
 

  
Abstract—Estimating generalised Pareto distribution (GPD) 

parameters is a fundamental step in modelling the extreme-
value distribution of random variables. It is generally done with 
the maximum likelihood method, but there are generally 
difficulties in estimating GPD parameters using this method as 
there is no closed-form solution for the first derivative of the 
GPD log-likelihood function. This makes the solution difficult to 
determine analytically. However, numerical methods can be 
used as an alternative. Therefore, this study estimates the 
solution numerically using a simple fixed-point iteration method 
that is intuitive for both practitioners and professionals. We 
obtained three fixed-point iterations when estimating GPD 
parameters that met the unbiased estimator and convergence 
criteria. The iterations allow practitioners and professionals to 
directly and efficiently estimate GPD parameters when 
modelling extreme-value distributions of random variables. 
 

Index Terms—generalized Pareto distribution; parameter 
estimation; maximum likelihood method; fixed-point iteration; 
unbiasedness criteria; convergence criteria 
 

I. INTRODUCTION 
XTREME value theory (EVT) is a unique approach to 
determining the probability of the extreme value of a 

random variable on the left or right tail of the probability 
function [1]. This approach is widely used in various fields, 
such as climatology, finance, and insurance. In general, 
studies that apply EVT are more likely to analyse the 
probability of extreme values of random variables in the right 
tail of the probability function since this is more interesting 
[2]. This includes studies on maximum rainfall risk [3], 
maximum temperature risk [4], [5], [6], maximum sea wave 
height [7], [8], maximum disaster loss risk [9], [10], and 
maximum earthquake magnitude risk [11], [12], [13]. 

There are two methods for measuring the extreme-value 
probability of random variables using the EVT approach: 1) 
the block maxima (BM) method; and 2) the peaks-over 
threshold (POT) method. The latter is the most modern 
method of the two, and it facilitates the design of the 
cumulative-distribution function (CDF) model for extreme 
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values in which the ‘father’ CDF of a random variable is 
unknown [2]. The advantage of this method lies in its ability 
to define extreme values based on values that exceed a 
particular threshold [14]. This definition often makes the size 
of extreme values in the POT method more significant than 
those in the BM method, indicating that the POT method is 
more representative of the population and that the probability 
results will be closer to the actual probability.  

One of the fundamental steps in modelling the right-tailed 
probability function of a random variable using the POT 
method entails estimating generalized Pareto distribution 
(GPD) parameters. GPD is a two-parameter probability 
distribution that is crucial in modelling. Many methods can 
be used to estimate GPD parameters, but the most popular is 
the maximum likelihood (ML) method [15]. This method is 
intuitive as the estimated parameter sought is a two-
dimensional vector that maximizes the GPD likelihood 
function. If the value of the GPD likelihood function reaches 
the maximum value, the sample that represents the 
population will very likely be observed. However, there are 
obstacles to determining the vector solution due to the first 
derivative of the GPD log-likelihood function (i.e., the 
natural logarithmic form of the GPD likelihood function) not 
having a closed form. Hence, it is difficult to determine the 
solution for the local-maximum value using ordinary 
analytical methods. 

The difficulty in determining this solution can be overcome 
by numerical methods. Identifying a solution that maximizes 
the GPD log-likelihood function is similar to finding the root 
of its first derivative when it has a value equal to zero. 
Therefore, these numerical methods are categorized as root-
finding methods. Several numerical root-finding methods, 
such as Newton, secant, and fixed-point iteration, can be 
used, of which fixed-point iteration is the simplest basic 
method [16]. This method determines the root as the fixed 
point of a function [17], denoting that only slight 
manipulation of the function’s form is required and that 
further differentiation is not needed, as is the case in the 
Newton or secant methods [18]. 

Thus, this study’s research objective is to develop novel 
fixed-point iteration equations to estimate GPD parameters 
via the ML method. The literature review in Section II 
demonstrates that fixed-point iteration equations have not 
been studied in terms of GPD parameter estimation. 
Moreover, we also review the equations for accuracy and 
goodness of fit using case studies on the disaster loss data 
from the United States between 1977 and 2021. This study 
will allow professionals and practitioners to estimate GPD 
parameters in a way that the design of the extreme 
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distribution of a random variable can be carried out directly 
and easily using the POT method.  

 

II. LITERATURE REVIEW 
Several studies were carried out on estimating GPD 

parameters between 1987 and 2000. For example, Hosking 
and Wallis [19] estimated GPD parameters using the method 
of moments (MOM) and the probability-weighted moment 
(PMW) approaches. They also compared these methods 
using Monte Carlo simulations. Moharram et al. [20] used 
the least squares (LS) method to estimate GPD parameters, 
after which they compared the estimation results with MOM 
and PWM methods based on root mean square error. The 
comparison showed that the estimated results deduced from 
the LS method were generally smaller than those deduced 
using the MOM and PWM methods. Furthermore, Singh and 
Guo [21] implemented the principle of maximum entropy 
(POME) method to estimate GPD parameters and found that 
the estimated results were better than those for the MOM 
and PMW methods in several data ranges. In addition, Lin 
and Wang [22] estimated GPD parameters using the ML 
method on censored data. 

