Stability of a Jensen Type Cubic and Quartic Functional Equations over Non-Archimedean Normed Space

A. Ramachandran and S. Sangeetha*

Abstract—In this paper, we introduce the cubic and quartic Jensen type functional equations:

$$\begin{split} &\mathfrak{f}\left(\frac{3x+y}{2}\right) + \mathfrak{f}\left(\frac{x+3y}{2}\right) = 12\mathfrak{f}\left(\frac{x+y}{2}\right) + 2\left[\mathfrak{f}(x) + \mathfrak{f}(y)\right] \\ &\mathfrak{f}\left(\frac{3x+y}{2}\right) + \mathfrak{f}\left(\frac{x+3y}{2}\right) = 24\mathfrak{f}\left(\frac{x+y}{2}\right) - 6\mathfrak{f}\left(\frac{x-y}{2}\right) + 4\left[\mathfrak{f}(x) + \mathfrak{f}(y)\right] \end{split}$$

and discussed the Hyers-Ulam stability over non-Archimedean normed space.

Index Terms—Hyers-Ulam Stability (HUS), Jensen functional equation, Cubic function, Quartic function, Non-Archimedean Normed (NAN) space.

I. INTRODUCTION

T HE stability problem of functional equations originated from a question of Ulam [15] in 1940, concerning the stability of group homomorphisms. The question was "When is it true that a function which approximately satisfies a functional equation must be close to an exact solution of the equation?".

Hyers [6] gave the positive response to the question of Ulam for Banach spaces. Aoki [1] generalized the Hyers theorem for additive mappings. Hyers theorem was generalized by Rassias [11] by allowing the Cauchy difference to be unbounded. In response to Rassias question regarding p > 1, Gajada replied for it in [5]. Moslehian and Rassias [9] proved generalized HUS of the Cauchy functional equation and the quadratic functional equation in NAN spaces.

In [8], Kenary and Cho proved the HUS of mixed additive-quadratic Jensen type functional equation in Non-Archimedean normed spaces and random normed spaces. Yang et.al.[17] proved the HUS of mixed additive-quadratic Jensen type functional equation in multi-Banach spaces. Also, many authors have been extensively studied the stability problem of functional equations and Non-Archimedean spaces (see [2], [4], [7], [10], [13], [18]). The Jensen type additive functional equation was solved by Trif and the HUR (Hyers-Ulam-Rassias) stability was

Manuscript received July 31, 2023; revised November 22, 2023.

A. Ramachandran is a Research Scholar in the Department of Mathematics, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu- 603 203, India. (e-mail:ra5476@srmist.edu.in).

S. Sangeetha is an Assistant Professor in the Department of Mathematics, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu- 603 203, India. (Corresponding author phone: 9750487406; email: sangeets@srmist.edu.in). investigated in [14].

In this paper we introduce a new cubic and quartic functional equation of Jensen type

$$\mathcal{D}_{3}\mathfrak{f}(x,y) = \mathfrak{f}\left(\frac{3x+y}{2}\right) + \mathfrak{f}\left(\frac{x+3y}{2}\right) - 12\mathfrak{f}\left(\frac{x+y}{2}\right) - 2\left[\mathfrak{f}(x) + \mathfrak{f}(y)\right] \tag{1}$$

$$\mathcal{D}_{4}\mathfrak{f}(x,y) = \mathfrak{f}\left(\frac{3x+y}{2}\right) + \mathfrak{f}\left(\frac{x+3y}{2}\right) - 24\mathfrak{f}\left(\frac{x+y}{2}\right) + 6\mathfrak{f}\left(\frac{x-y}{2}\right) - 4\left[\mathfrak{f}(x) + \mathfrak{f}(y)\right]$$
(2)

in NAN space.

II. PRELIMINARIES

Definition 2.1. [12] A functional equation is an equation in which both sides contain a finite number of functions, some are known and some are unknown.

Example 2.1. f(x+y) = f(x) + f(y) is the Cauchy additive functional equation

Definition 2.2. [12] A solution of a functional equation is a function which satisfies the equation.

Example 2.2. (i) f(x) = kx is a solution of the Cauchy functional equation f(x + y) = f(x) + f(y)

(ii) f(x) = cx + a is the solution of the Jensen functional equation $f(\frac{x+y}{2}) = \frac{f(x)+f(y)}{2}$

Definition 2.3. [12] A functional equation F is stable if any function f satisfying the equation F approximately is near to exact solution of F.

Definition 2.4. [3], [16]. If \mathbb{F} is any field then a valuation (of rank 1) is a map $|.|: \mathbb{F} \to \mathbb{R}$, satisfying the following axioms:

$$\begin{array}{l} (i)|x| \geq 0 \\ (ii)|x| = 0, \quad when \quad x = 0 \\ (iii)|xy| = |x||y| \\ (iv)|x+y| \leq |x|+|y| \end{array}$$

for all $x, y \in \mathbb{F}$.

The valuation is said to be non-Archimedean, if the following stronger form of inequality (iv) holds, namely

$$|x + y| \le max\{|x|, |y|\}.$$

Definition 2.5. [16] A sequence $\{x_n\}$ in \mathbb{K} is called **Lemma 3.1.** If a mapping \mathfrak{f} from \mathcal{X}_1 to \mathcal{X}_2 satisfies (1) and a Cauchy sequence with respect to a non-Archimedean valuation |.|, if and only if

 $|x_{n+1} - x_n| \to 0$, as $n \to \infty$.

