem by establishing the maximum 

likelihood estimation function and its robustness is 

significantly better than the LS estimation [33]. However, 

the time series is typically contaminated by additive outliers 

and the robustness of M estimation still needs to be 

improved [34]. RA (Residual Autocovariances) estimator 

was first proposed by Bustos and Yohai. It has good noise 

resistance for additive outliers. For time series data with 

innovative outliers of symmetrical distribution, the RA 

estimation has Fisher consistency for a stationary and 

reversible Auto-Regressive and Moving Average (ARMA) 

model. The numerical results show that the RA estimation is 

more robust than LS estimation and M estimation for time 

series data with additive outliers modeling by Moving 

Average (MA) model [35]. RA estimation was extended to 

parameter estimation of two-dimensional time series model 

and its performance was further studied [36-39]. 

The main idea of the RA method is to adjust the residuals 

and their autocovariances by using a continuous bounded 

function, so as to suppress the "excessive values" in the 

residuals and make the parameter estimation more robust. 

Referring to the above idea that the residuals are adjusted by 

using a continuous bounded function, an improved recursive 

least squares parameter estimation method was proposed, 

which is the RALS method named previously. 

Let  (1) (2) ( ), , p    . The LS estimates of   

minimize 

  2

tr   (7) 

where 
1

(

2

) ), ,( , z

z i i i , 1,2, ,z p ; the residuals 

( )tr   are defined by 

        
1

1 1t

i

r w t i w t i


   

  

      
1 2

1 2 1 2,
i i

i i w t i w t i      

    
1 2

1 2

1

, , ,
p

p

p k

i i i k

i i i w t i









    (8) 

Consider the LS estimates obtained minimizing (7). 

Differentiating the expression we obtain the following 

system of equations for the LS estimates: 

 ( )( ) ( ) 0z

t tr r          (9) 

It is easy to show from (8) that 

  
( )

1

( ) z
t

z
k

kw t i
r




 







 (10) 

To ensure robustness of the proposed estimator, ( )tr   is 

replaced by  ˆ( )tr   where : R R   is a 

continuous and bounded odd function and ̂  is a scale 

factor which is a robust estimate of the mean of a sequence, 

which is composed of the absolute values of residuals ( )tr  . 

̂  is estimated using, for example, 

   ( )ˆ Median 5( ) 0.647t

k r    (11) 

  may be a function from the Huber function family 

given by 

      , sgn min ,H c u u u c    (12) 

It can also be one of the bisquare function family 

proposed by Beaton and Tukey, which is defined by 

    
2

2 2

, 1B c u u u c    (13) 

Subsequently, the parameters of a GNAR model can 

estimated with the RALS method according to process given 

by Algorithm 1. 

Algorithm 1: RALS estimation method 

1 Time series  tw  

  1 2 1 1, , , , , , ,t t t nw w w w w w   (14) 

Modeling sequence  tw  using the GNAR model: 

  1 2 3, , , ,t t t t t s tw G w w w w       (15) 
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 where G is the GNAR model of which the parameters 

are represented by the vector  . s is a constant 

determined by the order and neighbor structure of G. 

2 The parameters of GNAR model are estimated by LS 

method which were denoted as (0)
λ̂ . The initial 

GNAR model, the residual sequence and the median 

of the residual sequence were denoted as 
(0)Ĝ , 

 (0)
r  and (0)̂ , respectively. Take the above 

parameters as the initial values and start iterative LS 

estimation. 

3 In the kth iteration, the parameters of GNAR model 

were estimated by LS method which were denoted as 
(0)
λ̂  and the GNAR model was denoted as 

( )ˆ kG . The 

residual error of the GNAR model were calculated: 

  ( ) ( )

1 2 3
ˆ , , , ,k k

t t t t t t sr w G w w w w      (16) 

4 Residual sequence 

    ( ) ( ) ( ) ( ) ( )

1 2, , , ,k k k k k

t t t nr r r r r  (17) 

5 The median of the residual sequence was estimated 

according to (18) 

   ( ) ( )ˆ Median 0.6475k k  r  (18) 

Where Median( )  is the median function. 

