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Abstract—A vertically oscillating plate with a temperature
difference and mass diffusion is used to investigate the role
of thermal radiation and chemical reaction in the unexpected
convection flow of a viscous unstable rotating fluid. The results
of the calculations indicate that the fluid is a grey medium
that absorbs and emits radiation. With time, both the plate’s
and the surrounding environment’s temperatures and concen-
trations rise. The Laplace transform method finds solutions
to the dimensionless governing equations for a plate, which is
oscillating in its own plane. In relation to one another, the phase
angle, radiation parameter, Schmidt number, thermal Grashof
number, mass Grashof number, and time are all investigated.

Index Terms—Oscillating, Phase angle, Vertical plate, Vari-
able temperature, mass diffusion.

I. INTRODUCTION

IN natural systems, there are fluid movements that arise
from not just temperature gradients but also variations

in concentration. The variations in mass transfer have an
impact on the rate of heat transmission. In several industrial
sectors, numerous transportation processes occur whereby
the combined buoyancy effect with the influence of thermal
radiation facilitates the simultaneous occurrence of heat and
mass transfer. Therefore, the design of fins, steel rolling, nu-
clear power plants, gas turbines, and other propulsion devices
for aircraft, missiles, and satellites, as well as the processing
of materials, energy utilisation, temperature measurements,
food processing, cryogenic engineering, remote sensing for
astronomy and space exploration, and many other agricul-
tural, medical, and military applications, depend heavily on
radiative heat and mass transfer. When the temperature of the
surrounding fluid is high, radiation effects become essential,
which occurs in space technology. In these cases, the effects
of heat radiation and mass diffusion must be considered.

England and Emery [1] examined how heat radiation
affected the gas boundary layer with laminar-free convection.
Singh [2] investigated hydromagnetic convection flow in an
abruptly rotating fluid through an infinite vertical plate. The
effects of mass transfer and convection flow currents flowing
across an oscillating vertical plate were studied by Soundal-
gekar, Lahurikar, Pohanerkar, and Birajdar [3]. Soundalgekar
and Akolkar [4] studied free convection currents and mass
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transfer when they changed the flow across a vertically
oscillating plate. Mansour [5] examined a vertical plate to de-
termine how radiation and free convection impact oscillatory
flow. Using computational methods, Muthucumaraswamy
and Saravanan [6] investigated the radiative flow of an
oscillating, vertical, semi-infinite plate exposed to a constant
mass flux. Radiation and chemical reactions were studied
by Manivannan, Muthucumaraswamy, and Thangaraj [7] on
an isothermal, vertically oscillating plate with varying mass
diffusion.

The precise solution of a vertical plate immersed in a
rotating fluid with temperature, mass diffusion, and variations
in thermal radiation is the subject of the research conducted
by Ravikumar and Vijayalakshmi [8]. Radiation effects on
MHD were studied by Ravikumar and Vijayalakshmi [9] in a
rotating fluid passing a vertical plate of varying temperature
and mass. Heat and mass transfer in porous media under
the influence of radiation and slip conditions were studied
by Giulio Lorenzini, Halima Usman, and Fazle Mabood
[10]. Govind Pathak and Rakesh Kumar [11] looked into the
impact of thermal radiation and heat generation on a plate
moving vertically at different temperatures and with different
levels of mass diffusion. Nagarajan and Sundar Raj [12]
investigated the effects of radiation on a vertically oscillating
plate subject to first-order chemical processes at different
temperatures. Heat and mass transfer effects on flow across
a vertically oscillating plate of varying temperatures were
studied by R. Muthucumaraswamy and A. Vijayalakshmi
[13]. The authors of this study, Titilayo Morenike Agbaje,
Sandile Sydney Motsa, Peter Leach, and Precious Sibanda
[14], researched on an efficient large spectral collocation
technique for analyzing the behavior of MHD laminar nat-
ural convection flow from a vertical permeable flat plate.
The study included many factors, including uniform surface
temperature, Soret and Dufour effects, chemical reactions,
and thermal radiation.

