Stability of a Jensen Type Cubic and Quartic Functional Equations over Non-Archimedean Normed Space

A. Ramachandran and S. Sangeetha*

$$
\begin{aligned}
& \text { Abstract-In this paper, we introduce the cubic and quartic } \\
& \text { Jensen type functional equations: } \\
& \mathfrak{f}\left(\frac{3 x+y}{2}\right)+\mathfrak{f}\left(\frac{x+3 y}{2}\right)=12 \mathfrak{f}\left(\frac{x+y}{2}\right)+2[\mathfrak{f}(x)+\mathfrak{f}(y)] \\
& \mathfrak{f}\left(\frac{3 x+y}{2}\right)+\mathfrak{f}\left(\frac{x+3 y}{2}\right)=24 \mathfrak{f}\left(\frac{x+y}{2}\right)-6 \mathfrak{f}\left(\frac{x-y}{2}\right)+4[\mathfrak{f}(x)+\mathfrak{f}(y)]
\end{aligned}
$$

and discussed the Hyers-Ulam stability over non-Archimedean normed space.
Index Terms-Hyers-Ulam Stability (HUS), Jensen functional equation, Cubic function, Quartic function, Non-Archimedean Normed (NAN) space.

I. Introduction

THE stability problem of functional equations originated from a question of Ulam [15] in 1940, concerning the stability of group homomorphisms. The question was "When is it true that a function which approximately satisfies a functional equation must be close to an exact solution of the equation?".

Hyers [6] gave the positive response to the question of Ulam for Banach spaces. Aoki [1] generalized the Hyers theorem for additive mappings. Hyers theorem was generalized by Rassias [11] by allowing the Cauchy difference to be unbounded. In response to Rassias question regarding $p>1$, Gajada replied for it in [5]. Moslehian and Rassias [9] proved generalized HUS of the Cauchy functional equation and the quadratic functional equation in NAN spaces.

In [8], Kenary and Cho proved the HUS of mixed additive-quadratic Jensen type functional equation in Non-Archimedean normed spaces and random normed spaces. Yang et.al.[17] proved the HUS of mixed additivequadratic Jensen type functional equation in multi-Banach spaces. Also, many authors have been extensively studied the stability problem of functional equations and NonArchimedean spaces (see [2], [4], [7], [10], [13], [18]). The Jensen type additive functional equation was solved by Trif and the HUR (Hyers-Ulam-Rassias) stability was

[^0]A. Ramachandran is a Research Scholar in the Department of Mathematics, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu- 603 203, India. (e-mail:ra5476@ srmist.edu.in).
S. Sangeetha is an Assistant Professor in the Department of Mathematics, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu- 603 203, India. (Corresponding author phone: 9750487406; email: sangeets@ srmist.edu.in).
investigated in [14].
In this paper we introduce a new cubic and quartic functional equation of Jensen type
\[

$$
\begin{align*}
\mathcal{D}_{3} \mathfrak{f}(x, y)= & \mathfrak{f}\left(\frac{3 x+y}{2}\right)+\mathfrak{f}\left(\frac{x+3 y}{2}\right)-12 \mathfrak{f}\left(\frac{x+y}{2}\right) \\
& -2[\mathfrak{f}(x)+\mathfrak{f}(y)] \tag{1}\\
\mathcal{D}_{4} \mathfrak{f}(x, y)= & \mathfrak{f}\left(\frac{3 x+y}{2}\right)+\mathfrak{f}\left(\frac{x+3 y}{2}\right)-24 \mathfrak{f}\left(\frac{x+y}{2}\right) \\
& +6 \mathfrak{f}\left(\frac{x-y}{2}\right)-4[\mathfrak{f}(x)+\mathfrak{f}(y)] \tag{2}
\end{align*}
$$
\]

in NAN space.

II. Preliminaries

Definition 2.1. [12] A functional equation is an equation in which both sides contain a finite number of functions, some are known and some are unknown.

Example 2.1. $\mathfrak{f}(x+y)=\mathfrak{f}(x)+\mathfrak{f}(y)$ is the Cauchy additive functional equation

Definition 2.2. [12] A solution of a functional equation is a function which satisfies the equation.

Example 2.2. (i) $\mathfrak{f}(x)=k x$ is a solution of the Cauchy functional equation $\mathfrak{f}(x+y)=\mathfrak{f}(x)+\mathfrak{f}(y)$
(ii) $\mathfrak{f}(x)=c x+a$ is the solution of the Jensen functional equation $\mathfrak{f}\left(\frac{x+y}{2}\right)=\frac{\mathfrak{f}(x)+\mathfrak{f}(y)}{2}$

Definition 2.3. [12] A functional equation F is stable if any function f satisfying the equation F approximately is near to exact solution of F.

Definition 2.4. [3], [16]. If \mathbb{F} is any field then a valuation (of rank 1) is a map $||:. \mathbb{F} \rightarrow \mathbb{R}$, satisfying the following axioms:

$$
\begin{aligned}
& (i)|x| \geq 0 \\
& \text { (ii)|x|=0, when } \quad x=0 \\
& \text { (iii)|xy|=|x||y|} \\
& \text { (iv)|x+y| } \leq|x|+|y|
\end{aligned}
$$

for all $x, y \in \mathbb{F}$.
The valuation is said to be non-Archimedean, if the following stronger form of inequality (iv) holds, namely

$$
|x+y| \leq \max \{|x|,|y|\}
$$

Definition 2.5. [16] A sequence $\left\{x_{n}\right\}$ in \mathbb{K} is called a Cauchy sequence with respect to a non-Archimedean valuation |.|, if and only if

$$
\left|x_{n+1}-x_{n}\right| \rightarrow 0, \quad \text { as } \quad n \rightarrow \infty .
$$

Definition 2.6. [3] If every Cauchy sequence of \mathbb{K} has a limit in \mathbb{K}, then \mathbb{K} is said to be complete.