6 Tuning the residual errors using a continuous bounded 

odd function 

  ( ) ( ) ( ) ( )ˆ ˆ ˆk k k k

t tr r     (19) 

where ( )   is a continuous and bounded odd 

function. A function from the Huber function family is 

commonly used: 

      sgn min ,H u u u c    (20) 

Where c is the tuning parameter between 1.5 and 2.0. 

7 Update time series  tw  according to (21): 

  ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 3
ˆˆ ˆ ˆ ˆ ˆ ˆ, , , ,k k k k k k k

t t t t t t sw r G w w w w      (21) 

Updated time series  ( )ˆ k

tw  

  ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 3 1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , , ,k k k k k k k

t t t nw w w w w w w   (22) 

8 Let k = k+1. Repeat steps 3 to 7. Stop iteration when 

the following conditions are met. 

 ( ) ( 1) ( ) ( 1)

1 2
ˆ ˆˆ ˆ ,k k k k           (23) 

where 1  and 2  are two relatively small positive 

constants, such as 10-3 or 10-6. || ||  is the matrix 

norm. 

C. Order Determination of GNAR Model Based On 

Residual Characteristics and Time Complexity 

Model order determination is very important which is 

intrinsically related to model applicability test and goodness 

judgment [40]. The classic criteria for judging the degree of 

excellence mainly include the residual whitening test-based 

criterion, the residual sum of squares-based criterion, the 

final prediction errors-based criterion and the 

information-based criterion. They are not universally 

applicable test criteria. For example, the residual whitening 

test-based criterion is only applicable to linear systems. 

Therefore, there are new order determination criteria 

constantly emerging, such as frequency ratio-based method, 

steady-state diagram-based method, AIC, improved 

F-test-based method and genetic algorithm-based method, 

etc [41, 42]. However, nonlinear models are quite different 

and so far there is no universally applicable method for 

model order determination. 

The parameters of GNAR model increase rapidly and the 

operation cost increases sharply with nonlinear terms in the 

model, which should be considered when determining the 

model order. Therefore, combining the time complexity 

model with the now available criteria, a comprehensive 

order determination method for linear and nonlinear fused 

autoregressive model based on the residual characteristics 

and the time complexity was proposed. 

1) Complexity of GNAR Model 

The dimensions of GNAR model parameters can be 

calculated as follows: 

 
1

1
i

p
i

n i

i

m C  



  (24) 

Where m is the dimension of GNAR model parameters, p is 

the order of GNAR model, and ni is the number of historical 

items of each order. 

According to (24), the calculation amount S of GNAR 

model parameters is defined as follows: 

   1

1

1 2
i

p
i i

n i

i

S C  



    (25) 

2) Improved AIC 

An iAIC criteria is defined by considering the 

computational complexity of GNAR model in the AIC 

criteria. The mathematical model of iAIC is as follows: 

   2AIC ln ai S S     (26) 

Where τ is a tuning factor and its value can be  ln N . N  

is the number of historical observations. 

IV. EXPERIMENTS AND RESULTS 

A. Experimental Implementation 

1) Dataset 

A dataset including 23 records is employed to validate the 

performances of GNAR model and RALS estimator, as 

shown in Table I. Among the 23 records, the first 9 records 

are from a book titled Time Series Analysis in Engineering 

Application by Yang Shuzi, Wu Ya and Xuan Jianping. The 

10th record is the trip history data from Citi Bike which was 

downloaded through the link https://ride.citibikenyc.com/ 

system-data. The trip data from Nov. 1, 2022 to Nov. 30, 

2022 of the site named 2 Ave&E 29 St and numbered 

6122.09 are analyzed. A day is split up into six intervals. 