The effects of heat and mass transfer in a rotating fluid
with a temperature difference and mass diffusion have not
been studied, but a vertical plate that constantly oscillates
while being exposed to thermal radiation is an exciting
research topic. Using a vertically oscillating plate with tem-
perature and mass diffusion, we will examine the impact of
heat radiation on a rotating, unstable fluid flow. The Laplace
transform is used for solving the governing equations since
they are dimensionless.

II. MATHEMATICAL ANALYSIS

The flow of a rotating fluid is examined in three dimen-
sions across an infinite vertical oscillating plate while being
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viscous, incompressible, and electrically conducting. On this
plate, the x′ and y′ axes are normal to the plate’s plane,
whereas the z′ axis is perpendicular to the plate’s surface. We
now set the plate, which is at a fixed vertical angle on the x′

axis. The fluid and the plate spin at the same constant angular
velocity Ω′ around the z′ axis. This fluid is a non-scattering
grey absorbing-emitting substance. The plate and fluid are
initially at rest, with uniform temperatures and concentrations
T ′
∞ and C ′

∞ respectively. The plate is given an oscillating
motion with the velocity u0 cosωt and u0 sinωt in a fluid,
together with thermal radiation at time t′ against the gravi-
tational field in the vertical direction. The concentration C ′

w

is then held constant while the temperature T ′
w of the plate

is increased for t′. All physical quantities are proportional
to z′ because the plate occupying the plane z′ = 0 has
an infinite extent. This transient flow is governed by the
following equations, which are based on the conventional
Boussinesq’s approximation:

∂u′

∂t′
− 2Ω′v′ = gβ(T ′ − T ′

∞)

+ gβ∗(C ′ − C ′
∞) + v

∂2u′

∂z′2
(1)

∂v′

∂t′
− 2Ω′u′ = v

∂2u′

∂z′2
(2)

ρCp
∂T ′

∂t′
= k

∂2T ′

∂z′2
− ∂qr

∂z′
(3)

∂C ′

∂t′
=

∂2c′

∂z′2
−K1(C

′ − C ′
∞) (4)

To begin, suppose we have the required beginning and
boundary conditions:

t′ ≤ 0 : u′ = 0, v′ = 0,

T ′ = T ′
∞, C ′ = C ′

∞ for all z′

For cosine oscillation,

t′ > 0 : u′ = u0 cosωt
′, v′ = 0,

T ′ = T ′
w + (T ′

w − T ′
∞)At′,

C ′ = C ′
w + (C ′

w − C ′
∞)At′ at z′ = 0

For sine oscillation,

t′ > 0 : u′ = u0 sinωt
′, v′ = 0,

T ′ = T ′
w + (T ′

w − T ′
∞)At′,

C ′ = C ′
w + (C ′

w − C ′
∞)At′ at z′ = 0

u′ = 0, v′ = 0,

T ′ → T ′
∞, C ′ → C ′

∞ at z′ → ∞ (5)

where A =
u2
0

v .
The local radiant is stated in the case of an optically thin

grey gas by

∂qr
∂z′

= −4a∗σ(T ′4
∞ − T ′4) (6)

Temperature differences within the flow are thought to be
small enough in practice that T ′4 may be characterized as a
linear function of temperature. This is performed in a Taylor
series based on T ′

∞ by eliminating higher-order components
and expanding T ′4, so

T ′4 ∼= 4T
′3
∞T ′ − 3T ′4

∞ (7)

By using equations (6) and (7), equation (3) reduces to

ρCp
∂T ′

∂t′
= k

∂2T ′

∂z′2
+ 16a∗σT ′3

∞(T ′
∞ − T ′) (8)

The following dimensionless quantities are introduced:

(u, v) =
(u′, v′)

u0
, t =

t′u′2
0

v
, z =

z′u0

v
, θ =

T ′ − T ′
∞

T ′
w − T ′

∞
,

Gr =
gβv(T ′

w − T ′
∞)

u′3
0

, C =
C ′ − C ′

∞
C ′

w − C ′
∞
,

Gc =
gβ∗v(C ′

w − C ′
∞)

u′3
0

, K = K1

[
v

u2
0

] 1
3

(9)