Example 2.3. [16] The field \mathbb{Q}_{p} of p-adic number is the completion of \mathbb{Q} with respect to $|\cdot|_{p}$.

Definition 2.7. [16] A complete normed linear space is called a Banach space.

Definition 2.8. [3], [16] Let X be a vector space over a field \mathbb{K} with a non-trivial non-Archimedean valuation $|$.$| . Then,$ a function $\|\|:. X \rightarrow \mathbb{R}$ is called a non-Archimedean norm if it satisfies the following conditions:
(i) $\|x\| \geq 0$ and $\|x\|=0$ iff $x=0$ for all $x \in \mathrm{X}$
(ii) $\|\alpha x\|=|\alpha|\|x\|$ for all $x \in \mathrm{X}$ and $\alpha \in \mathbb{K}$
(iii) $\|x+y\| \leq \max \{\|x\|,\|y\|\}$ for all $x, y \in \mathrm{X}$
and the space $(\mathrm{X},\|\cdot\|)$ is called a non-Archimedean normed space.

The most important examples of non-Archimedean spaces are p-adic numbers. A key property of p-adic numbers is that they do not satisfy the Archimedean axiom: for $x, y>0$, there exists $\eta \in \mathcal{N}$ such that $x<\eta y$.

Example 2.4. [3] Let p be a positive prime number. For every non-zero rational number x there exists a unique integer α such that

$$
x=p^{\alpha}\left(\frac{a}{b}\right)
$$

with some integer a and b not divisible by p, define p-adic absolute value

$$
|x|_{p}=p^{-\alpha}
$$

Example 2.5. [3] Take $x=\frac{162}{13}$. Suppose we want to find its 3 -adic absolute value (hence $p=3$). Expressed in the p-adic form, we obtain

$$
x=81 \cdot \frac{2}{13}=3^{4} \cdot \frac{2}{13}
$$

which mean $|x|_{3}=\frac{1}{3^{4}}$.
13 -adic absolute value for x. It will simply be $|x|_{13}=13$ because

$$
\begin{aligned}
x & =13^{-1} .162 \\
|x|_{13} & =\frac{1}{13^{-1}}=13
\end{aligned}
$$

iII. Main Results

Throughout this paper, it is assumed that \mathcal{G} is an additive group, \mathcal{X} is a complete NAN space and $\mathcal{X}_{1}, \mathcal{X}_{2}$ are vector spaces. We start this section with the following lemmas.

Lemma 3.1. If a mapping \mathfrak{f} from \mathcal{X}_{1} to \mathcal{X}_{2} satisfies (1) and $\mathfrak{f}(0)=0$ then \mathfrak{f} is a cubic mapping.

Proof: Putting $y=0$ in (1), we get
$\mathfrak{f}\left(\frac{3 x}{2}\right)-11 \mathfrak{f}\left(\frac{x}{2}\right)-2 \mathfrak{f}(x)=0 \quad$ for all $x \in \mathcal{G}$.
$\frac{1}{8} \mathfrak{f}(3 x)-\frac{11}{8} \mathfrak{f}(x)-2 \mathfrak{f}(x)=0 \quad$ for all $x \in \mathcal{G}$.
$\mathfrak{f}(3 x)-27 \mathfrak{f}(x)=0$
for all $x \in \mathcal{G}$. (5)
This means that \mathfrak{f} is a cubic mapping.
Lemma 3.2. If a function \mathfrak{f} from \mathcal{X}_{1} to \mathcal{X}_{2} satisfies (2) and $\mathfrak{f}(0)=0$ then \mathfrak{f} is a quartic mapping.

Proof: Putting $y=0$ in (2), we get
$\mathfrak{f}\left(\frac{3 x}{2}\right)-17 \mathfrak{f}\left(\frac{x}{2}\right)-4 \mathfrak{f}(x)=0 \quad$ for all $x \in \mathcal{G}$.
$\frac{1}{16} \mathfrak{f}(3 x)-\frac{17}{16} \mathfrak{f}(x)-4 \mathfrak{f}(x)=0 \quad$ for all $x \in \mathcal{G}$.
$\mathfrak{f}(3 x)-81 \mathfrak{f}(x)=0$
for all $x \in \mathcal{G}$. (8)
This means that \mathfrak{f} is a quartic mapping.
Theorem 3.1. Fix $\ell= \pm 1$. Suppose that ξ from $\mathcal{G}^{2} \rightarrow[0, \infty)$ is a mapping such that

$$
\begin{equation*}
\lim _{\eta \rightarrow \infty} \frac{1}{|27|^{\eta \ell}} \xi\left(3^{\eta \ell} x, 3^{\eta \ell} y\right)=0 \quad \text { for all } x, y \in \mathcal{G} \tag{9}
\end{equation*}
$$

Also, the limit

$$
\begin{array}{r}
\Phi(x)=\lim _{\eta \rightarrow \infty} \max \left\{\frac{|8|}{|27|} \frac{1}{|27|^{\kappa \ell-\left(\frac{1-\ell}{2}\right)}} \xi\left(3^{\kappa \ell-\left(\frac{1-\ell}{2}\right)} x, 0\right)\right. \\
: 0 \leq \kappa<\eta\} \text { for all } x \in \mathcal{G} \tag{10}
\end{array}
$$

exists and $\mathfrak{f}: \mathcal{G} \rightarrow \mathcal{X}$ is a cubic function satisfying

$$
\begin{equation*}
\left.\| \mathcal{D}_{3} \mathfrak{f}(x, y)\right) \| \leq \xi(x, y) \quad \text { for all } x, y \in \mathcal{G} \tag{11}
\end{equation*}
$$

Then for all $x \in \mathcal{G}$,

$$
\mathcal{C}_{3}(x)=\lim _{\eta \rightarrow \infty} \frac{1}{27^{\eta}} \mathfrak{f}\left(3^{\eta} x\right)
$$

exists such that

$$
\begin{equation*}
\left\|\mathfrak{f}(x)-\mathcal{C}_{3}(x)\right\| \leq \Phi(x) \quad \text { for all } x \in \mathcal{G} \tag{12}
\end{equation*}
$$

