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Abstract—In this paper, we introduce the cubic and quartic
Jensen type functional equations:
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normed space.
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I. INTRODUCTION

THE stability problem of functional equations originated
from a question of Ulam [15] in 1940, concerning the

stability of group homomorphisms. The question was “When
is it true that a function which approximately satisfies a
functional equation must be close to an exact solution of
the equation?”.

Hyers [6] gave the positive response to the question
of Ulam for Banach spaces. Aoki [1] generalized the
Hyers theorem for additive mappings. Hyers theorem
was generalized by Rassias [11] by allowing the Cauchy
difference to be unbounded. In response to Rassias question
regarding p > 1, Gajada replied for it in [5]. Moslehian
and Rassias [9] proved generalized HUS of the Cauchy
functional equation and the quadratic functional equation in
NAN spaces.

In [8], Kenary and Cho proved the HUS of mixed
additive-quadratic Jensen type functional equation in
Non-Archimedean normed spaces and random normed
spaces. Yang et.al.[17] proved the HUS of mixed additive-
quadratic Jensen type functional equation in multi-Banach
spaces. Also, many authors have been extensively studied
the stability problem of functional equations and Non-
Archimedean spaces (see [2], [4], [7], [10], [13], [18]).
The Jensen type additive functional equation was solved
by Trif and the HUR (Hyers-Ulam-Rassias) stability was
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investigated in [14].

In this paper we introduce a new cubic and quartic
functional equation of Jensen type
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in NAN space.

II. PRELIMINARIES

Definition 2.1. [12] A functional equation is an equation in
which both sides contain a finite number of functions, some
are known and some are unknown.

Example 2.1. f(x+ y) = f(x) + f(y) is the Cauchy additive
functional equation

Definition 2.2. [12] A solution of a functional equation is a
function which satisfies the equation.

Example 2.2. (i) f(x) = kx is a solution of the Cauchy
functional equation f(x+ y) = f(x) + f(y)
(ii) f(x) = cx + a is the solution of the Jensen functional
equation f(x+y

2 ) = f(x)+f(y)
2

Definition 2.3. [12] A functional equation F is stable if any
function f satisfying the equation F approximately is near
to exact solution of F.

Definition 2.4. [3], [16]. If F is any field then a valuation (of
rank 1) is a map |.| : F → R, satisfying the following axioms:

(i)|x| ≥ 0

(ii)|x| = 0, when x = 0

(iii)|xy| = |x||y|
(iv)|x+ y| ≤ |x|+ |y|

for all x, y ∈ F.
The valuation is said to be non-Archimedean, if the following
stronger form of inequality (iv) holds, namely

|x+ y| ≤ max{|x|, |y|}.
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Definition 2.5. [16] A sequence {xn} in K is called
a Cauchy sequence with respect to a non-Archimedean
valuation |.|, if and only if

|xn+1 − xn| → 0, as n → ∞.

Definition 2.6. [3] If every Cauchy sequence of K has a limit
in K, then K is said to be complete.

Example 2.3. [16] The field Qp of p-adic number is the
completion of Q with respect to |.|p.

Definition 2.7. [16] A complete normed linear space is called
a Banach space.

Definition 2.8. [3], [16] Let X be a vector space over a field
K with a non-trivial non-Archimedean valuation |. |. Then,
a function ∥.∥ : X → R is called a non-Archimedean norm
if it satisfies the following conditions:

(i) ∥x∥ ≥ 0 and ∥x∥ = 0 iff x = 0 for all x ∈X
(ii) ∥αx∥ = |α |∥x∥ for all x ∈ X and α ∈ K
(iii) ∥x+ y∥ ≤ max{∥x∥, ∥y∥} for all x, y ∈ X

and the space (X,∥.∥) is called a non-Archimedean normed
space.

The most important examples of non-Archimedean spaces
are p-adic numbers. A key property of p-adic numbers
is that they do not satisfy the Archimedean axiom: for
x, y > 0, there exists η ∈ N such that x < ηy.