Pr =
µcp
k

, Ω =
Ω′v

u′2
0

, R =
16a∗v2σT ′3

∞
ku′2

0

and the problem’s equations are simplified from (1) to (5)
by the statement q = u+ iv, where q is a complex velocity
with sign i =

√
−1, as

∂q

∂t
+ 2iΩ = Grθ +GcC +

∂2q

∂z2
(10)

∂θ

∂t
=

1

Pr

∂2θ

∂z2
− R

Pr
θ (11)

∂C

∂t
=

1

Sc

∂2C

∂z2
−KC (12)

Dimensionless initial and boundary variables are as follows:

q = 0, θ = 0, C = 0 for all z ≤ 0 and t ≤ 0

For cosine oscillation,

t > 0 : q = cosωt, θ = t, C = t at z = 0

For sine oscillation,

t > 0 : q = sinωt, θ = t, C = t at z = 0

q = 0, θ → 0, C → 0 as z → ∞ (13)

The solutions to equations (10), (11), and (12) with boundary
conditions (13), are given below which is obtained using the
standard Laplace-transform approach,

θ =
t

2

[
exp (−2η

√
Prat) erfc(η

√
Pr −

√
at)

+ exp (2η
√
Prat) erfc(η

√
Pr +

√
at)

]

− η
√
Prt

2
√
a

[
exp (−2η

√
Prat) erfc(η

√
Pr −

√
at)

− exp (2η
√
Prat) erfc(η

√
Pr +

√
at)

]

C =
t

2

[
exp (−2η

√
ScKt) erfc(η

√
Sc−

√
Kt)

+ exp (2η
√
ScKt) erfc(η

√
Sc+

√
Kt)

]

− η
√
Sct

2
√
K

[
exp (−2η

√
ScKt) erfc(η

√
Sc−

√
Kt)

− exp (2η
√
ScKt) erfc(η

√
Sc+

√
Kt)

]
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We obtain velocity for cosine oscillations,

qc =
exp (iωt)

2{
1

2

[
exp (2η

√
bt+ iωt) erfc(η +

√
bt+ iωt)

+ exp (−2η
√
bt+ iωt) erfc(η −

√
bt+ iωt)

]}

+
exp (−iωt)

2{
1

2

[
exp (−2η

√
bt− iωt) erfc(η −

√
bt− iωt)

+ exp (2η
√
bt− iωt) erfc(η +

√
bt− iωt)

]}

+
Gr

(1− Pr)

{
1

2c2

[
(exp−2η

√
bt)(η −

√
bt)

+ exp 2η
√
bt(η +

√
bt)

]

+
t

2c

[
(exp−2η

√
bt) erfc(η −

√
bt)

+ exp 2η
√
bt erfc(η +

√
bt)

]

− exp (ct)

2c2

[
(exp (−2η

√
(c+ b)t)) erfc(η −

√
(c+ b)t)

+ exp (2η
√
(c+ b)t) erfc(η +

√
(c+ b)t)

]

− 1

2c2

[
(exp (−2η

√
Prat)) erfc(η

√
Pr −

√
at)

+ exp (2η
√
Prat) erfc(η

√
Pr +

√
at)

]

−

[
t

2c

[
exp (−2η

√
Prat) erfc(η

√
Pr −

√
at)

+ exp (2η
√
Prat) erfc(η

√
Pr +

√
at)

]
− η

√
Prt

2c
√
a

[
exp (−2η

√
Prat) erfc(η

√
Pr −

√
at)

− exp (2η
√
Prat) erfc(η

√
Pr +

√
at)

]]

+
exp(ct)

2c2[
(exp (−2η

√
Pr(a+ c)t)) erfc(η

√
Pr −

√
(a+ c)t)