Moreover, if
$\lim _{\jmath \rightarrow \infty} \lim _{\eta \rightarrow \infty} \max \left\{\frac{1}{|27|^{\kappa \ell}} \xi\left(3^{\kappa \ell} x, 0\right): \jmath \leq \kappa<\eta+\jmath\right\}=0$,
then \mathcal{C}_{3} is a unique cubic mapping satisfying (12).
Proof: Case(i). Let us prove the theorem for $\ell=1$. It follows by replacing $y=0$ in (11), we obtain

$$
\begin{equation*}
\|\mathfrak{f}(3 x)-27 \mathfrak{f}(x)\| \leq|8| \xi(x, 0) \quad \text { for all } x \in \mathcal{G} \tag{14}
\end{equation*}
$$

Replacing x by $3^{\eta} x$ in 14 , we get

$$
\begin{equation*}
\left\|\mathfrak{f} \frac{\left(3^{\eta+1} x\right)}{27^{\eta+1}}-\mathfrak{f} \frac{\left(3^{\eta} x\right)}{27^{\eta}}\right\| \leq \frac{|8|}{|27|^{\eta+1}} \xi\left(3^{\eta} x, 0\right) \text { for all } x \in \mathcal{G} \tag{15}
\end{equation*}
$$

Thus, it follows from $\sqrt{9}$ and 15 that the sequence $\left\{\frac{f\left(3^{\eta} x\right)}{27^{\eta}}\right\}$ is Cauchy sequence. Since \mathcal{X} is complete.
Therefore $\left\{\frac{f\left(3^{\eta} x\right)}{27^{\eta}}\right\}$ is convergent.
Let $\mathcal{C}_{3}(x)=\lim _{\eta \rightarrow \infty} \mathfrak{f}\left(\frac{3^{\eta} x}{27^{\eta}}\right) \quad$ for all $x \in \mathcal{G}$.
By induction, one can show that

$$
\begin{gather*}
\left\|\mathfrak{f} \frac{\left(3^{\eta} x\right)}{27^{\eta}}-\mathfrak{f}(x)\right\| \leq \max \left\{\frac{|8|}{|27|^{\kappa+1}} \xi\left(3^{\kappa} x, 0\right):\right. \\
0 \leq \kappa<\eta\} \tag{17}
\end{gather*}
$$

by taking the limit $\eta \rightarrow \infty$ in 17) and using (10) one obtain (12).

By (9) and (11), we get

$$
\begin{aligned}
\left\|\mathcal{D}_{3} \mathfrak{f}(x, y)\right\| & =\lim _{\eta \rightarrow \infty}\left\|\mathcal{D}_{3} \mathfrak{f}\left(\frac{3^{\eta} x}{27^{\eta}}, \frac{3^{\eta} y}{27^{\eta}}\right)\right\| \\
& =\lim _{\eta \rightarrow \infty} \frac{1}{|27|^{\eta}}\left\|\mathcal{D}_{3} \mathfrak{f}\left(3^{\eta} x, 3^{\eta} y\right)\right\| \\
& \leq \lim _{\eta \rightarrow \infty} \frac{1}{|27|^{\eta}} \xi\left(3^{\eta} x, 3^{\eta} y\right)=0 \text { for all } x, y \in \mathcal{G} .
\end{aligned}
$$

Therefore $\mathcal{C}_{3}(x)$ is a cubic mapping.
To prove uniqueness, let \mathcal{C}_{3}^{\prime} be another mapping satisfying (12) we obtain

$$
\left.\begin{array}{l}
\left\|\mathcal{C}_{3}(x)-\mathcal{C}_{3}^{\prime}(x)\right\| \\
\quad=\lim _{\eta \rightarrow \infty} \frac{1}{|27|^{\eta}}\left\|\mathcal{C}_{3}\left(3^{\eta} x\right)-\mathcal{C}_{3}^{\prime}\left(3^{\eta} x\right)\right\| \\
\leq \lim _{\eta \rightarrow \infty} \frac{1}{|27|^{\eta}} \max \left\{\left\|\mathcal{C}_{3}\left(3^{\eta} x\right)-\mathfrak{f}\left(3^{\eta} x\right)\right\|\right. \\
\\
\left.\quad\left\|\mathfrak{f}\left(3^{\eta} x\right)-\mathcal{C}_{3}^{\prime}\left(3^{\eta} x\right)\right\|\right\}
\end{array}\right\} \begin{aligned}
& \leq \lim _{\jmath \rightarrow \infty} \lim _{\eta \rightarrow \infty} \max \left\{\frac{1}{|27|^{\kappa}} \xi\left(3^{\kappa} x, 0\right): \jmath \leq \kappa<\eta+\jmath\right\} \\
& =0 \quad \text { for all } x \in \mathcal{G}
\end{aligned}
$$

Therefore $\mathcal{C}_{3}(x)=\mathcal{C}_{3}^{\prime}(x)$. This completes the proof.
Case (ii). Let us prove the theorem for $\ell=-1$. It follows by replacing $y=0$ in (11), we obtain

$$
\begin{equation*}
\|\mathfrak{f}(3 x)-27 \mathfrak{f}(x)\| \leq|8| \xi(x, 0) \quad \text { for all } x \in \mathcal{G} \tag{18}
\end{equation*}
$$

Replacing x by $\frac{x}{3^{\eta+1}}$ in 18, we get

$$
\begin{align*}
&\left\|27^{\eta+1} \mathfrak{f}\left(\frac{x}{3^{\eta+1}}\right)-27^{\eta} \mathfrak{f}\left(\frac{x}{3^{\eta}}\right)\right\| \leq|8||27|^{\eta} \xi\left(\frac{x}{3^{\eta+1}}, 0\right) \\
& \text { for all } x \in \mathcal{G} \tag{19}
\end{align*}
$$