Definition 2.6. [3] If every Cauchy sequence of K has a limit in \mathbb{K} , then \mathbb{K} is said to be complete.

Example 2.3. [16] The field \mathbb{Q}_p of *p*-adic number is the completion of \mathbb{Q} with respect to $|.|_p$.

Definition 2.7. [16] A complete normed linear space is called a Banach space.

Definition 2.8. [3], [16] Let X be a vector space over a field \mathbb{K} with a non-trivial non-Archimedean valuation |.|. Then, a function $\|.\|: X \to \mathbb{R}$ is called a non-Archimedean norm if it satisfies the following conditions:

(i)
$$||x|| \ge 0$$
 and $||x|| = 0$ iff $x = 0$ for all $x \in X$
(ii) $||\alpha x|| = |\alpha| ||x||$ for all $x \in X$ and $\alpha \in \mathbb{K}$
(iii) $||x + y|| \le \max\{||x||, ||y||\}$ for all $x, y \in X$

and the space $(X, \|.\|)$ is called a non-Archimedean normed space.

The most important examples of non-Archimedean spaces are p-adic numbers. A key property of p-adic numbers is that they do not satisfy the Archimedean axiom: for x, y > 0, there exists $\eta \in \mathcal{N}$ such that $x < \eta y$.

Example 2.4. [3] Let p be a positive prime number. For every non-zero rational number x there exists a unique integer α such that

$$x = p^{\alpha} \left(\frac{a}{b}\right)$$

with some integer a and b not divisible by p, define p-adic absolute value

$$|x|_p = p^{-\alpha}$$

Example 2.5. [3] Take $x = \frac{162}{13}$. Suppose we want to find its 3-adic absolute value (hence p = 3). Expressed in the *p*-adic form, we obtain

$$x = 81.\frac{2}{13} = 3^4.\frac{2}{13}$$

which mean $|x|_3 = \frac{1}{3^4}$.

13-adic absolute value for x. It will simply be $|x|_{13} = 13$ because

$$x = 13^{-1}.162$$
$$|x|_{13} = \frac{1}{13^{-1}} = 13.$$

III. MAIN RESULTS

Throughout this paper, it is assumed that \mathcal{G} is an additive group, \mathcal{X} is a complete NAN space and \mathcal{X}_1 , \mathcal{X}_2 are vector spaces. We start this section with the following lemmas.

f(0) = 0 then f is a cubic mapping.

Proof: Putting y = 0 in (1), we get

$$\mathfrak{f}\left(\frac{3x}{2}\right) - 11\mathfrak{f}\left(\frac{x}{2}\right) - 2\mathfrak{f}(x) = 0 \qquad \text{for all } x \in \mathcal{G}.$$
(3)

$$\frac{1}{8}\mathfrak{f}(3x) - \frac{11}{8}\mathfrak{f}(x) - 2\mathfrak{f}(x) = 0 \qquad \text{for all } x \in \mathcal{G}.$$
 (4)

$$\mathfrak{f}(3x) - 27\mathfrak{f}(x) = 0 \qquad \qquad \text{for all } x \in \mathcal{G}.$$
 (5)

This means that f is a cubic mapping.

Lemma 3.2. If a function f from \mathcal{X}_1 to \mathcal{X}_2 satisfies (2) and f(0) = 0 then f is a quartic mapping.

Proof: Putting y = 0 in (2), we get

$$\mathfrak{f}\left(\frac{3x}{2}\right) - 17\mathfrak{f}\left(\frac{x}{2}\right) - 4\mathfrak{f}(x) = 0 \qquad \text{for all } x \in \mathcal{G}.$$
(6)

$$\frac{1}{16}\mathfrak{f}(3x) - \frac{17}{16}\mathfrak{f}(x) - 4\mathfrak{f}(x) = 0 \qquad \text{for all } x \in \mathcal{G}.$$
(7)

$$\mathfrak{f}(3x) - 81\mathfrak{f}(x) = 0 \qquad \qquad \text{for all } x \in \mathcal{G}.$$
 (8)

This means that f is a quartic mapping.

Theorem 3.1. Fix $\ell = \pm 1$. Suppose that ξ from $\mathcal{G}^2 \to [0, \infty)$ is a mapping such that

$$\lim_{\eta \to \infty} \frac{1}{|27|^{\eta \ell}} \xi \left(3^{\eta \ell} x, 3^{\eta \ell} y \right) = 0 \qquad \text{for all } x, y \in \mathcal{G}.$$
(9)

Also, the limit

$$\Phi(x) = \lim_{\eta \to \infty} \max\left\{ \frac{|8|}{|27|} \frac{1}{|27|^{\kappa\ell - \left(\frac{1-\ell}{2}\right)}} \xi\left(3^{\kappa\ell - \left(\frac{1-\ell}{2}\right)}x, 0\right) \\ : 0 \le \kappa < \eta \right\} \text{ for all } x \in \mathcal{G},$$
(10)

exists and $f: \mathcal{G} \to \mathcal{X}$ is a cubic function satisfying

$$\|\mathcal{D}_{3}\mathfrak{f}(x,y))\| \leq \xi(x,y) \qquad \text{for all } x,y \in \mathcal{G}.$$
(11)