+ exp (2η
√
Pr(a+ c)t) erfc(η

√
Pr +

√
(a+ c)t)

]}

+
GC

(1− Sc)

{
1

2d2

[
(exp−2η

√
bt)(η −

√
bt)

+ exp 2η
√
bt(η +

√
bt)

]

+
t

2d

[
(exp−2η

√
bt) erfc(η −

√
bt)

+ exp 2η
√
bt erfc(η +

√
bt)

]

− exp (dt)

2d2[
(exp (−2η

√
(d+ b)t)) erfc(η −

√
(d+ b)t)

+ exp (2η
√
(d+ b)t) erfc(η +

√
(d+ b)t)

]

− 1

2d2

[
(exp (−2η

√
ScKt)) erfc(η

√
Sc−

√
Kt)

+ exp (2η
√
ScKt) erfc(η

√
Sc+

√
Kt)

]

−

[
t

2d

[
exp (−2η

√
ScKt) erfc(η

√
Sc−

√
Kt)

+ exp (2η
√
ScKt) erfc(η

√
Sc+

√
Kt)

]
− η

√
Sct

2d
√
K[

exp (−2η
√
ScKt) erfc(η

√
Sc−

√
Kt)

− exp (2η
√
ScKt) erfc(η

√
Sc+

√
Kt)

]]

+
exp(dt)

2d2[
exp (−2η

√
Sc(K + d)t) erfc(η

√
Sc−

√
(K + d)t)

+ exp (2η
√
Sc(K + d)t) erfc(η

√
Sc+

√
(K + d)t)

]}

Similarly, velocity corresponding to sine oscillation is,

qs =
exp (iωt)

2i{
1

2

[
exp (2η

√
bt+ iωt) erfc(η +

√
bt+ iωt)

+ exp (−2η
√
bt+ iωt) erfc(η −

√
bt+ iωt)

]}

− exp (−iωt)

2i{
1

2

[
exp (−2η

√
bt− iωt) erfc(η −

√
bt− iωt)

+ exp (2η
√
bt− iωt) erfc(η +

√
bt− iωt)

]}

+
Gr

(1− Pr)

{
1

2c2

[
(exp−2η

√
bt) erfc(η −

√
bt)
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+ exp 2η
√
bt erfc(η +

√
bt)

]

+
t

2c

[
exp (−2η

√
bt) erfc(η −

√
bt)

+ exp 2η
√
bt erfc(η +

√
bt)

]

− exp (ct)

2c2

[
exp (−2η

√
(c+ b)t) erfc(η −

√
(c+ b)t)

+ exp (2η
√
(c+ b)t) erfc(η +

√
(c+ b)t)

)]

− 1

2c2

[
(exp (−2η

√
Prat)) erfc(η

√
Pr −

√
at)

+ exp (2η
√
Prat) erfc(η

√
Pr +

√
at)

]

−

[
t

2c

(
exp (−2η

√
Prat) erfc(η

√
Pr −

√
at)

+ exp (2η
√
Prat) erfc(η

√
Pr +

√
at)

)
− η

√
Prt

2c
√
a

(
exp (−2η

√
Prat) erfc(η

√
Pr −

√
at)

− exp (2η
√
Prat) erfc(η

√
Pr +

√
at)

)]

+
exp(ct)

2c2[
exp (−2η

√
Pr(a+ c)t)) erfc(η

√
Pr −

√
(a+ c)t)

+ exp (2η
√
Pr(a+ c)t) erfc(η

√
Pr +

√
(a+ c)t)

]}

+
GC

(1− Sc)

{
1

2d2

[
exp (−2η

√
bt) erfc(η −

√
bt)

+ exp (2η
√
bt) erfc(η +

√
bt)

]

+
t

2d

[
exp (−2η

√
bt) erfc(η −

√
bt)

+ exp (2η
√
bt) erfc(η +

√
bt)

]

− exp (dt)

2d2[
exp (−2η

√
(d+ b)t) erfc(η −

√
(d+ b)t)