Thus, it follows from (9) and (19) that the sequence $\left\{27^{\eta} \mathfrak{f}\left(\frac{x}{3^{\eta}}\right)\right\}$ is Cauchy sequence. Since \mathcal{X} is complete. Therefore $\left\{27^{\eta} \mathfrak{f}\left(\frac{x}{3^{\eta}}\right)\right\}$ is convergent.

$$
\begin{equation*}
\text { Let } \mathcal{C}_{3}(x)=\lim _{\eta \rightarrow \infty} 27^{\eta} \mathfrak{f}\left(\frac{x}{3^{\eta}}\right) \quad \text { for all } x \in \mathcal{G} \tag{20}
\end{equation*}
$$

By induction, one can show that

$$
\begin{array}{r}
\left\|27^{\eta} \mathfrak{f}\left(\frac{x}{3^{\eta}}\right)-\mathfrak{f}(x)\right\| \leq \max \left\{|8||27|^{\eta} \xi\left(\frac{x}{3^{\eta+1}}, 0\right):\right. \\
0 \leq \kappa<\eta\} \tag{21}
\end{array}
$$

by taking the limit $\eta \rightarrow \infty$ in (21) and using (10) one obtain (12).

By (9) and (11), we get

$$
\begin{aligned}
\left\|\mathcal{D}_{3} \mathfrak{f}(x, y)\right\| & =\lim _{\eta \rightarrow \infty}\left\|\mathcal{D}_{3} \mathfrak{f}\left(27^{\eta} \frac{x}{3^{\eta}}, 27^{\eta} \frac{y}{3^{\eta}}\right)\right\| \\
& =\lim _{\eta \rightarrow \infty}|27|^{\eta}\left\|\mathcal{D}_{3} \mathfrak{f}\left(\frac{x}{3^{\eta}}, \frac{y}{3^{\eta}}\right)\right\| \\
& \leq \lim _{\eta \rightarrow \infty}|27|^{\eta} \xi\left(\frac{x}{3^{\eta}}, \frac{y}{3^{\eta}}\right)=0 \text { for all } x, y \in \mathcal{G} .
\end{aligned}
$$

Therefore $\mathcal{C}_{3}(x)$ is a cubic mapping. To prove uniqueness, let \mathcal{C}_{3}^{\prime} be another mapping satisfying 12 we obtain

$$
\begin{aligned}
& \left\|\mathcal{C}_{3}(x)-\mathcal{C}_{3}^{\prime}(x)\right\| \\
& =\lim _{\eta \rightarrow \infty}|27|^{\eta}\left\|\mathcal{C}_{3}\left(\frac{x}{3^{\eta}}\right)-\mathcal{C}_{3}^{\prime}\left(\frac{x}{3^{\eta}}\right)\right\| \\
& \leq \lim _{\eta \rightarrow \infty}|27|^{\eta} \max \left\{\left\|\mathcal{C}_{3}\left(\frac{x}{3^{\eta}}\right)-\mathfrak{f}\left(\frac{x}{3^{\eta}}\right)\right\|,\right. \\
& \\
& \left.\left\|\mathfrak{f}\left(\frac{x}{3^{\eta}}\right)-\mathcal{C}_{3}^{\prime}\left(\frac{x}{3^{\eta}}\right)\right\|\right\}
\end{aligned} \quad \begin{aligned}
& \leq \lim _{\jmath \rightarrow \infty} \lim _{\eta \rightarrow \infty} \max \left\{|27|^{\kappa} \xi\left(\frac{x}{3^{\kappa}}, 0\right): \jmath \leq \kappa<\eta+\jmath\right\} \\
& =0 \quad \text { for all } x \in \mathcal{G} .
\end{aligned}
$$

Therefore $\mathcal{C}_{3}(x)=\mathcal{C}_{3}^{\prime}(x)$. This completes the proof.
Corollary 3.1. Let $\delta \geq 0$ and prime $p>3$. Define a function \mathfrak{f} from \mathcal{G} to \mathcal{X} and if \mathfrak{f} is a cubic mapping that fulfills the inequality

$$
\left\|\mathcal{D}_{3} \mathfrak{f}(x, y)\right\| \leq \delta \quad \text { for all } x, y \in \mathcal{G}
$$

Then, there exists a unique cubic function $\mathcal{C}_{3}(x): \mathcal{G} \rightarrow \mathcal{X}$ such that

$$
\left\|\mathfrak{f}(x)-\mathcal{C}_{3}(x)\right\| \leq \frac{|8|}{|27|} \delta
$$

Proof:

By Theorem 3.1, if $\xi(x, y)=\delta$ then

$$
\left\|\mathfrak{f}(x)-\mathcal{C}_{3}(x)\right\| \leq \Phi(x)
$$

where $\Phi(x)=\lim _{\eta \rightarrow \infty} \max \left\{\frac{|8|}{|27|^{\kappa+1}} \xi\left(3^{\kappa} x, 0\right):\right.$

$$
0 \leq \kappa<\eta\}
$$

Therefore,

$$
\begin{aligned}
\left\|\mathfrak{f}(x)-\mathcal{C}_{3}(x)\right\| & \leq \lim _{\eta \rightarrow \infty} \max \left\{\frac{|8|}{|27|^{\kappa+1}} \delta: 0 \leq \kappa<\eta\right\} \\
& \leq \frac{|8|}{|27|} \delta
\end{aligned}
$$

Corollary 3.2. Let $r, s, \delta>0$ and $r+s>3$. Define a function \mathfrak{f} from \mathcal{G} to \mathcal{X} and if \mathfrak{f} is a cubic mapping satisfying the inequality

$$
\begin{array}{r}
\left\|\mathcal{D}_{3} \mathfrak{f}(x, y)\right\| \leq \delta\left(\|x\|^{r+s}+\|y\|^{r+s}+\|x\|^{r}\|y\|^{s}\right) \\
\text { for all } x, y \in \mathcal{G}
\end{array}
$$