Example 2.4. [3] Let p be a positive prime number. For
every non-zero rational number x there exists a unique
integer α such that

x = pα
(a
b

)
with some integer a and b not divisible by p, define p-adic
absolute value

|x|p = p−α.

Example 2.5. [3] Take x = 162
13 . Suppose we want to find its

3-adic absolute value (hence p = 3). Expressed in the p-adic
form, we obtain

x = 81.
2

13
= 34.

2

13

which mean |x|3 = 1
34 .

13-adic absolute value for x. It will simply be |x|13 = 13
because

x = 13−1.162

|x|13 =
1

13−1
= 13.

III. MAIN RESULTS

Throughout this paper, it is assumed that G is an additive
group, X is a complete NAN space and X1, X2 are vector
spaces. We start this section with the following lemmas.

Lemma 3.1. If a mapping f from X1 to X2 satisfies (1) and
f(0) = 0 then f is a cubic mapping.

Proof: Putting y = 0 in (1), we get

f

(
3x

2

)
− 11f

(x
2

)
− 2f (x) = 0 for all x ∈ G. (3)

1

8
f (3x)− 11

8
f (x)− 2f (x) = 0 for all x ∈ G. (4)

f (3x)− 27f (x) = 0 for all x ∈ G. (5)

This means that f is a cubic mapping.

Lemma 3.2. If a function f from X1 to X2 satisfies (2) and
f(0) = 0 then f is a quartic mapping.

Proof: Putting y = 0 in (2), we get

f

(
3x

2

)
− 17f

(x
2

)
− 4f (x) = 0 for all x ∈ G. (6)

1

16
f (3x)− 17

16
f (x)− 4f (x) = 0 for all x ∈ G. (7)

f (3x)− 81f (x) = 0 for all x ∈ G. (8)

This means that f is a quartic mapping.

Theorem 3.1. Fix ℓ = ±1. Suppose that ξ from G2 → [0,∞)
is a mapping such that

lim
η→∞

1

|27|ηℓ
ξ
(
3ηℓx, 3ηℓy

)
= 0 for all x, y ∈ G.

(9)

Also, the limit

Φ(x) = lim
η→∞

max

{
|8|
|27|

1

|27|
κℓ−

(
1−ℓ
2

) ξ
(
3
κℓ−

(
1−ℓ
2

)
x, 0

)

: 0 ≤ κ < η

}
for all x ∈ G,

(10)

exists and f : G → X is a cubic function satisfying

∥D3f(x, y))∥ ≤ ξ(x, y) for all x, y ∈ G. (11)

Then for all x ∈ G,

C3(x) = lim
η→∞

1

27η
f (3ηx)

exists such that∥∥∥f(x)− C3(x)
∥∥∥ ≤ Φ(x) for all x ∈ G. (12)

Moreover, if

lim
ȷ→∞

lim
η→∞

max

{
1

|27|κℓ
ξ
(
3κℓx, 0

)
: ȷ ≤ κ < η + ȷ

}
= 0,

(13)
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then C3 is a unique cubic mapping satisfying (12).

Proof: Case(i). Let us prove the theorem for ℓ = 1.
It follows by replacing y = 0 in (11), we obtain

∥∥∥f (3x)− 27f (x)
∥∥∥ ≤ |8|ξ(x, 0) for all x ∈ G. (14)

Replacing x by 3ηx in (14), we get

∥∥∥∥f (3η+1x)

27η+1
− f

(3ηx)

27η

∥∥∥∥ ≤ |8|
|27|η+1

ξ(3ηx, 0) for all x ∈ G.

(15)

Thus, it follows from (9) and (15) that the sequence
{

f(3ηx)
27η

}
is Cauchy sequence. Since X is complete.
Therefore

{
f(3ηx)
27η

}
is convergent.

Let C3(x) = lim
η→∞

f

(
3ηx

27η

)
for all x ∈ G. (16)

By induction, one can show that∥∥∥f (3ηx)
27η

− f(x)
∥∥∥ ≤max

{
|8|

|27|κ+1
ξ(3κx, 0) :

0 ≤ κ < η

}
, (17)

by taking the limit η → ∞ in (17) and using (10) one
obtain (12).