+ exp (2η
√
(d+ b)t) erfc(η +

√
(d+ b)t)

]

− 1

2d2

[
exp (−2η

√
ScKt)erfc(η

√
Sc−

√
Kt)

+ exp (2η
√
ScKt) erfc(η

√
Sc+

√
Kt)

]

−

[
t

2d

[
exp (−2η

√
ScKt) erfc(η

√
Sc−

√
Kt)

+ exp (2η
√
ScKt) erfc(η

√
Sc+

√
Kt)

]
− η

√
Sct

2d
√
K

[
exp (−2η

√
ScKt) erfc(η

√
Sc−

√
Kt)

− exp (2η
√
ScKt) erfc(η

√
Sc+

√
Kt)

]]

+
exp(dt)

2d2[
exp (−2η

√
Sc(K + d)t) erfc(η

√
Sc−

√
(K + d)t)

+ exp (2η
√

Sc(K + d)t) erfc(η
√
Sc+

√
(K + d)t)

]}

Where a = R
Pr , b = 2iΩ, c = R−b

1−Pr , d = ScK−b
1−Sc , η = z

2
√
t
,

erfc is the error complimentary function.
Complex arguments are used in the error function and error

complimenting function. The term q represents a complex ve-
locity and is decomposed according to its real and imaginary
components using the formula below.

erfc(x+ iy) = erf(x) +
exp(−x2)

2xπ
[1− cos(2xy)]

+
exp(−x2)

2xπ
[i sin(2xy)]

+
2 exp(−x2)

π

∞∑
n=1

exp(−n2/4)

n2 + 4x2

[fn(x, y) + ign(x, y)] + ϵ(x, y)

Where,

fn = 2x− 2x cosh(ny) cos(2xy) + n sinh(ny) sin(2xy)

gn = 2x cosh(ny) sin(2xy) + n sinh(ny)cos(2xy)

| ϵ(x, y) |≈ 10−16 | erf(x+ iy) |

III. RESULTS AND DISCUSSION

To understand the physical context completely, one must
know the physical values of velocity, temperature, and con-
centration at different times, different phase angle values,
Schmidt number, radiation parameter, chemical reaction pa-
rameter, thermal Grashof number, and mass Grashof number.
The purpose of the analyses depicted here is to evaluate how
different R,K,Gr,Gc, Pr, Sc, t and ωt for cosine and sine
oscillations affect the characteristics of the flow and trans-
port. The complementary and exponential error functions can
be used to express solutions by the Laplace transform.
Figure 1 shows profiles of temperatures at different times
(t = 0.3, 0.5, 0.7 and 0.9), P r = 7 when thermal radiation
R = 5 is present.
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Figure 1. Temperature Profile for various t.

It is obvious that the temperature rises as the value of
time t increases.

Figure 2 depicts temperature profiles computed for several
thermal radiation parameter values (R = 0.5, 3, 7 and 10) at
t = 0.8, (Pr = 7).

Figure 2. Temperature Profile for various R.

The temperature drops when the radiation parameter rises.

The concentration patterns are shown graphically in
Figure 3 for various time values (t = 0.3, 0.5, 0.7, 0.9),K =
0.2, Sc = 2.01.

Figure 3. Concentration Profile for various t.

The trend indicates that the concentration rises as the
value of time t increases.

Figure 4 depicts Concentration profiles computed for several
chemical reaction parameter values (K = 0.5, 2, 5 and 8) at
t = 0.8, (Sc = 2.01).

Figure 4. Concentration Profile for various K.

The concentration drops when the chemical reaction
parameter rises.

Figure 5 depicts the primary velocity profiles
for cosine oscillation at different phase angles
(ωt = π/6, π/3, π/2), R = 15,K = 0.5, Gr = 5, Gc =
5, Sc = 2.01, P r = 7,Ω = 0.5 and t = 0.2.
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Figure 5. Primary velocity in cosine oscillation for various ωt.

It is evident that when the phase angle(ωt) rises, the
velocity drops.