Then, there is a unique cubic function $\mathcal{C}_{3}(x): \mathcal{G} \rightarrow \mathcal{X}$ such that

$$
\left\|\mathfrak{f}(x)-\mathcal{C}_{3}(x)\right\| \leq \frac{\delta|8|\|x\|^{r+s}}{|27|}
$$

$$
\text { Proof: Let } \xi(x, y)=\delta\left(\|x\|^{r+s}+\|y\|^{r+s}+\|x\|^{r}\|y\|^{s}\right)
$$

From Theorem (3.1),

$$
\left\|\mathfrak{f}(x)-\mathcal{C}_{3}(x)\right\| \leq \Phi(x) \quad \text { for all } x \in \mathcal{G}
$$

where,

$$
\begin{gathered}
\Phi(x)=\lim _{\eta \rightarrow \infty} \max \left\{\frac{|8|}{|27|} \frac{1}{|27|^{\kappa \ell-\left(\frac{1-\ell}{2}\right)}} \xi\left(3^{\kappa \ell-\left(\frac{1-\ell}{2}\right)} x, 0\right)\right. \\
: 0 \leq \kappa<\eta\} \text { for all } x \in \mathcal{G}
\end{gathered}
$$

Taking $\ell=1$, we obtatin

$$
\begin{aligned}
\Phi(x)= & \lim _{\eta \rightarrow \infty} \max \left\{\frac{|8|}{|27|^{\kappa+1}} \xi\left(3^{\kappa} x, 0\right)\right. \\
& : 0 \leq \kappa<\eta\} \text { for all } x \in \mathcal{G} \\
= & \lim _{\eta \rightarrow \infty} \max \left\{\frac{|8|}{|27|^{\kappa+1}} \delta|3|^{\kappa(r+s)}\|x\|^{r+s}\right. \\
& : 0 \leq \kappa<\eta\} \\
= & \frac{\delta|8|\|x\|^{r+s}}{|27|}
\end{aligned}
$$

Therefore,
$\left\|\mathfrak{f}(x)-\mathcal{C}_{3}(x)\right\| \leq \frac{\delta|8|\|x\|^{r+s}}{|27|}$.
For the case $r+s=3$, we have the following counter example.

Example 3.1. Let $p>3$ be a prime number and $\mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}$ be defined by $\mathfrak{f}(x)=x^{3}+1$. Since $\left|3^{\eta}\right|_{p}=1$ for all $\eta \in \mathcal{N}$. Then for $\delta>0$,

$$
\begin{array}{r}
\left\|\mathcal{D}_{3} \mathfrak{f}(x, y)\right\| \leq 1 \leq \delta\left(\|x\|^{r+s}+\|y\|^{r+s}+\|x\|^{r}\|y\|^{s}\right) \\
\text { for all } x, y \in \mathcal{G}
\end{array}
$$

and

$$
\left\|\mathfrak{f} \frac{\left(3^{\eta+1} x\right)}{27^{\eta+1}}-\mathfrak{f} \frac{\left(3^{\eta} x\right)}{27^{\eta}}\right\| \nrightarrow 0 \quad \text { as } \quad \eta \rightarrow \infty
$$

Hence $\left\{\frac{f\left(3^{\eta} x\right)}{27^{\eta}}\right\}$ is not a Cauchy sequence.
Theorem 3.2. Fix $\ell= \pm 1$. Suppose that ξ from $\mathcal{G}^{2} \rightarrow[0, \infty)$ is a mapping such that

$$
\begin{equation*}
\lim _{\eta \rightarrow \infty} \frac{1}{|81|^{\eta \ell}} \xi\left(3^{\eta \ell} x, 3^{\eta \ell} y\right)=0 \quad \text { for all } x, y \in \mathcal{G} \tag{22}
\end{equation*}
$$

Also, the limit

$$
\begin{gather*}
\Phi(x)=\lim _{\eta \rightarrow \infty} \max \left\{\frac{|16|}{|81|} \frac{1}{|81|^{\kappa \ell-\left(\frac{1-\ell}{2}\right)}} \xi\left(3^{\kappa \ell-\left(\frac{1-\ell}{2}\right)} x, 0\right):\right. \\
0 \leq \kappa<\eta\} \quad \text { for all } x \in \mathcal{G} \tag{23}
\end{gather*}
$$

exists and $\mathfrak{f}: \mathcal{G} \rightarrow \mathcal{X}$ is an even mapping satisfying

$$
\begin{equation*}
\left\|\mathcal{D}_{4} \mathfrak{f}(x, y)\right\| \leq \xi(x, y) \quad \text { for all } x, y \in \mathcal{G} \tag{24}
\end{equation*}
$$

Then for all $x \in \mathcal{G}$,

$$
\mathcal{Q}_{4}(x)=\lim _{\eta \rightarrow \infty} \mathfrak{f}\left(\frac{3^{\eta} x}{81^{\eta}}\right)
$$

exists such that

$$
\begin{equation*}
\left\|\mathfrak{f}(x)-\mathcal{Q}_{4}(x)\right\| \leq \Phi(x) \text { for all } x \in \mathcal{G} \tag{25}
\end{equation*}
$$

Moreover, if

$$
\begin{equation*}
\lim _{\jmath \rightarrow \infty} \lim _{\eta \rightarrow \infty} \max \left\{\frac{1}{|81|^{\kappa \ell}} \xi\left(3^{\kappa \ell} x, 0\right): \jmath \leq \kappa<\eta+\jmath\right\}=0 \tag{26}
\end{equation*}
$$

then \mathcal{Q}_{4} is unique quartic mapping Satisfying 25).
Proof: Case (i). Let us prove the theorem for $\ell=1$. It follows by replacing $y=0$ in 24, we obtain

$$
\begin{equation*}
\|\mathfrak{f}(3 x)-81 \mathfrak{f}(x)\| \leq|16| \xi(x, 0) \quad \text { for all } x \in \mathcal{G} \tag{27}
\end{equation*}
$$

Replacing x by $3^{\eta} x$ in 27, we get

$$
\begin{equation*}
\left\|\mathfrak{f} \frac{\left(3^{\eta+1} x\right)}{81^{\eta+1}}-\mathfrak{f} \frac{\left(3^{\eta} x\right)}{81^{\eta}}\right\| \leq \frac{|16|}{|81|^{\eta+1}} \xi\left(3^{\eta} x, 0\right) \text { for all } x \in \mathcal{G} \tag{28}
\end{equation*}
$$

Thus, it follows from 22 and 28) that the sequence $\left\{\frac{\mathfrak{f}\left(3^{\eta} x\right)}{81^{\eta}}\right\}$ is Cauchy sequence. Since \mathcal{X} is complete. Therefore $\left\{\frac{f\left(3^{\eta} x\right)}{81^{\eta}}\right\}$ is convergent.