0:00-06:00 is the first interval, 06:00-10:00 is the second 

interval, 10:00-14:00 is the third interval, 14:00-18:00 is the 

fourth interval, 18:00-22:00 is the fifth interval and 

22:00-24:00 is the sixth interval. The 11th record, the 12th 

record and the 13th record are trip history data from Divvy in 

Chicago which are downloaded through the link 

https://ride.divvybikes.com/system-data. The trip data from 

Nov. 1, 2022 to Nov. 30, 2022 of three sites respectively 

named Ellis Ave & 60th St, University Ave & 57th St and 

Streeter Dr & Grand Ave and numbered KA1503000014, 

KA1503000071 and 13022 are analyzed. The 14th to 23rd 
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records are from a dataset named Boston Hubway Data 

Visualization Challenge Dataset established by 

Massachusetts Department of Transportation. The trip 

history data from July 28, 2011 to Nov. 27, 2013 of ten sites 

which are respectively numbered 3, 4, 5, 6, 7, 9, 10, 11, 12 

and 23 are analyzed. The download link can be obtained by 

searching the dataset name through a search engine. 

Each record is divided into two parts, i.e., modeling part 

(training set) and verification part (test set), accounting for 

80% and 20% respectively. 

 
TABLE I 

DATASET FOR VALIDATION OF GNAR MODEL AND RALS ESTIMATOR 

No. 
Observation Data (History Data) 

Title Length 

1 Errors of Lead Screw System 490 

2 Stocks of ※※ Company 369 
3 Vibration Acceleration of Lathe Tip (Stable State) 130 

4 Vibration Acceleration of Lathe Tip (Transition State) 130 

5 Vibration Acceleration of Lathe Tip (Flutter State) 130 
6 Dynamic Cutting Force 150 

7 Vibration Displacement 150 

8 Tickets of ※※ International Airline per Month 144 
9 Yearly Averaged Sunspot Numbers from 1700 to 1987 288 

10 Trip Data of Station 6122.09 (Citi Bike) 171 

11 Trip Data of Station KA1503000014 (Divvy) 170 
12 Trip Data of Station KA1503000071 (Divvy) 164 

13 Trip Data of Station 13022 (Divvy) 139 

14 Trip Data of Station 3 (Hubway) 616 
15 Trip Data of Station 4 (Hubway) 584 

16 Trip Data of Station 5 (Hubway) 587 

17 Trip Data of Station 6 (Hubway) 608 
18 Trip Data of Station 7 (Hubway) 564 

19 Trip Data of Station 9 (Hubway) 591 

20 Trip Data of Station 10 (Hubway) 589 
21 Trip Data of Station 11 (Hubway) 619 

22 Trip Data of Station 12 (Hubway) 620 

23 Trip Data of Station 23 (Hubway) 324 

 

2) GNAR Models 

As previously explained, the GNAR model can be written 

as G(p;n1,n2,···,np). In the performance verification of 

GNAR model, the maximum value of p is 5, that is, the 

highest order of GNAR model is 5. When p = 1, n1 ranges 

from 1 to 20. When p = 2, n1 ranges from 1 to 10 and n2 

ranges from 1 to 5. When p = 3, n1 ranges from 1 to 10 and 

n2 and n3 range from 1 to 5. When p = 4, n1 ranges from 1 to 

10, n2 and n3 range from 1 to 5 and n4 ranges from 1 to 2. 

When p = 5, n1 ranges from 1 to 10, n2 and n3 range from 1 

to 5, and n4 and n5 range from 1 to 2. There are 770 GNAR 

models. 

3) Evaluation Index 

To compare the performance of the LS estimator and the 

RALS estimator, ReRes(i), i.e., percentage of relative 

residual, is defined as follows: 

  
   

 

LsRes RaRes
ReRes 100%

LsRes

i i
i

i


   (27) 

where LsRes(i) is the residual of forecasting the ith 

observation point by using the LS method to estimate the 

model parameters. RaRes(i) is the residual of forecasting the 

ith observation point by using the RALS method to estimate 

the model parameters. ReRes(i) is the percentage of relative 

residual of RaRes(i) and LsRes(i). If ReRes(i) ˃ 0, it means 

that the prediction residual of the model whose parameters 

are estimated by the LS method is larger than that of the 

model whose parameters are estimated by the RALS method. 