Then for all $x \in \mathcal{G}$,

$$\mathcal{C}_3(x) = \lim_{\eta \to \infty} \frac{1}{27^{\eta}} \mathfrak{f}(3^{\eta} x)$$

exists such that

$$\left\|\mathfrak{f}(x) - \mathcal{C}_3(x)\right\| \le \Phi(x) \quad \text{for all } x \in \mathcal{G}.$$
 (12)

Moreover, if

$$\lim_{j \to \infty} \lim_{\eta \to \infty} \max\left\{ \frac{1}{|27|^{\kappa \ell}} \xi\left(3^{\kappa \ell} x, 0\right) : j \le \kappa < \eta + j \right\} = 0,$$
(13)

then C_3 is a unique cubic mapping satisfying (12).

Proof: Case(i). Let us prove the theorem for $\ell = 1$. It follows by replacing y = 0 in (11), we obtain

$$\left\|\mathfrak{f}(3x) - 27\mathfrak{f}(x)\right\| \le |8|\xi(x,0) \quad \text{for all } x \in \mathcal{G}.$$
 (14)

Replacing x by $3^{\eta}x$ in (14), we get

$$\left\| \mathfrak{f}\frac{(3^{\eta+1}x)}{27^{\eta+1}} - \mathfrak{f}\frac{(3^{\eta}x)}{27^{\eta}} \right\| \le \frac{|8|}{|27|^{\eta+1}} \xi(3^{\eta}x,0) \text{ for all } x \in \mathcal{G}.$$
(15)

Thus, it follows from (9) and (15) that the sequence $\left\{\frac{\mathfrak{f}(3^{\eta}x)}{27^{\eta}}\right\}$ is Cauchy sequence. Since \mathcal{X} is complete. Therefore $\left\{\frac{\mathfrak{f}(3^{\eta}x)}{27^{\eta}}\right\}$ is convergent.

Let
$$C_3(x) = \lim_{\eta \to \infty} \mathfrak{f}\left(\frac{3^{\eta}x}{27^{\eta}}\right)$$
 for all $x \in \mathcal{G}$. (16)

By induction, one can show that

$$\left\| \mathfrak{f}\frac{(3^{\eta}x)}{27^{\eta}} - \mathfrak{f}(x) \right\| \leq \max\left\{ \frac{|8|}{|27|^{\kappa+1}} \xi(3^{\kappa}x, 0) : \\ 0 \leq \kappa < \eta \right\},$$
(17)

by taking the limit $\eta \to \infty$ in (17) and using (10) one obtain (12).

By (9) and (11), we get

$$\begin{aligned} \|\mathcal{D}_{3}\mathfrak{f}(x,y)\| &= \lim_{\eta \to \infty} \left\| \mathcal{D}_{3}\mathfrak{f}\left(\frac{3^{\eta}x}{27^{\eta}},\frac{3^{\eta}y}{27^{\eta}}\right) \right\| \\ &= \lim_{\eta \to \infty} \frac{1}{|27|^{\eta}} \left\| \mathcal{D}_{3}\mathfrak{f}(3^{\eta}x,3^{\eta}y) \right\| \\ &\leq \lim_{\eta \to \infty} \frac{1}{|27|^{\eta}} \,\,\xi(3^{\eta}x,3^{\eta}y) = 0 \quad \text{for all } x, y \in \mathcal{G} \end{aligned}$$

Therefore $C_3(x)$ is a cubic mapping.

To prove uniqueness, let C'_3 be another mapping satisfying (12) we obtain

Therefore $C_3(x) = C'_3(x)$. This completes the proof. **Case (ii)**. Let us prove the theorem for $\ell = -1$. It follows by replacing y = 0 in (11), we obtain

$$\left\| \mathfrak{f}(3x) - 27\mathfrak{f}(x) \right\| \le |8|\xi(x,0) \quad \text{for all } x \in \mathcal{G}.$$
 (18)

Replacing x by $\frac{x}{3^{n+1}}$ in (18), we get

$$\left\| 27^{\eta+1} \mathfrak{f}\left(\frac{x}{3^{\eta+1}}\right) - 27^{\eta} \mathfrak{f}\left(\frac{x}{3^{\eta}}\right) \right\| \leq |8| |27|^{\eta} \xi\left(\frac{x}{3^{\eta+1}}, 0\right)$$
 for all $x \in \mathcal{G}$. (19)

Thus, it follows from (9) and (19) that the sequence $\left\{27^{\eta}\mathfrak{f}\left(\frac{x}{3^{\eta}}\right)\right\}$ is Cauchy sequence. Since \mathcal{X} is complete. Therefore $\left\{27^{\eta}\mathfrak{f}\left(\frac{x}{3^{\eta}}\right)\right\}$ is convergent.

Let
$$C_3(x) = \lim_{\eta \to \infty} 27^{\eta} \mathfrak{f}\left(\frac{x}{3^{\eta}}\right)$$
 for all $x \in \mathcal{G}$. (20)

By induction, one can show that

$$\left\| 27^{\eta} \mathfrak{f}\left(\frac{x}{3^{\eta}}\right) - \mathfrak{f}(x) \right\| \le \max\left\{ |8| |27|^{\eta} \xi\left(\frac{x}{3^{\eta+1}}, 0\right) : \\ 0 \le \kappa < \eta \right\}, \qquad (21)$$

by taking the limit $\eta \to \infty$ in (21) and using (10) one obtain (12).