Let $\mathcal{Q}_{4}(x)=\lim _{\eta \rightarrow \infty} \mathfrak{f}\left(\frac{3^{\eta} x}{81^{\eta}}\right) \quad$ for all $x \in \mathcal{G}$.
By induction, one can show that

$$
\begin{equation*}
\left\|\mathfrak{f} \frac{\left(3^{\eta} x\right)}{81^{\eta}}-\mathfrak{f}(x)\right\| \leq \max \left\{\frac{|16|}{|81|^{\kappa+1}} \xi\left(3^{\kappa} x, 0\right): 0 \leq \kappa<\eta\right\} \tag{30}
\end{equation*}
$$

by taking the limit $\eta \rightarrow \infty$ in (30) and using 23) one obtain (25).

By (22) and (24) we get

$$
\begin{aligned}
\left\|\mathcal{D}_{4} \mathfrak{f}(x, y)\right\| & =\lim _{\eta \rightarrow \infty}\left\|\mathcal{D}_{4} \mathfrak{f}\left(\frac{3^{\eta} x}{81^{\eta}}, \frac{3^{\eta} y}{81^{\eta}}\right)\right\| \\
& =\lim _{\eta \rightarrow \infty} \frac{1}{|81|^{\eta}}\left\|\mathcal{D}_{4} \mathfrak{f}\left(3^{\eta} x, 3^{\eta} y\right)\right\| \\
& \leq \lim _{\eta \rightarrow \infty} \frac{1}{|81|^{\eta}} \xi\left(3^{\eta} x, 3^{\eta} y\right) \\
& =0 \quad \text { for all } x, y \in \mathcal{G} .
\end{aligned}
$$

Therefore $\mathcal{Q}_{4}(x)$ is a quartic mapping.
To prove uniqueness, let \mathcal{Q}_{4}^{\prime} be another mapping satisfying (25) we obtain

$$
\begin{aligned}
& \left\|\mathcal{Q}_{4}(x)-\mathcal{Q}_{4}^{\prime}(x)\right\| \\
& \quad=\lim _{\eta \rightarrow \infty} \frac{1}{|81|^{\eta}}\left\|\mathcal{Q}_{4}\left(3^{\eta} x\right)-\mathcal{Q}_{4}^{\prime}\left(3^{\eta} x\right)\right\| \\
& \leq \lim _{\eta \rightarrow \infty} \frac{1}{|81|^{\eta}} \max \left\{\left\|\mathcal{Q}_{4}(x)-\mathfrak{f}\left(3^{\eta} x\right)\right\|\right. \\
& \left.\quad\left\|\mathfrak{f}\left(3^{\eta} x\right)-\mathcal{Q}_{4}^{\prime}(x)\right\|\right\}
\end{aligned} \quad \begin{aligned}
& \leq \lim _{\jmath \rightarrow \infty} \lim _{\eta \rightarrow \infty} \max \left\{\frac{1}{|81|^{\kappa}} \xi\left(3^{\kappa} x, 0\right): \jmath \leq \kappa<\eta+\jmath\right\} \\
& =0 \text { for all } x \in \mathcal{G} .
\end{aligned}
$$

Therefore $\mathcal{Q}_{4}(x)=\mathcal{Q}_{4}^{\prime}(x)$. This completes the proof.
Case (ii). Let us prove the theorem for $\ell=-1$.
It follows by replacing $y=0$ in (24), we obtain

$$
\begin{equation*}
\|\mathfrak{f}(3 x)-81 \mathfrak{f}(x)\| \leq|16| \xi(x, 0) \quad \text { for all } x \in \mathcal{G} \tag{31}
\end{equation*}
$$

Replacing x by $\frac{x}{3^{\eta+1}}$ in 31, we get

$$
\begin{array}{r}
\left\|81^{\eta+1} \mathfrak{f}\left(\frac{x}{3^{\eta+1}}\right)-81^{\eta} \mathfrak{f}\left(\frac{x}{3^{\eta}}\right)\right\| \leq|16||81|^{\eta} \xi\left(\frac{x}{3^{\eta+1}}, 0\right) \\
\text { for all } x \in \mathcal{G} \tag{32}
\end{array}
$$

Thus, it follows from (22) and (32) that the sequence $\left\{27^{\eta} \mathfrak{f}\left(\frac{x}{3^{\eta}}\right)\right\}$ is Cauchy sequence. Since \mathcal{X} is complete. Therefore $\left\{27^{\eta} \mathfrak{f}\left(\frac{x}{3^{\eta}}\right)\right\}$ is convergent.

Let $\quad \mathcal{Q}_{4}(x)=\lim _{\eta \rightarrow \infty} 81^{\eta} \mathfrak{f}\left(\frac{x}{3^{\eta}}\right)$ for all $x \in \mathcal{G}$.
By induction, one can show that

$$
\begin{array}{r}
\left\|81^{\eta} \mathfrak{f}\left(\frac{x}{3^{\eta}}\right)-\mathfrak{f}(x)\right\| \leq \max \left\{|16 \| 81|^{\eta} \xi\left(\frac{x}{3^{\eta+1}}, 0\right):\right. \\
0 \leq \kappa<\eta\} \tag{34}
\end{array}
$$

by taking the limit $\eta \rightarrow \infty$ in 30 and using 23) one obtain 25.