Otherwise, it means that the prediction residual of the former 

is smaller than that of the latter. An evaluation index r was 

defined as follows: 

 2

1

100%
N

r
N

   (28) 

where N2 is the number of elements less than zero in the 

relative residual sequence {ReRes(i)} and N1 is the length of 

the relative residual sequence {ReRes(i)}. 

Furthermore, in order to evaluate the overall performance 

of GNAR model using the above two parameter estimation 

methods on the test sets, the MESs of the prediction residual 

sequences are calculated. 

B. Results and Analysis 

1) Fitting Characteristic Analysis of GNAR Model 

As shown in Fig. 1 (a), the yearly averaged sunspot 

numbers are fitted by using G(4; 7, 5, 1, 1). The iAIC is 

6.9005 when LS method is used to estimate the parameters 

of the model and the iAIC is 5.5360 when RALS method is 

used. The MSE of the sequence predicted by the model of 

which the parameters are estimated by LS method is 1108.40 

and the MSE of the sequence predicted by the model of 

which the parameters are estimated by RALS method is 

260.61. Compared with the above GNAR model, G(4; 9, 4, 

2, 1) can also better fit the data, as shown in Fig. 1 (b). The 

two iAICs are 6.3302 and 5.5768, respectively. The two 

MSEs are 645.30 and 274.21, respectively. 
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(b) 

Fig. 1. Fitting Yearly Averaged Sunspot Numbers with GNAR Models. 

 

To further quantify the prediction error at each point, the 

differences between observed value and two predicted 

values in Fig. 1 are calculated and the results are plotted in 

Fig. 2. 

Fig. 2 shows that there are some abnormal points in both 

Fig. 2 (a) and Fig. 2 (b) when LS method is employed to 

estimate the parameters of the GNAR model. However, the 

prediction errors at these points are relatively small when 
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RALS method is adopted. Among these 58 points, the 

maximum relative difference of prediction errors is up to 

2054.50% at the 30th point. Consequently, the 9th record 

(Yearly Averaged Sunspot Numbers) can be well fitted by 

the GNAR model with the RALS estimator. 
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Fig. 2. Prediction Errors for Yearly Averaged Sunspot Numbers. 

 

The trip historical data of station KA1503000014, i.e., the 

11th record in Table I, is fitted by G(5; 4, 3, 3, 2, 2), as 

illustrated in Fig. 3. 
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Fig. 3. Fitting Trip Historical Data of Station KA1503000014 

 

The series shown in Fig. 1 is relatively stable. There is 

little difference at both ends, but a slight increase in the 

middle. Although the series shown in Fig. 3 is also generally 

relatively stable, its trend is different from that shown in Fig. 

1. When observation time is less than 10, the observation 

values are relatively small and when observation time is 

greater than 12, the observation values have a relatively 

significant increase. 

G(5; 4, 3, 3, 2, 2) can well fit the trip historical data of 

station KA1503000014 with the iAIC of 3.5508 and the 

MSE of 33.9517 when RALS method was adopted to 

estimate the parameters of GNAR model. When LS method 

is adopted, the iAIC and MSE are 3.6434 and 38.8320, 

respectively. 

The historical data of station 13022, i.e., the 13th record in 

Table I, is fitted by G(3; 10, 4, 2), as shown in Fig. 4. 
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Fig. 4. Fitting Trip Historical Data of Station 13022 

 

The variation of the trip historical data of station 13022 is 

different from the previous two series. The trip historical 

data of the station should be clearly divided into two parts. 

When observation time is less than 10, the observations is 

relatively large as well as its variation rate. However, when 

observation time is greater than 10, the observations 

decreases significantly and its variation rate is relatively 

gentle. 