By (9) and (11), we get

$$\begin{split} \|\mathcal{D}_{3}\mathfrak{f}(x,y)\| &= \lim_{\eta \to \infty} \left\| \mathcal{D}_{3}\mathfrak{f}\left(27^{\eta}\frac{x}{3^{\eta}},27^{\eta}\frac{y}{3^{\eta}}\right) \right\| \\ &= \lim_{\eta \to \infty} |27|^{\eta} \left\| \mathcal{D}_{3}\mathfrak{f}\left(\frac{x}{3^{\eta}},\frac{y}{3^{\eta}}\right) \right\| \\ &\leq \lim_{\eta \to \infty} |27|^{\eta} \,\,\xi\left(\frac{x}{3^{\eta}},\frac{y}{3^{\eta}}\right) = 0 \quad \text{for all } x,y \in \mathcal{G}. \end{split}$$

Therefore $C_3(x)$ is a cubic mapping. To prove uniqueness, let C'_3 be another mapping satisfying (12) we obtain

$$\begin{aligned} \left\| \mathcal{C}_{3}(x) - \mathcal{C}_{3}'(x) \right\| \\ &= \lim_{\eta \to \infty} |27|^{\eta} \left\| \mathcal{C}_{3}\left(\frac{x}{3^{\eta}}\right) - \mathcal{C}_{3}'\left(\frac{x}{3^{\eta}}\right) \right\| \\ &\leq \lim_{\eta \to \infty} |27|^{\eta} \max\left\{ \left\| \mathcal{C}_{3}\left(\frac{x}{3^{\eta}}\right) - \mathfrak{f}\left(\frac{x}{3^{\eta}}\right) \right\|, \\ & \left\| \mathfrak{f}\left(\frac{x}{3^{\eta}}\right) - \mathcal{C}_{3}'\left(\frac{x}{3^{\eta}}\right) \right\| \right\} \\ &\leq \lim_{j \to \infty} \lim_{\eta \to \infty} \max\left\{ |27|^{\kappa} \xi\left(\frac{x}{3^{\kappa}}, 0\right) : j \leq \kappa < \eta + j \right\} \\ &= 0 \qquad \text{for all } x \in \mathcal{G}. \end{aligned}$$

Therefore $C_3(x) = C'_3(x)$. This completes the proof.

Corollary 3.1. Let $\delta \ge 0$ and prime p > 3. Define a function \mathfrak{f} from \mathcal{G} to \mathcal{X} and if \mathfrak{f} is a cubic mapping that fulfills the inequality

$$\left|\mathcal{D}_{3}\mathfrak{f}(x,y)\right|\leq\delta$$
 for all $x,y\in\mathcal{G}.$

Then, there exists a unique cubic function $C_3(x) : \mathcal{G} \to \mathcal{X}$ such that

$$\|\mathfrak{f}(x) - \mathcal{C}_3(x)\| \le \frac{|8|}{|27|} \delta$$

Proof:

By Theorem 3.1, if
$$\xi(x, y) = \delta$$
 then
 $\|f(x) - C_3(x)\| \le \Phi(x)$,
where $\Phi(x) = \lim_{\eta \to \infty} \max\left\{\frac{|8|}{|27|^{\kappa+1}} \xi(3^{\kappa}x, 0) : 0 \le \kappa < \eta\right\}$.
Therefore

Therefore,

$$\begin{aligned} \|\mathfrak{f}(x) - \mathcal{C}_3(x)\| &\leq \lim_{\eta \to \infty} \max\left\{\frac{|8|}{|27|^{\kappa+1}}\delta : 0 \leq \kappa < \eta\right\} \\ &\leq \frac{|8|}{|27|}\delta. \end{aligned}$$

Corollary 3.2. Let $r, s, \delta > 0$ and r + s > 3. Define a function $\mathfrak f$ from $\mathcal G$ to $\mathcal X$ and if $\mathfrak f$ is a cubic mapping satisfying the inequality

$$\begin{aligned} \left| \mathcal{D}_{3} \mathfrak{f}(x, y) \right\| &\leq \delta \left(\|x\|^{r+s} + \|y\|^{r+s} + \|x\|^{r} \|y\|^{s} \right) \\ \text{for all } x, y \in \mathcal{G}. \end{aligned}$$

Then, there is a unique cubic function $C_3(x): \mathcal{G} \to \mathcal{X}$ such that

$$\|\mathfrak{f}(x) - \mathcal{C}_3(x)\| \le \frac{\delta \|8\| \|x\|^{r+s}}{|27|}$$

Proof: Let
$$\xi(x, y) = \delta(||x||^{r+s} + ||y||^{r+s} + ||x||^r ||y||^s)$$

From Theorem (3.1),

$$\left\|\mathfrak{f}(x)-\mathcal{C}_3(x)\right\|\leq \Phi(x) \qquad \text{for all } x\in\mathcal{G}.$$

where,

$$\Phi(x) = \lim_{\eta \to \infty} \max\left\{ \frac{|8|}{|27|} \frac{1}{|27|^{\kappa\ell - \left(\frac{1-\ell}{2}\right)}} \xi\left(3^{\kappa\ell - \left(\frac{1-\ell}{2}\right)}x, 0\right) \\ : 0 \le \kappa < \eta \right\} \text{ for all } x \in \mathcal{G}.$$