By (22) and (24), we get

$$
\begin{aligned}
\left\|\mathcal{D}_{4} \mathfrak{f}(x, y)\right\| & =\lim _{\eta \rightarrow \infty}\left\|\mathcal{D}_{4} \mathfrak{f}\left(81^{\eta} \frac{x}{3^{\eta}}, 81^{\eta} \frac{y}{3^{\eta}}\right)\right\| \\
& =\lim _{\eta \rightarrow \infty}|81|^{\eta}\left\|\mathcal{D}_{4} \mathfrak{f}\left(\frac{x}{3^{\eta}}, \frac{y}{3^{\eta}}\right)\right\| \\
& \leq \lim _{\eta \rightarrow \infty}|81|^{\eta} \xi\left(\frac{x}{3^{\eta}}, \frac{y}{3^{\eta}}\right)=0 \text { for all } x, y \in \mathcal{G}
\end{aligned}
$$

Therefore $\mathcal{Q}_{4}(x)$ is a quartic mapping.
To prove uniqueness, let \mathcal{Q}_{4}^{\prime} be another mapping satisfying
(25) we obtain

$$
\left.\begin{array}{l}
\left\|\mathcal{Q}_{4}(x)-\mathcal{Q}_{4}^{\prime}(x)\right\| \\
=\lim _{\eta \rightarrow \infty}|81|^{\eta}\left\|\mathcal{Q}_{4}\left(\frac{x}{3^{\eta}}\right)-\mathcal{Q}_{4}^{\prime}\left(\frac{x}{3^{\eta}}\right)\right\| \\
\leq \lim _{\eta \rightarrow \infty}|81|^{\eta} \max \left\{\left\|\mathcal{Q}_{4}\left(\frac{x}{3^{\eta}}\right)-\mathfrak{f}\left(\frac{x}{3^{\eta}}\right)\right\|,\right. \\
\\
\left.\quad\left\|\mathfrak{f}\left(\frac{x}{3^{\eta}}\right)-\mathcal{Q}_{4}^{\prime}\left(\frac{x}{3^{\eta}}\right)\right\|\right\}
\end{array}\right\} \begin{aligned}
& \leq \lim _{\jmath \rightarrow \infty} \lim _{\eta \rightarrow \infty} \max \left\{|81|^{\kappa} \xi\left(\frac{x}{3^{\kappa}}, 0\right): \jmath \leq \kappa<\eta+\jmath\right\} \\
& =0 \text { for all } x \in \mathcal{G} .
\end{aligned}
$$

Therefore $\mathcal{Q}_{4}(x)=\mathcal{Q}_{4}^{\prime}(x)$. This completes the proof.
Corollary 3.3. Let $\delta \geq 0$ and prime $p>3$. Define a function \mathfrak{f} from \mathcal{G} to \mathcal{X} and if \mathfrak{f} is a quartic mapping that fulfills the inequality

$$
\left\|\mathcal{D}_{4} \mathfrak{f}(x, y)\right\| \leq \delta \quad \text { for all } x, y \in \mathcal{G}
$$

Then, there exists a unique quartic function $\mathcal{Q}_{4}(x): \mathcal{G} \rightarrow \mathcal{X}$ such that

$$
\left\|\mathfrak{f}(x)-\mathcal{Q}_{4}(x)\right\| \leq \frac{|16|}{|81|} \delta
$$

Proof: By Theorem 3.2, if $\xi(x, y)=\delta$ then

$$
\begin{aligned}
&\left\|\mathfrak{f}(x)-\mathcal{Q}_{4}(x)\right\| \leq \Phi(x) \\
& \text { where } \Phi(x)= \lim _{\eta \rightarrow \infty} \max \left\{\frac{|16|}{|81|^{\kappa+1}} \xi\left(3^{\kappa} x, 0\right):\right. \\
&0 \leq \kappa<\eta\}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left\|\mathfrak{f}(x)-\mathcal{Q}_{4}(x)\right\| & \leq \lim _{\eta \rightarrow \infty} \max \left\{\frac{|16|}{|81|^{\kappa+1}} \delta: 0 \leq \kappa<\eta\right\} . \\
& \leq \frac{|16|}{|81|} \delta .
\end{aligned}
$$

Corollary 3.4. Let $r, s, \delta>0$ and $r+s>4$. Define a function \mathfrak{f} from \mathcal{G} to \mathcal{X} and if \mathfrak{f} is a quartic mapping satisfying the inequality

$$
\left\|\mathcal{D}_{4} \mathfrak{f}(x, y)\right\| \leq \delta\left(\|x\|^{r+s}+\|y\|^{r+s}+\|x\|^{r}\|y\|^{s}\right)
$$

for all $x, y \in \mathcal{G}$. Then, there is a unique quartic function $\mathcal{Q}_{4}(x): \mathcal{G} \rightarrow \mathcal{X}$ such that

$$
\left\|\mathfrak{f}(x)-\mathcal{Q}_{4}(x)\right\| \leq \frac{\delta|16|\|x\|^{r+s}}{|81|}
$$

Proof: Let $\xi(x, y)=\delta\left(\|x\|^{r+s}+\|y\|^{r+s}+\|x\|^{r}\|y\|^{s}\right)$.
From Theorem (3.2),

$$
\left\|\mathfrak{f}(x)-\mathcal{Q}_{4}(x)\right\| \leq \Phi(x) \text { for all } x \in \mathcal{G}
$$

where,

$$
\begin{gathered}
\Phi(x)=\lim _{\eta \rightarrow \infty} \max \left\{\frac{|16|}{|81|} \frac{1}{|81|^{\kappa \ell-\left(\frac{1-\ell}{2}\right)}} \xi\left(3^{\kappa \ell-\left(\frac{1-\ell}{2}\right)} x, 0\right)\right. \\
: 0 \leq \kappa<\eta\} \text { for all } x \in \mathcal{G}
\end{gathered}
$$