G(3; 10, 4, 2) can well fit the trip historical data of station 

13022 with the iAIC of 5.0227 and the MSE of 148.4276 

when RALS method is adopted to estimate the parameters of 

GNAR model. When LS method is adopted, the iAIC and 

MSE are 6.2727 and 506.9140, respectively. Compared with 

LS method, the trip historical data of station 13022 is better 

fitted by using G(3; 10, 4, 2) when RALS method is adopted 

to estimate the parameters of GNAR model. Especially when 

the observation time is less than 10, the fitting accuracy of 

the GNAR model with parameters estimated by RALS 

method is significantly better than that of GNAR model with 

parameters estimated by LS method. The maximum relative 

difference of prediction errors is up to 11944.81% at the 9th 

point. 

The trip historical data of station 7, i.e., the 18th record in 

Table I, is fitted by G(1; 14), as illustrated in Fig. 5. 
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Fig. 5. Fitting Trip Historical Data of Station 7 
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The data created by the G(1; 14) can well track the trend 

of the observed data, but the prediction errors are relatively 

large. When RALS method is used, the iAIC and the MSE 

are 4.0854 and 58.8160, respectively. When LS method is 

used, the iAIC and the MSE are 4.1252 and 61.1877, 

respectively. Therefore, the fitting accuracy of the GNAR 

model with RALS method is slightly better than that of 

GNAR model with LS method. 

The good fitting accuracy of the GNAR model has been 

proved from the above analysis. However the GNAR model 

also has shortcomings. The fitting accuracy of the GNAR 

model on the data with obvious trend items and relatively 

violent changes is significantly reduced. Therefore, in the 

future, on the one hand, the adaptability of the GNAR model 

to various types of data should be further improved. On the 

other hand, effective measures should be taken to separate 

the trend items of the data and the data compression methods 

must be studied to reduce the rate of change thus to make the 

data more consistent with the requirements of time series 

modeling for data stability. 

Although the data shown in Fig. 1, Fig. 3 and Fig. 4 have 

relatively large differences in their change rules, these data 

can be well fitted by using the GNAR models. The data 

shown in Fig. 4 is quite different from those data shown in 

the previous three images. It has obvious trend items and the 

data changes rapidly and substantially. The GNAR model 

can fit the trend items very well, but the prediction errors are 

relatively large. Further research needs to be carried out 

from different perspectives, such as modeling strategy or 

preprocessing. 

2) Characteristic Analysis of RALS Estimator 

The parameters of GNAR model are estimated by LS 

method and RALS method, respectively. Then the prediction 

experiments are carried out on the aforementioned dataset 

with 23 records. The MSEs of 23 prediction series which are 

obtained by using the two parameter estimation methods are 

calculated respectively. 

Here the relative difference between MSE of LS method 

and MSE of RALS method is defined as the percentage of 

the former over the latter. According to Table II, among the 

23 relative differences, only 1 is less than zero. Among the 

other 22 relative differences, the maximum value is as high 

as 325.30%, and the second largest value is 241.52%. It 

indicates that the overall fitting errors of the GNAR models 

with RALS estimator are smaller than those of the GNAR 

models with LS estimator. 

 
TABLE II 

RELATIVE DIFFERENCES OF MSE FOR RECORDS IN TABLE I 

No. RESULTS No. RESULTS No. RESULTS 

1 0.27% 9 325.30% 17 -0.46% 

2 20.06% 10 4.55% 18 4.03% 

3 46.78% 11 14.37% 19 1.71% 

4 7.00% 12 28.38% 20 2.93% 

5 1.77% 13 241.52% 21 0.31% 

6 3.14% 14 5.71% 22 0.31% 

7 6.32% 15 0.09% 23 0.48% 

8 7.13% 16 1.53% / / 

 

When the iAIC takes the minimum value, the evaluation 

index r defined in (21) is calculated according to the GNAR 

model's prediction errors which are equal to the differences 

between observations and predictions. The evaluation index 

r for each record in Table I is calculated accordingly and the 

23 values of the evaluation indexes are plotted as a 

histogram, as shown in Fig. 6. 
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Fig. 6. Evaluation Index r for Each Record in Table I 

 

According to Fig. 6, among the above 23 results of the 

evaluation indexes, there are 4 results in the interval [20%, 

30%), 7 results in the interval [30%, 40%), 9 results in the 

interval [40%, 50%) and 3 results in the interval [50%, 60%). 