Taking $\ell = 1$, we obtatin

$$\Phi(x) = \lim_{\eta \to \infty} \max\left\{ \frac{|8|}{|27|^{\kappa+1}} \xi \left(3^{\kappa} x, 0 \right) \\ : 0 \le \kappa < \eta \right\} \text{ for all } x \in \mathcal{G}.$$
$$= \lim_{\eta \to \infty} \max\left\{ \frac{|8|}{|27|^{\kappa+1}} \delta |3|^{\kappa(r+s)} ||x||^{r+s} \\ : 0 \le \kappa < \eta \right\}$$
$$= \frac{\delta |8| ||x||^{r+s}}{|27|}$$

Therefore.

$$|\mathfrak{f}(x) - \mathcal{C}_3(x)|| \le \frac{\delta |8| ||x||^{r+s}}{|27|}$$

For the case r + s = 3, we have the following counter example.

Example 3.1. Let p > 3 be a prime number and $\mathbb{Q}_p \to \mathbb{Q}_p$ be defined by $\mathfrak{f}(x) = x^3 + 1$. Since $|3^{\eta}|_p = 1$ for all $\eta \in \mathcal{N}$. Then for $\delta > 0$,

$$\begin{aligned} \|\mathcal{D}_{3}\mathfrak{f}(x,y)\| &\leq 1 \leq \delta(\|x\|^{r+s} + \|y\|^{r+s} + \|x\|^{r}\|y\|^{s}) \\ &\text{for all } x, y \in \mathcal{G} \end{aligned}$$

and

$$\left\| \mathfrak{f}\frac{(3^{\eta+1}x)}{27^{\eta+1}} - \mathfrak{f}\frac{(3^{\eta}x)}{27^{\eta}} \right\| \not\to 0 \quad \text{ as } \eta \to \infty.$$

Hence $\left\{\frac{\mathfrak{f}(3^n x)}{27^n}\right\}$ is not a Cauchy sequence.

Theorem 3.2. Fix $\ell = \pm 1$. Suppose that ξ from $\mathcal{G}^2 \to [0, \infty)$ is a mapping such that

$$\lim_{\eta \to \infty} \frac{1}{|81|^{\eta\ell}} \xi \left(3^{\eta\ell} x, 3^{\eta\ell} y \right) = 0 \qquad \text{for all } x, y \in \mathcal{G}.$$
(22)

Also, the limit

$$\Phi(x) = \lim_{\eta \to \infty} \max\left\{ \frac{|16|}{|81|} \frac{1}{|81|^{\kappa \ell - \left(\frac{1-\ell}{2}\right)}} \xi\left(3^{\kappa \ell - \left(\frac{1-\ell}{2}\right)} x, 0\right) : 0 \le \kappa < \eta \right\} \text{ for all } x \in \mathcal{G},$$
(23)

exists and $f: \mathcal{G} \to \mathcal{X}$ is an even mapping satisfying

$$\|\mathcal{D}_4\mathfrak{f}(x,y)\| \le \xi(x,y) \qquad \text{for all } x,y \in \mathcal{G}.$$
(24)

Then for all $x \in \mathcal{G}$,

$$\mathcal{Q}_4(x) = \lim_{\eta \to \infty} \mathfrak{f}\left(\frac{3^\eta x}{81^\eta}\right)$$

exists such that

$$\left\|\mathfrak{f}(x) - \mathcal{Q}_4(x)\right\| \le \Phi(x) \text{ for all } x \in \mathcal{G}.$$
 (25)

Moreover, if

$$\lim_{j \to \infty} \lim_{\eta \to \infty} \max\left\{ \frac{1}{|81|^{\kappa \ell}} \xi\left(3^{\kappa \ell} x, 0\right) : j \le \kappa < \eta + j \right\} = 0,$$
(26)

then Q_4 is unique quartic mapping Satisfying (25).

Proof: Case (i). Let us prove the theorem for $\ell = 1$. It follows by replacing y = 0 in (24), we obtain

$$\left\| \mathfrak{f}(3x) - 81\mathfrak{f}(x) \right\| \le |16|\xi(x,0) \quad \text{for all } x \in \mathcal{G}.$$
 (27)

Replacing x by $3^{\eta}x$ in (27), we get

$$\left\| \mathfrak{f}\frac{(3^{\eta+1}x)}{81^{\eta+1}} - \mathfrak{f}\frac{(3^{\eta}x)}{81^{\eta}} \right\| \le \frac{|16|}{|81|^{\eta+1}} \xi(3^{\eta}x,0) \text{ for all } x \in \mathcal{G}.$$
(28)

Thus, it follows from (22) and (28) that the sequence $\left\{\frac{\mathfrak{f}(3^{\eta}x)}{81^{\eta}}\right\}$ is Cauchy sequence. Since \mathcal{X} is complete. Therefore $\left\{\frac{\mathfrak{f}(3^{\eta}x)}{81^{\eta}}\right\}$ is convergent.