Figure 6 shows secondary velocity profiles for several
phase angles ωt = π/6, π/3, π/2), R = 15,K = 0.5, Gr =
5, Gc = 5, Sc = 2.01, P r = 7,Ω = 0.5 and t = 0.2 for
cosine oscillation.

Figure 6. Secondary velocity in cosine oscillation for various ωt.

It is evident that when the phase angle(ωt) rises, the
velocity drops.

Figure 7 shows the effects of primary velocity for various ra-
diation parameter values (R = 1, 1.5, 2, 2.5), ωt = π/4,K =
0.2, Gr = 10, Gc = 10, P r = 7, Sc = 2.01,Ω = 0.5 and
t = 0.8 for cosine oscillation.

Figure 7. Primary velocity in cosine oscillation for various R.

It seems that the velocity rises when the radiation
parameter’s value decreases.

Figure 8 depicts the effect of secondary velocity
for several radiation parameter values, such as
(R = 1, 1.5, 2, 2.5), ωt = π/4,K = 0.2, Gr = 10, Gc =
10, P r = 7, Sc = 2.01,Ω = 0.5 and t = 0.8 for cosine
oscillation.

Figure 8. Secondary velocity in cosine oscillation for various R.

Based on the pattern, the radiation parameter seems to
decrease when the velocity increases.

Figure 9 displays the rotational parameter’s primary velocity
profiles for various values. The values of the rotational
parameters are Ω = 1, 1.5, 2, 2.5 with R = 10,K =
0.5, Gr = 10, Gc = 10, Sc = 2.01, t = 0.8, ωt = π/6 and
Pr = 7 for cosine oscillation.
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Figure 9. Primary velocity in cosine oscillation for various Ω.

The primary velocity increases as the rotation parameter
Ω decreases.

Figure 10 depicts the secondary velocity patterns for
different values of rotational parameters. The values of
the rotational parameters are Ω = 1, 1.5, 2, 2.5 with
R = 10,K = 0.5, Gr = 10, Gc = 10, Sc = 2.01, t =
0.8, ωt = π/6 and Pr = 7 for cosine oscillation.

Figure 10. Secondary velocity in cosine oscillation for various Ω.

As a result of the rotation parameter’s influence, the
secondary velocity decreases.

Figure 11 displays the rotational parameter’s primary
velocity profiles for various values. The values of the
rotational parameters are (K = 1, 1.5, 2, 2.5) with
R = 5,Ω = 0.5, Gr = 10, Gc = 10, Sc = 2.01, t =
0.8, ωt = π/4 and Pr = 7 for cosine oscillation.

Figure 11. Primary velocity in cosine oscillation for various K.

As a result of the chemical reaction parameter’s influence,
the secondary velocity decreases.

Figure 12 depicts the effect of secondary velocity
for several radiation parameter values, such as
(K = 1, 1.5, 2, 2.5), ωt = π/4, R = 5, Gr = 10, Gc =
10, P r = 7, Sc = 2.01,Ω = 0.5 and t = 0.8 for cosine
oscillation.

Figure 12. Secondary velocity in cosine oscillation for various K.

As a result of the chemical reaction parameter’s influence,
the secondary velocity decreases.

Figure 13 shows the effects of primary velocity for various
thermal Grasshof number (Gr = 10, 20, 30, 40), ωt =
π/2,K = 0.5, R = 5, Gc = 5, P r = 7, Sc = 2.01,Ω = 0.5
and t = 0.2 for cosine oscillation.
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Figure 13. Primary velocity in cosine oscillation for various Gr.

The primary velocity increases as the thermal Grasshof
number increases.

Figure 14 depicts the effect of secondary velocity for several
thermal Grasshof number (Gr = 10, 20, 30, 40), ωt =
π/2,K = 0.5, R = 5, Gc = 5, P r = 7, Sc = 2.01,Ω = 0.5
and t = 0.2 for cosine oscillation.

Figure 14. Secondary velocity in cosine oscillation for various Gr.

The pattern indicates that the velocity rises as the
radiation parameter rises.