By (9) and (11), we get

∥D3f(x, y)∥ = lim
η→∞

∥∥∥D3f

(
3ηx

27η
,
3ηy

27η

)∥∥∥
= lim

η→∞

1

|27|η
∥∥∥D3f(3

ηx, 3ηy)
∥∥∥

≤ lim
η→∞

1

|27|η
ξ(3ηx, 3ηy) = 0 for all x, y ∈ G.

Therefore C3(x) is a cubic mapping.
To prove uniqueness, let C′

3 be another mapping satisfying
(12) we obtain

∥∥∥C3(x)− C′
3(x)

∥∥∥
= lim

η→∞

1

|27|η
∥C3(3ηx)− C′

3(3
ηx) ∥

≤ lim
η→∞

1

|27|η
max

{
∥C3(3ηx)− f(3ηx)∥ ,

∥f(3ηx)− C′
3(3

ηx)∥
}

≤ lim
ȷ→∞

lim
η→∞

max

{
1

|27|κ
ξ(3κx, 0) : ȷ ≤ κ < η + ȷ

}
= 0 for all x ∈ G.

Therefore C3(x) = C′
3(x). This completes the proof.

Case (ii). Let us prove the theorem for ℓ = −1. It follows
by replacing y = 0 in (11), we obtain

∥∥∥f (3x)− 27f (x)
∥∥∥ ≤ |8|ξ(x, 0) for all x ∈ G. (18)

Replacing x by x
3η+1 in (18), we get

∥∥∥27η+1f
( x

3η+1

)
− 27ηf

( x

3η

)∥∥∥ ≤|8||27|ηξ
( x

3η+1
, 0
)

for all x ∈ G. (19)

Thus, it follows from (9) and (19) that the sequence{
27ηf

(
x
3η

)}
is Cauchy sequence. Since X is complete.

Therefore
{
27ηf

(
x
3η

)}
is convergent.

Let C3(x) = lim
η→∞

27ηf
( x

3η

)
for all x ∈ G. (20)

By induction, one can show that

∥∥∥27ηf( x

3η

)
− f(x)

∥∥∥ ≤max
{
|8||27|ηξ

( x

3η+1
, 0
)
:

0 ≤ κ < η
}
, (21)

by taking the limit η → ∞ in (21) and using (10) one
obtain (12).

By (9) and (11), we get

∥D3f(x, y)∥ = lim
η→∞

∥∥∥D3f
(
27η

x

3η
, 27η

y

3η

)∥∥∥
= lim

η→∞
|27|η

∥∥∥D3f
( x

3η
,
y

3η

)∥∥∥
≤ lim

η→∞
|27|η ξ

( x

3η
,
y

3η

)
= 0 for all x, y ∈ G.

Therefore C3(x) is a cubic mapping. To prove uniqueness,
let C′

3 be another mapping satisfying (12) we obtain

∥∥∥C3(x)− C′
3(x)

∥∥∥
= lim

η→∞
|27|η

∥∥∥C3 ( x

3η

)
− C′

3

( x

3η

)∥∥∥
≤ lim

η→∞
|27|η max

{∥∥∥C3 ( x

3η

)
− f

( x

3η

)∥∥∥ ,∥∥∥f( x

3η

)
− C′

3

( x

3η

)∥∥∥}

≤ lim
ȷ→∞

lim
η→∞

max
{
|27|κξ

( x

3κ
, 0
)
: ȷ ≤ κ < η + ȷ

}
= 0 for all x ∈ G.

Therefore C3(x) = C′
3(x). This completes the proof.

Corollary 3.1. Let δ ≥ 0 and prime p > 3. Define a function
f from G to X and if f is a cubic mapping that fulfills the
inequality ∥∥∥D3f(x, y)

∥∥∥ ≤ δ for all x, y ∈ G.