Let
$$\mathcal{Q}_4(x) = \lim_{\eta \to \infty} \mathfrak{f}\left(\frac{3^{\eta}x}{81^{\eta}}\right)$$
 for all $x \in \mathcal{G}$. (29)

By induction, one can show that

$$\left\| \mathfrak{f}\frac{(3^{\eta}x)}{81^{\eta}} - \mathfrak{f}(x) \right\| \le \max\left\{ \frac{|16|}{|81|^{\kappa+1}} \xi(3^{\kappa}x,0) : 0 \le \kappa < \eta \right\}$$
(30)

by taking the limit $\eta \to \infty$ in (30) and using (23) one obtain (25).

By (22) and (24) we get

$$\begin{aligned} \|\mathcal{D}_{4}\mathfrak{f}(x,y)\| &= \lim_{\eta \to \infty} \left\| \mathcal{D}_{4}\mathfrak{f}\left(\frac{3^{\eta}x}{81^{\eta}},\frac{3^{\eta}y}{81^{\eta}}\right) \right\| \\ &= \lim_{\eta \to \infty} \frac{1}{|81|^{\eta}} \left\| \mathcal{D}_{4}\mathfrak{f}(3^{\eta}x,3^{\eta}y) \right\| \\ &\leq \lim_{\eta \to \infty} \frac{1}{|81|^{\eta}} \xi(3^{\eta}x,3^{\eta}y) \\ &= 0 \qquad \text{for all } x, y \in \mathcal{G}. \end{aligned}$$

Therefore $\mathcal{Q}_4(x)$ is a quartic mapping.

To prove uniqueness, let Q'_4 be another mapping satisfying (25) we obtain

$$\begin{split} \left\| \mathcal{Q}_4(x) - \mathcal{Q}'_4(x) \right\| \\ &= \lim_{\eta \to \infty} \frac{1}{|81|^{\eta}} \left\| \mathcal{Q}_4(3^{\eta}x) - \mathcal{Q}'_4(3^{\eta}x) \right\| \\ &\leq \lim_{\eta \to \infty} \frac{1}{|81|^{\eta}} \max \left\{ \left\| \mathcal{Q}_4(x) - \mathfrak{f}(3^{\eta}x) \right\|, \\ & \left\| \mathfrak{f}(3^{\eta}x) - \mathcal{Q}'_4(x) \right\| \right\} \\ &\leq \lim_{j \to \infty} \lim_{\eta \to \infty} \max \left\{ \frac{1}{|81|^{\kappa}} \xi(3^{\kappa}x, 0) : j \leq \kappa < \eta + j \right\} \\ &= 0 \quad \text{for all } x \in \mathcal{G}. \end{split}$$

Therefore $\mathcal{Q}_4(x) = \mathcal{Q}_4'(x)$. This completes the proof.

Case (ii). Let us prove the theorem for $\ell = -1$. It follows by replacing y = 0 in (24), we obtain

$$\left\| \mathfrak{f}(3x) - 81\mathfrak{f}(x) \right\| \le |16|\xi(x,0) \quad \text{for all } x \in \mathcal{G} \quad (31)$$

Replacing x by $\frac{x}{3^{\eta+1}}$ in (31), we get

$$\left\| 81^{\eta+1} \mathfrak{f}\left(\frac{x}{3^{\eta+1}}\right) - 81^{\eta} \mathfrak{f}\left(\frac{x}{3^{\eta}}\right) \right\| \leq |16| |81|^{\eta} \xi\left(\frac{x}{3^{\eta+1}}, 0\right)$$
 for all $x \in \mathcal{G}.$ (32)

Thus, it follows from (22) and (32) that the sequence $\left\{27^{\eta}\mathfrak{f}\left(\frac{x}{3^{\eta}}\right)\right\}$ is Cauchy sequence. Since \mathcal{X} is complete. Therefore $\left\{27^{\eta}\mathfrak{f}\left(\frac{x}{3^{\eta}}\right)\right\}$ is convergent.

Let
$$Q_4(x) = \lim_{\eta \to \infty} 81^{\eta} \mathfrak{f}\left(\frac{x}{3^{\eta}}\right)$$
 for all $x \in \mathcal{G}$. (33)

By induction, one can show that

$$\left\| 81^{\eta} \mathfrak{f}\left(\frac{x}{3^{\eta}}\right) - \mathfrak{f}(x) \right\| \le \max\left\{ |16| |81|^{\eta} \xi\left(\frac{x}{3^{\eta+1}}, 0\right) : \\ 0 \le \kappa < \eta \right\}$$
(34)

by taking the limit $\eta \to \infty$ in (30) and using (23) one obtain (25).

$$\begin{aligned} \|\mathcal{D}_4\mathfrak{f}(x,y)\| &= \lim_{\eta \to \infty} \left\| \mathcal{D}_4\mathfrak{f}\left(81^\eta \frac{x}{3^\eta}, 81^\eta \frac{y}{3^\eta}\right) \right\| \\ &= \lim_{\eta \to \infty} |81|^\eta \left\| \mathcal{D}_4\mathfrak{f}\left(\frac{x}{3^\eta}, \frac{y}{3^\eta}\right) \right\| \\ &\leq \lim_{\eta \to \infty} |81|^\eta \,\,\xi\left(\frac{x}{3^\eta}, \frac{y}{3^\eta}\right) = 0 \quad \text{for all } x, y \in \mathcal{G}. \end{aligned}$$

Therefore $\mathcal{Q}_4(x)$ is a quartic mapping.