The maximum and minimum results are 57.69% and 23.08%, 

respectively. Thus, the proportion of r greater than 50% is 

only about 13%. According to (21), the smaller the r, the 

better the RALS estimator. Consequently, it is cautiously 

concluded that the performance of the RALS method is 

significantly better than that of the LS method. 

3) Characteristic Analysis of iAIC 

All records in the dataset are modelled by using 770 

GNAR models and the parameters of the GNAR models are 

estimated by the LS method and the RALS method. 

Subsequently, the iAICs of each model and the MSEs of 

each prediction series are calculated. Two groups of results 

for each record are selected according to its iAICs, as shown 

in Table III. 

There are two groups of iAICs for each record, each 

group containing 770 results. The two groups of iAICs for 

11th record are shown in the Fig. 7. The x-axis of Fig. 7 is the 

number of GNAR models. The y-axis of Fig. 7 (a) is iAIC of 

GNAR models of which the parameters are estimated by LS 

method and the y-axis of Fig. 7 (b) is iAIC of GNAR models 

of which the parameters are estimated by RALS method. 

As shown in Fig. 7 (a), the minimum iAIC is obtained at 

the red point, where Number = 149, iAIC is 3.5768, and the 

MSE of the prediction series is 34.0597. If the parameters of 

the GNAR model are estimated by the RALS method, the 

iAIC result is 3.6337 and the MSE of the prediction series is 

35.9406. As shown in Fig. 7 (b), the minimum iAIC is 

obtained at the blue point, where Number = 86, iAIC is 

3.5508, and the MSE of the prediction series is 33.9517. If 

the parameters of the GNAR model are estimated by the LS 

method, the iAIC result is 3.6434 and the MSE of the 

prediction series is 38.8320. 

According to Table III, the results can be divided into four 

groups. In the first group, when the GNAR model adopts the 

RALS estimator, if its iAIC takes the minimum value, its 

MSE of the prediction series using the model also takes the 

minimum value, which occurred 13 times. In the second 

group, when the GNAR model adopts LS estimator, if its 

iAIC takes the minimum value, its MSE of the prediction 

series using the model also takes the minimum value, which 
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occurred 3 times. In the third group, when the GNAR model 