Then, there exists a unique cubic function C3(x) : G → X
such that

∥f(x)− C3(x)∥ ≤ |8|
|27|

δ

Proof:
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By Theorem 3.1, if ξ(x, y) = δ then

∥f(x)− C3(x)∥ ≤ Φ(x),

where Φ(x) = lim
η→∞

max

{
|8|

|27|κ+1
ξ(3κx, 0) :

0 ≤ κ < η

}
.

Therefore,

∥f(x)− C3(x)∥ ≤ lim
η→∞

max

{
|8|

|27|κ+1
δ : 0 ≤ κ < η

}

≤ |8|
|27|

δ.

Corollary 3.2. Let r, s, δ > 0 and r + s > 3. Define a
function f from G to X and if f is a cubic mapping satisfying
the inequality∥∥∥D3f(x, y)

∥∥∥ ≤ δ (∥x∥r+s + ∥y∥r+s + ∥x∥r∥y∥s)

for all x, y ∈ G.

Then, there is a unique cubic function C3(x) : G → X such
that

∥f(x)− C3(x)∥ ≤ δ |8| ∥x∥r+s

|27|

Proof: Let ξ(x, y) = δ(∥x∥r+s + ∥y∥r+s + ∥x∥r∥y∥s)

From Theorem (3.1),

∥∥∥f(x)− C3(x)
∥∥∥ ≤ Φ(x) for all x ∈ G.

where,

Φ(x) = lim
η→∞

max

{
|8|
|27|

1

|27|
κℓ−

(
1−ℓ
2

) ξ
(
3
κℓ−

(
1−ℓ
2

)
x, 0

)

: 0 ≤ κ < η

}
for all x ∈ G.

Taking ℓ = 1, we obtatin

Φ(x) = lim
η→∞

max

{
|8|

|27|κ+1
ξ
(
3κx, 0

)
: 0 ≤ κ < η

}
for all x ∈ G.

= lim
η→∞

max

{
|8|

|27|κ+1
δ|3|κ(r+s)∥x∥r+s

: 0 ≤ κ < η

}

=
δ |8| ∥x∥r+s

|27|

Therefore,

∥f(x)− C3(x)∥ ≤ δ |8| ∥x∥r+s

|27|
.

For the case r + s = 3, we have the following counter
example.

Example 3.1. Let p > 3 be a prime number and
Qp → Qp be defined by f(x) = x3 + 1. Since |3η|p = 1 for
all η ∈ N . Then for δ > 0,

∥D3f(x, y)∥ ≤ 1 ≤ δ(∥x∥r+s + ∥y∥r+s + ∥x∥r∥y∥s)
for all x, y ∈ G,

and ∥∥∥∥f (3η+1x)

27η+1
− f

(3ηx)

27η

∥∥∥∥ ↛ 0 as η → ∞.

Hence
{

f(3ηx)
27η

}
is not a Cauchy sequence.

Theorem 3.2. Fix ℓ = ±1. Suppose that ξ from G2 → [0,∞)
is a mapping such that

lim
η→∞

1

|81|ηℓ
ξ
(
3ηℓx, 3ηℓy

)
= 0 for all x, y ∈ G. (22)

Also, the limit

Φ(x) = lim
η→∞

max

{
|16|
|81|

1

|81|
κℓ−

(
1−ℓ
2

) ξ
(
3
κℓ−

(
1−ℓ
2

)
x, 0

)
:

0 ≤ κ < η

}
for all x ∈ G,

(23)

exists and f : G → X is an even mapping satisfying

∥D4f(x, y)∥ ≤ ξ(x, y) for all x, y ∈ G. (24)

Then for all x ∈ G,

Q4(x) = lim
η→∞

f

(
3ηx

81η

)
exists such that∥∥∥f(x)−Q4(x)

∥∥∥ ≤ Φ(x) for all x ∈ G. (25)

Moreover, if

lim
ȷ→∞

lim
η→∞

max

{
1

|81|κℓ
ξ
(
3κℓx, 0

)
: ȷ ≤ κ < η + ȷ

}
= 0,

(26)

then Q4 is unique quartic mapping Satisfying (25).
Proof: Case (i). Let us prove the theorem for ℓ = 1. It

follows by replacing y = 0 in (24), we obtain∥∥∥f (3x)− 81f (x)
∥∥∥ ≤ |16|ξ(x, 0) for all x ∈ G. (27)

Replacing x by 3ηx in (27), we get∥∥∥∥f (3η+1x)

81η+1
− f

(3ηx)

81η

∥∥∥∥ ≤ |16|
|81|η+1

ξ(3ηx, 0) for all x ∈ G.