Figure 15 shows the primary velocity profiles
for sine oscillation at various phase angles
(ωt = π/6, π/3, π/2), R = 10,K = 0.5, Gr = 5, Gc =
5, Sc = 2.01, P r = 7,Ω = 0.5 and t = 0.2.

Figure 15. Primary velocity in sine oscillation for various ωt.

It is evident that when phase angle(ωt) rises, velocity
increases.

Figure 16 shows the secondary velocity profiles
for sine oscillation at various phase angles
(ωt = π/6, π/3, π/2), R = 10,K = 0.5, Gr = 5, Gc =
5, Sc = 2.01, P r = 7,Ω = 0.5 and t = 0.2.

Figure 16. Secondary velocity in sine oscillation for various ωt.

It is evident that when the phase angle(ωt) rises, the
velocity drops.

Figure 17 depicts the impacts of velocity for sine
oscillation with different radiation parameter values
(R = 1, 1.5, 2, 2.5), ωt = π/4,K = 0.2, Gr = 10, Gc =
10, P r = 7, Sc = 2.01,Ω = 0.5 and t = 0.8.

IAENG International Journal of Applied Mathematics

Volume 54, Issue 1, January 2024, Pages 128-139

 
______________________________________________________________________________________ 



Figure 17. Primary velocity in sine oscillation for various R.

The pattern indicates that when the radiation parameter
increases, the velocity drops.

Figure 18 depicts the effects of secondary velocity
for different radiation parameter values, such as
(R = 1, 1.5, 2, 2.5), ωt = π/4,K = 0.2, Gr = 10, Gc =
10, P r = 7, Sc = 2.01,Ω = 0.5 and t = 0.8 for sine
oscillation.

Figure 18. Secondary velocity in sine oscillation for various R.

The pattern indicates that the velocity drops as the
radiation parameter rises.

The primary velocity profiles for various values are
shown in Figure 19 for the rotational parameters. The values
of the rotational parameters are Ω = 1, 1.5, 2, 2.5 with R =
10,K = 0.5, Gr = 5, Gc = 5, Sc = 2.01, t = 0.2, ωt = π/6
and Pr = 7 for sine oscillation.

Figure 19. Primary velocity in sine oscillation for various Ω.

The primary velocity increases as the rotation parameter
Ω decreases.

Figure 20 depicts the secondary velocity patterns for
different values of the rotational parameter. The values of
the rotational parameters are Ω = 1, 1.5, 2, 2.5 with R =
10,K = 0.5, Gr = 5, Gc = 5, Sc = 2.01, t = 0.2, ωt = π/6
and Pr = 7 for sine oscillation.

Figure 20. Secondary velocity in sine oscillation for various Ω.

As a result of the rotation parameter decreases, the
secondary velocity increases.

Figure 21 displays the Chemical reaction parameter’s
primary velocity profiles for various values. The values
of the rotational parameters are (K = 1, 1.5, 2, 2.5) with
R = 5,Ω = 0.5, Gr = 10, Gc = 10, Sc = 2.01, t =
0.8, ωt = π/4 and Pr = 7 for sine oscillation.
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Figure 21. Primary velocity in sine oscillation for various K.

As a result of the chemical reaction parameter’s influence,
the primary velocity decreases.

Figure 22 depicts the effect of secondary velocity
for several radiation parameter values, such as
(K = 1, 1.5, 2, 2.5), ωt = π/4, R = 5, Gr = 10, Gc =
10, P r = 7, Sc = 2.01,Ω = 0.5 and t = 0.8 for sine
oscillation.

Figure 22. Secondary velocity in sine oscillation for various K.

As a result of the chemical reaction parameter’s influence,
the secondary velocity decreases.

Figure 23 depicts the effect of secondary velocity for several
thermal Grasshof number (Gr = 10, 20, 30, 40), ωt =
π/2,K = 0.5, R = 5, Gc = 5, P r = 7, Sc = 2.01,Ω = 0.5
and t = 0.2 for sine oscillation.