$\Phi(x)=\lim _{\eta \rightarrow \infty} \max \left\{\frac{|16|}{|81|^{\kappa+1}} \xi\left(3^{\kappa} x, 0\right)\right.$

$$
: 0 \leq \kappa<\eta\} \text { for all } x \in \mathcal{G}
$$

Taking $\ell=1$, we obtain

$$
\begin{aligned}
& =\lim _{\eta \rightarrow \infty} \max \left\{\frac{|16|}{|81|^{\kappa+1}} \delta|3|^{\kappa(r+s)}\|x\|^{r+s}\right. \\
& \quad: 0 \leq \kappa<\eta\} \\
& =\frac{\delta|16|\|x\|^{r+s}}{|81|} .
\end{aligned}
$$

Therefore,

$$
\left\|\mathfrak{f}(x)-\mathcal{Q}_{4}(x)\right\| \leq \frac{\delta|16|\|x\|^{r+s}}{|81|}
$$

For the case $r+s=4$, we have the following counter example.

Example 3.2. Let $p>3$ be a prime number and $\mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}$ be defined by $\mathfrak{f}(x)=x^{4}+1$. Since $\left|3^{\eta}\right|_{p}=1$ for all $\eta \in \mathcal{N}$. Then for $\delta>0$,

$$
\begin{array}{r}
\left\|\mathcal{D}_{3} \mathfrak{f}(x, y)\right\| \leq 1 \leq \delta\left(\|x\|^{r+s}+\|y\|^{r+s}+\|x\|^{r}\|y\|^{s}\right) \\
\quad \text { for all } x, y \in \mathcal{G}
\end{array}
$$

and

$$
\left\|\mathfrak{f} \frac{\left(3^{\eta+1} x\right)}{81^{\eta+1}}-\mathfrak{f} \frac{\left(3^{\eta} x\right)}{81^{\eta}}\right\| \nrightarrow 0 \quad \text { as } \quad \eta \rightarrow \infty
$$

Hence $\left\{\frac{f\left(3^{\eta} x\right)}{81^{\eta}}\right\}$ is not a Cauchy sequence.

IV. Conclusion

Many authors discussed the HUS of Jensen type functional equation in NAN space in recent years. In this current article, we have proved a new cubic and quartic Jensen type Cauchy functional equations (1) and (2) in NAN space.

References

[1] T. Aoki, "On the stability of the linear transformation in Banach spaces," Journal of Mathematical Society of Japan, Vol. 2, pp.64-66, 1951.
[2] M. Almahalebi, " Non-Archimedean hyperstability of a Cauchy- Jensen type functional equation," Journal of classical analysis, vol.11, no.2, pp.159-170, 2017.
[3] G. Bachman, "Introduction to p-adic numbers and valuation theory," Academic Press, New York, 1964.
[4] R. Balaanandhan, J. Uma, "Fixed Point Results in Partially Ordered Ultrametric Space via p-adic Distance," IAENG International Journal of Applied Mathematics, vol. 53, no.3, pp.772-778, 2023.
[5] Z. Gajda, "On stability of additive mappings," International Journal of Mathematics and Mathematical Sciences, 14, pp.431-434, 1991.
[6] D. H. Hyers, G. Isac, and T. M. Rassias, "Stability of functional equations in several variables," Birkhäuser Boston, 1998.
[7] K. W. Jun, H. M. Kim, "Stability problem for Jensen-type functional equations of cubic mappings," Acta Mathematica Sinica, 22(6), pp.1781-1788, 2006.
[8] H. A. Kenary, Y. J. Cho, "Stability of mixed additive-quadratic Jensen type functional equation in various spaces," Computers \& Mathematics with Applications, vol.61, no.9, pp.2704-2724, 2011.
[9] M. S. Moslehian, Th. M. Rassias, "Stability of functional equations in non-Archimedean spaces," Applicable Analysis and Discrete Mathematics, pp.325-334, 2007.
[10] A. Ramachandran, S. Sangeetha, "On the Generalized QuadraticQuartic Cauchy Functional Equation and its Stability over NonArchimedean Normed Space," Mathematics and Statistics, Vol.10, no.6, pp.1210-1217, 2022.
[11] Th. M. Rassias, "On the Stability of Functional Equations in Banach Spaces," Journal of Mathematical Analysis and Applications, 251, pp.264-284, 2000.
[12] J. M. Rassias, E. Thandapani , K. Ravi, S. Kumar, "Solutions and Stability Results," Series on Concrete and Applicable Mathematics, World Scientific Publishing, 21, Singapore.
[13] R. Sakthipriya, K. Suja, "On Lambda-Ideal Statistically Convergent in 2-Normed Spaces over Non-Archimedean Fields," IAENG International Journal of Applied Mathematics, vol. 53, no.3, pp.1001-1006, 2023.
[14] T. Trif, "Hyers-Ulam-Rassias stability of a Jensen type functional equation,"Journal of Mathematical Analysis and Applications 250, pp.579-588, 2000.
[15] S. M. Ulam, "Problems in Modern Mathematics," chapter 6, JohnWiley \& Sons, New York, NY, USA, 1940.
[16] A. C. M. Van rooij, "Non Archimedean functional analysis," M. Dekkar, New York, 1978.
[17] X. Wang, L. Chang, \& G. Liu, "Orthogonal stability of mixed additivequadratic Jensen type functional equation in multi-Banach spaces," Advances in Pure Mathematics, vol.5,no.6, pp.325-332, 2015.
[18] X. Zhao, B. Sun, W. Ge, "Hyers-Ulam Stability of a Class Fractional Boundary Value Problems with Right and Left Fractional Derivatives," IAENG International Journal of Applied Mathematics, vol. 46, no.4, pp.405-411, 2016.

[^0]: Manuscript received July 31, 2023; revised November 22, 2023.