To prove uniqueness, let \mathcal{Q}'_4 be another mapping satisfying (25) we obtain

$$\begin{aligned} \left| \mathcal{Q}_{4}(x) - \mathcal{Q}_{4}'(x) \right| \\ &= \lim_{\eta \to \infty} |81|^{\eta} \left\| \mathcal{Q}_{4}\left(\frac{x}{3^{\eta}}\right) - \mathcal{Q}_{4}'\left(\frac{x}{3^{\eta}}\right) \right\| \\ &\leq \lim_{\eta \to \infty} |81|^{\eta} \max \left\{ \left\| \mathcal{Q}_{4}\left(\frac{x}{3^{\eta}}\right) - \mathfrak{f}\left(\frac{x}{3^{\eta}}\right) \right\|, \\ & \left\| \mathfrak{f}\left(\frac{x}{3^{\eta}}\right) - \mathcal{Q}_{4}'\left(\frac{x}{3^{\eta}}\right) \right\| \right\} \\ &\leq \lim_{j \to \infty} \lim_{\eta \to \infty} \max \left\{ |81|^{\kappa} \xi\left(\frac{x}{3^{\kappa}}, 0\right) : j \leq \kappa < \eta + j \right\} \end{aligned}$$

$$= 0 \text{ for all } x \in \mathcal{G}$$

Therefore $Q_4(x) = Q'_4(x)$. This completes the proof. **Corollary 3.3.** Let $\delta \ge 0$ and prime p > 3. Define a function \mathfrak{f} from \mathcal{G} to \mathcal{X} and if \mathfrak{f} is a quartic mapping that fulfills the inequality

$$\left\|\mathcal{D}_4\mathfrak{f}(x,y)\right\| \leq \delta \quad \text{ for all } x,y \in \mathcal{G}.$$

Then, there exists a unique quartic function $\mathcal{Q}_4(x) : \mathcal{G} \to \mathcal{X}$ such that

$$\left\|\mathfrak{f}(x) - \mathcal{Q}_4(x)\right\| \le \frac{|16|}{|81|}\delta$$

Proof: By Theorem 3.2, if $\xi(x, y) = \delta$ then

$$\begin{aligned} \|\mathfrak{f}(x) - \mathcal{Q}_4(x)\| &\leq \Phi(x), \\ \text{where } \Phi(x) &= \lim_{\eta \to \infty} \max \Big\{ \frac{|16|}{|81|^{\kappa+1}} \,\, \xi(3^\kappa x, 0) : \\ &\quad 0 \leq \kappa < \eta \Big\}. \end{aligned}$$

Therefore,

$$\begin{split} \left\| \mathfrak{f}(x) - \mathcal{Q}_4(x) \right\| &\leq \lim_{\eta \to \infty} \max \left\{ \frac{|16|}{|81|^{\kappa+1}} \delta : 0 \leq \kappa < \eta \right\}. \\ &\leq \frac{|16|}{|81|} \delta. \end{split}$$

Corollary 3.4. Let $r, s, \delta > 0$ and r + s > 4. Define a function f from \mathcal{G} to \mathcal{X} and if f is a quartic mapping satisfying the inequality

$$\left\| \mathcal{D}_4 \mathfrak{f}(x, y) \right\| \le \delta \left(\|x\|^{r+s} + \|y\|^{r+s} + \|x\|^r \|y\|^s \right)$$

for all $x, y \in \mathcal{G}$. Then, there is a unique quartic function $\mathcal{Q}_4(x): \mathcal{G} \to \mathcal{X}$ such that

$$\|\mathfrak{f}(x) - \mathcal{Q}_4(x)\| \le \frac{\delta |16| \|x\|^{r+s}}{|81|}.$$

Proof: Let
$$\xi(x, y) = \delta(||x||^{r+s} + ||y||^{r+s} + ||x||^r ||y||^s)$$
.

From Theorem (3.2),

$$\left\| \mathfrak{f}(x) - \mathcal{Q}_4(x) \right\| \le \Phi(x) \text{ for all } x \in \mathcal{G}.$$

where,

$$\Phi(x) = \lim_{\eta \to \infty} \max\left\{ \frac{|16|}{|81|} \frac{1}{|81|^{\kappa\ell - \left(\frac{1-\ell}{2}\right)}} \xi\left(3^{\kappa\ell - \left(\frac{1-\ell}{2}\right)}x, 0\right) \\ : 0 \le \kappa < \eta \right\} \text{ for all } x \in \mathcal{G}.$$

$$\Phi(x) = \lim_{\eta \to \infty} \max\left\{ \frac{|16|}{|81|^{\kappa+1}} \xi(3^{\kappa}x, 0) \right\}$$

: $0 \le \kappa < \eta$ for all $x \in \mathcal{G}$.