(28)
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Thus, it follows from (22) and (28) that the sequence{
f(3ηx)
81η

}
is Cauchy sequence. Since X is complete.

Therefore
{

f(3ηx)
81η

}
is convergent.

Let Q4(x) = lim
η→∞

f

(
3ηx

81η

)
for all x ∈ G. (29)

By induction, one can show that∥∥∥f (3ηx)
81η

− f(x)
∥∥∥ ≤ max

{
|16|

|81|κ+1
ξ(3κx, 0) : 0 ≤ κ < η

}
(30)

by taking the limit η → ∞ in (30) and using (23) one
obtain (25).

By (22) and (24) we get

∥D4f(x, y)∥ = lim
η→∞

∥∥∥D4f

(
3ηx

81η
,
3ηy

81η

)∥∥∥
= lim

η→∞

1

|81|η
∥∥∥D4f(3

ηx, 3ηy)
∥∥∥

≤ lim
η→∞

1

|81|η
ξ(3ηx, 3ηy)

= 0 for all x, y ∈ G.

Therefore Q4(x) is a quartic mapping.
To prove uniqueness, let Q′

4 be another mapping satisfying
(25) we obtain∥∥∥Q4(x)−Q′

4(x)
∥∥∥

= lim
η→∞

1

|81|η
∥Q4(3

ηx)−Q′
4(3

ηx) ∥

≤ lim
η→∞

1

|81|η
max

{
∥Q4(x)− f(3ηx)∥ ,

∥f(3ηx)−Q′
4(x)∥

}
≤ lim

ȷ→∞
lim
η→∞

max

{
1

|81|κ
ξ(3κx, 0) : ȷ ≤ κ < η + ȷ

}
= 0 for all x ∈ G.

Therefore Q4(x) = Q′
4(x). This completes the proof.

Case (ii). Let us prove the theorem for ℓ = −1.
It follows by replacing y = 0 in (24), we obtain

∥∥∥f (3x)− 81f (x)
∥∥∥ ≤ |16|ξ(x, 0) for all x ∈ G (31)

Replacing x by x
3η+1 in (31), we get

∥∥∥81η+1f
( x

3η+1

)
− 81ηf

( x

3η

)∥∥∥ ≤|16||81|ηξ
( x

3η+1
, 0
)

for all x ∈ G. (32)

Thus, it follows from (22) and (32) that the sequence{
27ηf

(
x
3η

)}
is Cauchy sequence. Since X is complete.

Therefore
{
27ηf

(
x
3η

)}
is convergent.

Let Q4(x) = lim
η→∞

81ηf
( x

3η

)
for all x ∈ G. (33)

By induction, one can show that

∥∥∥81ηf( x

3η

)
− f(x)

∥∥∥ ≤max
{
|16||81|ηξ

( x

3η+1
, 0
)
:

0 ≤ κ < η
}

(34)

by taking the limit η → ∞ in (30) and using (23) one
obtain (25).

By (22) and (24), we get

∥D4f(x, y)∥ = lim
η→∞

∥∥∥D4f
(
81η

x

3η
, 81η

y

3η

)∥∥∥
= lim

η→∞
|81|η

∥∥∥D4f
( x

3η
,
y

3η

)∥∥∥
≤ lim

η→∞
|81|η ξ

( x

3η
,
y

3η

)
= 0 for all x, y ∈ G.