Figure 23. Primary velocity in sine oscillation for various Gr.

It is evident that when the thermal Grasshof number rises,
the velocity rises.

Figure 24 displays the thermal Grasshof number’s primary
velocity profiles for various values. The values of the
thermal Grasshof number are (Gr = 10, 20, 30, 40), ωt =
π/2,K = 0.5, R = 5, Gc = 5, P r = 7, Sc = 2.01,Ω = 0.5
and t = 0.2 for sine oscillation.

Figure 24. Secondary velocity in sine oscillation for various Gr.

The pattern indicates that the velocity rises as the thermal
Grasshof number rises.

IV. CONCLUSIONS

The effects of thermal radiation and chemical reaction in
a rotating fluid on unsteady flow in the presence of changing
temperature and mass diffusion are studied by simulating
the motion of a vertically infinite oscillating plate. To solve
dimensionless governing equations, the Laplace transform
method is used. We investigated ωt,R,K,Gr,Gc, Sc and
t to see how they vary with temperature, velocity for cosine
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and sine, and concentration. High thermal radiation causes
the temperature to decrease. Additionally, it has been ob-
served that concentration increases as the chemical reaction
parameter reduces.
For cosine oscillation,

1) The primary velocity rises with a dropping phase angle
ωt.

2) The secondary velocity drops with increasing phase
angle ωt.

3) The primary velocity drops with rising radiation pa-
rameter R.

4) The secondary velocity drops with rising radiation
parameter R.

5) The primary velocity increases with increasing rotation
parameter Ω.

6) The secondary velocity increases with the rising rota-
tion parameter Ω.

7) The primary velocity drops with rising Chemical reac-
tion parameter K.

8) The secondary velocity drops with rising Chemical
reaction parameter K.

9) The primary velocity increases with increasing thermal
Grasshof number Gr.

10) The secondary velocity increases with increasing ther-
mal Grasshof number Gr.

For sine oscillation,
1) The primary velocity rises with increasing phase angle

ωt.
2) The secondary velocity decreases with decreasing

phase angle ωt.
3) The primary velocity decreases with rising radiation

parameter R.
4) The secondary velocity decreases with rising radiation

parameter R.
5) The primary velocity rises with decreasing rotation

parameter Ω.
6) The secondary velocity increases with decreasing ro-

tation parameter Ω.
7) The primary velocity drops with rising Chemical reac-

tion parameter K.‘
8) The secondary velocity drops with rising Chemical

reaction parameter K.
9) The primary velocity increases with increasing thermal

Grasshof number Gr.
10) The secondary velocity increases with increasing ther-

mal Grasshof number Gr.

V. MATHEMATICAL REPRESENTATIONS

a∗ - absorption coefficient
A - constant
C ′

w - concentration of the plate
C ′

∞ - concentration in the fluid far away from the plate
C ′ - species concentration in the fluid
C - dimensionless concentration
cp - specific heat at constant pressure
D - mass diffusion coefficient
g - acceleration due to gravity
Gr - thermal Grashof number
Gc - mass Grashof number
Pr - Prandtl number

qr - radiative heat flux in the y- direction
R - radiation parameter
Sc - Schmidt number
T ′
∞- temperature of the fluid far away from the plate

T ′
w - temperature of the plate

T ′ - temperature of the fluid near the plate
t′ - time
t - dimensionless time
u′ - velocity of the fluid in the x’- direction
u0 - velocity of the plate
u - dimensionless velocity
v′ - velocity of the fluid in y’- direction
v - dimensionless velocity
y′ - coordinate axis normal to x’- axis
z′ - coordinate axis normal to the plate
z - dimensionless coordinate axis normal to the plate
β - volumetric coefficient of thermal expansion
β∗ - volumetric coefficient of concentration expansion
µ - coefficient of viscosity
ϑ- kinematic viscosity
Ω′ - rotation parameter
Ω - dimensionless rotation parameter
ρ - density
θ - dimensionless temperature
erfc - complementary error function
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