adopts the RALS method, its iAIC takes the minimum value, 

but its MSE of the prediction series using the model is not 

the minimum value, which occurred only once. In the fourth 

group, when the GNAR model adopts the RALS method, 

although its iAIC is not the minimum value, its MSE of the  

 
TABLE III 

iAICS OF GNAR MODELS AND MSES OF PREDICTION SERIES 

No. 
GNAR 

Model 

iAIC MSE 

LS RALS LS RALS 

1 
765 1.8564 1.8534 6.3017 6.2848 

767 1.8572 1.8613 6.2950 6.3226 

2 
16 4.1687 4.1509 75.9160 63.2321 

17 4.1883 4.1661 76.7056 64.0166 

3 
704 3.2482 2.8917 25.2387 17.1949 

754 2.7498 2.9313 18.9489 19.0450 

4 
661 3.7480 3.6883 41.7453 39.0159 

756 3.7083 3.7035 40.2138 40.1198 

5 
597 4.4528 4.4044 89.3864 87.8292 

757 4.3191 4.4323 93.0499 93.1106 

6 
37 3.1185 3.0835 25.3443 24.5728 

138 2.9284 3.0919 29.1436 29.7318 

7 
39 1.7584 1.7066 5.8009 5.4559 

470 1.7096 2.0905 4.8379 7.0401 

8 
765 5.5836 5.5201 278.9744 260.4055 

766 5.5857 5.5470 287.0549 273.1585 

9 
398 6.9005 5.5360 1108.4019 260.6138 

581 6.3302 5.5768 645.3006 274.2127 

10 
758 5.1252 5.0856 165.6604 158.4550 

728 4.9870 5.3222 137.7130 211.2578 

11 
86 3.6434 3.5508 38.8320 33.9517 

149 3.5768 3.6337 34.0597 35.9406 

12 
152 4.3037 4.0572 69.2739 53.9594 

188 4.1604 4.2343 62.2769 66.9795 

13 
685 6.2727 5.0227 506.9140 148.4276 

67 5.3148 6.6199 194.2124 761.7608 

14 
547 4.1113 4.0859 65.1733 61.6534 

442 4.1080 4.0864 65.2370 61.7297 

15 
759 4.5411 4.5410 92.9383 92.8528 

42 4.5144 4.5482 93.0820 95.2946 

16 
658 3.7971 3.7814 43.9967 43.3322 

336 3.7590 3.7863 43.6818 44.0482 

17 
761 5.3111 5.3154 201.0017 201.9218 

762 5.3168 5.3205 202.4222 203.1690 

18 
754 4.1252 4.0854 61.1877 58.8160 

756 4.1253 4.0899 61.1417 59.0295 

19 
472 4.3102 4.3069 75.4830 74.2147 

579 4.2853 4.3838 72.2323 79.5114 

20 
332 4.7148 4.7077 115.0621 111.7893 

231 4.7138 4.7090 115.7256 113.6226 

21 
759 4.1219 4.1190 60.8581 60.6689 

758 4.1334 4.1326 61.5682 61.5119 

22 
755 3.8781 3.8768 48.7600 48.6079 

754 3.8787 3.8782 48.8409 48.7415 

23 
436 3.9307 3.9278 52.2209 51.9715 

544 3.9190 3.9296 52.8133 53.4795 

Note: Bold indicates that the indice performance of the coresponding 

method is the best. 
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Fig. 7. Results of iAIC for GNAR Models 

 

prediction series using the model is the minimum value, 

which occurred 6 times. Furthermore, when the MSE is the 

minimum value, the iAIC of the model using the RALS 

method must be smaller than that of the model using the LS 

method. Therefore, the parameter defined, i.e., iAIC, can be 

effectively used to determine the order of the GNAR model. 

V. CONCLUSION 

For the prediction of complex nonlinear time series, the 

GNAR model is proposed. The RALS estimator and its 

process are proposed to deal with the situation that time 

series will inevitably be contaminated by outliers. Since 

more nonlinear terms are considered in the GNAR models, 

the computational complexity of the GNAR model is 

modelled and introduced into the AIC to propose an 

improved AIC, named iAIC. Finally, the performance of 

GNAR model and its parameter estimation method and order 

determination method have been evaluated experimentally 

and quantitatively by using the established dataset. The 

results show that the MES of the prediction series of the 

GNAR model with RALS estimator are relatively small. The 

MES of the LS estimator is 325.3% higher than that of the 

RALS estimator at most. The effectiveness of the iAIC 

reaches 82.61%. Consequently, the proposed order 

determination method for GNAR model is effective and the 

high fitting accuracy of the GNAR model with RALS 

estimator has been achieved. 

Although the GNAR model can fit various time series 

well, the performance of the GNAR model needs to be 

further improved, especially when the time series has 

obvious trend items and changes significantly. Therefore, on 

the one hand, the adaptability of GNAR model can be 

improved by optimizing the structure of GNAR model. On 

the other hand, the stability of time series can be improved 

by trend item separation and data compression which is used 

to reduce the magnitude of data changes. Finally, the fitting 

accuracy of GNAR models has to be further improved. 
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