Therefore Q4(x) is a quartic mapping.
To prove uniqueness, let Q′

4 be another mapping satisfying
(25) we obtain∥∥∥Q4(x)−Q′

4(x)
∥∥∥

= lim
η→∞

|81|η
∥∥∥Q4

( x

3η

)
−Q′

4

( x

3η

)∥∥∥
≤ lim

η→∞
|81|η max

{∥∥∥Q4

( x

3η

)
− f

( x

3η

)∥∥∥ ,∥∥∥f( x

3η

)
−Q′

4

( x

3η

)∥∥∥}

≤ lim
ȷ→∞

lim
η→∞

max
{
|81|κξ

( x

3κ
, 0
)
: ȷ ≤ κ < η + ȷ

}
= 0 for all x ∈ G.

Therefore Q4(x) = Q′
4(x). This completes the proof.

Corollary 3.3. Let δ ≥ 0 and prime p > 3. Define a function
f from G to X and if f is a quartic mapping that fulfills the
inequality ∥∥∥D4f(x, y)

∥∥∥ ≤ δ for all x, y ∈ G.

Then, there exists a unique quartic function Q4(x) : G → X
such that ∥∥∥f(x)−Q4(x)

∥∥∥ ≤ |16|
|81|

δ

Proof: By Theorem 3.2, if ξ(x, y) = δ then

∥f(x)−Q4(x)∥ ≤ Φ(x),

where Φ(x) = lim
η→∞

max
{ |16|
|81|κ+1

ξ(3κx, 0) :

0 ≤ κ < η
}
.

Therefore,∥∥∥f(x)−Q4(x)
∥∥∥ ≤ lim

η→∞
max

{
|16|

|81|κ+1
δ : 0 ≤ κ < η

}
.

≤ |16|
|81|

δ.
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Corollary 3.4. Let r, s, δ > 0 and r + s > 4. Define a
function f from G to X and if f is a quartic mapping satisfying
the inequality∥∥∥D4f(x, y)

∥∥∥ ≤ δ (∥x∥r+s + ∥y∥r+s + ∥x∥r∥y∥s)

for all x, y ∈ G. Then, there is a unique quartic function
Q4(x) : G → X such that

∥f(x)−Q4(x)∥ ≤ δ |16| ∥x∥r+s

|81|
.

Proof: Let ξ(x, y) = δ(∥x∥r+s + ∥y∥r+s + ∥x∥r∥y∥s).

From Theorem (3.2),

∥∥∥f(x)−Q4(x)
∥∥∥ ≤ Φ(x) for all x ∈ G.

where,

Φ(x) = lim
η→∞

max

{
|16|
|81|

1

|81|
κℓ−

(
1−ℓ
2

) ξ
(
3
κℓ−

(
1−ℓ
2

)
x, 0

)

: 0 ≤ κ < η

}
for all x ∈ G.

Φ(x) = lim
η→∞

max

{
|16|

|81|κ+1
ξ
(
3κx, 0

)
: 0 ≤ κ < η

}
for all x ∈ G.

Taking ℓ = 1, we obtain

= lim
η→∞

max

{
|16|

|81|κ+1
δ|3|κ(r+s)∥x∥r+s

: 0 ≤ κ < η

}
.

=
δ |16| ∥x∥r+s

|81|
.

Therefore,

∥f(x)−Q4(x)∥ ≤ δ |16| ∥x∥r+s

|81|
.

For the case r + s = 4, we have the following counter
example.

Example 3.2. Let p > 3 be a prime number and
Qp → Qp be defined by f(x) = x4 + 1. Since |3η|p = 1 for
all η ∈ N . Then for δ > 0,

∥D3f(x, y)∥ ≤ 1 ≤ δ(∥x∥r+s + ∥y∥r+s + ∥x∥r∥y∥s)
for all x, y ∈ G,

and ∥∥∥∥f (3η+1x)

81η+1
− f

(3ηx)

81η

∥∥∥∥ ↛ 0 as η → ∞.

Hence
{

f(3ηx)
81η

}
is not a Cauchy sequence.

IV. CONCLUSION

Many authors discussed the HUS of Jensen type functional
equation in NAN space in recent years. In this current article,
we have proved a new cubic and quartic Jensen type Cauchy
functional equations (1) and (2) in NAN space.
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