Taking $\ell = 1$, we obtain

$$= \lim_{\eta \to \infty} \max \left\{ \frac{|16|}{|81|^{\kappa+1}} \delta |3|^{\kappa(r+s)} ||x||^{r+s} \\ : 0 \le \kappa < \eta \right\}.$$
$$= \frac{\delta |16| ||x||^{r+s}}{|81|}.$$

Therefore,

$$\|\mathfrak{f}(x) - \mathcal{Q}_4(x)\| \le \frac{\delta |16| \|x\|^{r+s}}{|81|}.$$

For the case r + s = 4, we have the following counter example.

Example 3.2. Let p > 3 be a prime number and $\mathbb{Q}_p \to \mathbb{Q}_p$ be defined by $\mathfrak{f}(x) = x^4 + 1$. Since $|3^{\eta}|_p = 1$ for all $\eta \in \mathcal{N}$. Then for $\delta > 0$,

$$\begin{aligned} \|\mathcal{D}_{3}\mathfrak{f}(x,y)\| &\leq 1 \leq \delta(\|x\|^{r+s} + \|y\|^{r+s} + \|x\|^{r}\|y\|^{s}) \\ & \text{for all } x, y \in \mathcal{G} \end{aligned}$$

and

$$\left\|\mathfrak{f}\frac{(3^{\eta+1}x)}{81^{\eta+1}}-\mathfrak{f}\frac{(3^{\eta}x)}{81^{\eta}}\right\| \not\rightarrow 0 \quad \text{ as } \eta \rightarrow \infty.$$

Hence $\left\{\frac{\mathfrak{f}(3^n x)}{81^{\eta}}\right\}$ is not a Cauchy sequence.

IV. CONCLUSION

Many authors discussed the HUS of Jensen type functional equation in NAN space in recent years. In this current article, we have proved a new cubic and quartic Jensen type Cauchy functional equations (1) and (2) in NAN space.

REFERENCES

- T. Aoki, "On the stability of the linear transformation in Banach spaces," Journal of Mathematical Society of Japan, Vol. 2, pp.64–66, 1951.
- [2] M. Almahalebi, "Non-Archimedean hyperstability of a Cauchy- Jensen type functional equation," *Journal of classical analysis*, vol.11, no.2, pp.159–170, 2017.
- [3] G. Bachman, "Introduction to p-adic numbers and valuation theory," *Academic Press*, New York, 1964.
- [4] R. Balaanandhan, J. Uma, "Fixed Point Results in Partially Ordered Ultrametric Space via p-adic Distance," *IAENG International Journal* of Applied Mathematics, vol. 53, no.3, pp.772–778, 2023.
- [5] Z. Gajda, "On stability of additive mappings," International Journal of Mathematics and Mathematical Sciences, 14, pp.431–434, 1991.
- [6] D. H. Hyers, G. Isac, and T. M. Rassias, "Stability of functional equations in several variables," *Birkhäuser Boston*, 1998.
- [7] K. W. Jun, H. M. Kim, "Stability problem for Jensen-type functional equations of cubic mappings," *Acta Mathematica Sinica*, 22(6), pp.1781–1788, 2006.
- [8] H. A. Kenary, Y. J. Cho, "Stability of mixed additive–quadratic Jensen type functional equation in various spaces," *Computers & Mathematics* with Applications, vol.61, no.9, pp.2704–2724, 2011.
- [9] M. S. Moslehian, Th. M. Rassias, "Stability of functional equations in non-Archimedean spaces," *Applicable Analysis and Discrete Mathematics*, pp.325–334, 2007.
- [10] A. Ramachandran, S. Sangeetha, "On the Generalized Quadratic-Quartic Cauchy Functional Equation and its Stability over Non-Archimedean Normed Space," *Mathematics and Statistics*, Vol.10, no.6, pp.1210–1217, 2022.
- [11] Th. M. Rassias, "On the Stability of Functional Equations in Banach Spaces," *Journal of Mathematical Analysis and Applications*, 251, pp.264–284, 2000.
- [12] J. M. Rassias, E. Thandapani, K. Ravi, S. Kumar, "Solutions and Stability Results," *Series on Concrete and Applicable Mathematics*, *World Scientific Publishing*, 21, Singapore.
- [13] R. Sakthipriya, K. Suja, "On Lambda-Ideal Statistically Convergent in 2-Normed Spaces over Non-Archimedean Fields," *IAENG International Journal of Applied Mathematics*, vol. 53, no.3, pp.1001–1006, 2023.
- [14] T. Trif, "Hyers–Ulam–Rassias stability of a Jensen type functional equation," *Journal of Mathematical Analysis and Applications* 250, pp.579–588, 2000.
 [15] S. M. Ulam, "Problems in Modern Mathematics," chapter 6, *JohnWiley*
- [15] S. M. Ulam, "Problems in Modern Mathematics," chapter 6, *JohnWiley & Sons*, New York, NY, USA, 1940.
- [16] A. C. M. Van rooij, "Non Archimedean functional analysis," M. Dekkar, New York, 1978.
- [17] X. Wang, L. Chang, & G. Liu, "Orthogonal stability of mixed additivequadratic Jensen type functional equation in multi-Banach spaces," *Advances in Pure Mathematics*, vol.5,no.6, pp.325–332, 2015.
- [18] X. Zhao, B. Sun, W. Ge, "Hyers-Ulam Stability of a Class Fractional Boundary Value Problems with Right and Left Fractional Derivatives," *IAENG International Journal of Applied Mathematics*, vol. 46, no.4, pp.405–411, 2016.