Several studies on estimating GPD parameters were also 
carried out from 2000 to 2022, with de Zea Bermudez and 
Turkman [23] first estimating GPD parameters using the 
Bayesian method and showing that this method was suitable 
for small data sizes in simulations. Juarez and Schucany [24] 
applied the minimum density power divergence estimator 
method to estimate GPD parameters, which demonstrated 
that the coefficients for the robustness and the efficiency of 
the estimated GPD parameters can be controlled. Zhang [25] 
estimated GPD parameters using likelihood-moment 
estimation (LME) and showed the high asymptotic efficiency 
that resulted from the parameter estimates. Zhang and 
Stephens [26] used the ML and quasi-Bayesian methods to 
estimate the GPD parameters. Following this, de Zea 
Bermudez and Kotz [27] estimated GPD parameters by 
combining robust and Bayesian techniques. Moreover, 
Mackay et al. [7] estimated GPD parameters using LME, 
which has a low sensitivity for selecting a threshold value 
and is suitable for data sizes lower than 500. Song and Song 
[28] estimated GPD parameters using the nonlinear least 
square method. Wang and Chen [29] introduced a hybrid 
estimation method that minimized the statistical value of the 
Anderson-Darling (AD) test and maximized the GPD log-
likelihood function. In addition, El-Sagheer et al. [30] 
assessed GPD parameters on progressive and censored 
failure data using the Bayesian method, the performance of 
which was determined by Monte Carlo simulations. Finally, 
Form and Ratnasingam [31] estimated GPD parameters 
using the elemental percentile method. 

None of these studies estimated GPD parameters using the 
ML method in the form of fixed-point iterations. Thus, this 
study makes a novel contribution to the literature. 

 

III. ESTIMATING GPD PARAMETERS USING THE ML 
METHOD 

The GPD was first introduced by Pickands [32] and 
Balkema and de Haan [33]. Smith [34], Davison [35], Smith 
[36], and van Montfort and Witter [3] then contributed to 
the development of this method through their research. For 
example, X  is a random variable with a fat-tailed CDF, µ  
is the threshold value between the extreme and non-extreme 
values of X , and Y X µ= −  with X µ>  denotes an 
extreme-excess random variable. Thus, if the value of µ  is 
large, then the CDF of Y  can be approximated by the CDF 
of the GPD, which is expressed as follows:  
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In this equation, 0σ >  and ξ ∈  represent the scale and 
shape parameters, respectively. Moreover, the probability 
density function (PDF) of Y , approximated by the PDF of 
the GPD, is stated as follows: 
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The domain of Y  is [ )0,∞  when 0ξ ≥  and is 0, σ
ξ

 
− 

 
 

when 0ξ <  [37]. Based on its shape parameters, Salvadori 
et al. [2] stated that there are three types of GPD (see Table 
I). The shape parameter values in this study are assumed to 
be non-zero to limit the scope of the study. 

The most popular method for estimating GPD parameters 
is the ML method. Herein, jX  with 1, 2, ,j n= …  are 

independent and identically distributed random variables for 
which the PDF tails are fat. Moreover i iY X u= − , where 

iX u> , 1, 2,...,i m= , represents the extreme-excess 
random variables that are independent and identically 
distributed in the GPD. Thus, the likelihood function of iY  is 
expressed as follows: 

( ) ( )
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TABLE I 
THREE TYPES OF GPD 

Types of 
GPD  

Shape Parameter 
Values Sidelight 

Type I  0ξ =  GPD is equivalent to exponential 
distribution 

Type II 0ξ >  GPD is equivalent to Pareto 
distribution 

Type III 0ξ <  GPD is equivalent to beta 
distribution 
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where 
σ
ξ

 
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 
θ Θ  represents a parameter vector of GPD in 

space Θ  and 1, , T
my y= …  y . The GPD log-likelihood 

function of iY  is stated as follows: 
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The first derivative of (4) with respect to each element of θ  
is expressed as follows: 
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The root of (5), which is denoted by 
ˆ
ˆ

σ

ξ
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α , fulfils the 

following equation: 
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Thus, the solution for (6) is difficult to estimate 

analytically since it does not have a closed form, but a 
numerical method is a fitting alternative for solving this 
problem. Therefore, this study uses the fixed-point iteration 
method to do so. 

 

IV. MAIN RESULTS 

A. Designing Possible Fixed-Point Iterations in GPD 
Parameter Estimation using the ML Method 

Fixed-point iteration is a method used to numerically 
determine the root of a function. This method can also be 
used to determine the maximum solution of a function, which 
is the root of its first derivative. Assuming that the function 
for which the maximum solution is sought is (4), using the 
fixed-point iteration method, (6) is first modified to form the 
equation ( )g |=θ θ y . This transformation results in the 
following fixed-point iteration equation: 
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θ  and 0θ  is given. The error value of each 

iteration, denoted by tε , is determined using the following 
equation: 
 

1 .t t tε −= −θ θ                 (8) 
 

If tε  is less than ε , where ε  is the tolerance error, the 
iteration is stopped. To start the iteration for the GPD 
parameter estimation, (7) must first be designed. It is 
important that the equation satisfies the unbiased estimator 
and convergence requirements. Firstly, the equations for the 
possible iterations of tσ  and tξ  were designed separately. 
These possible iterations are presented in Table II, which 
demonstrates that there were eight possible schemes of 
combination for tσ  and tξ . Secondly, each scheme’s 
unbiased estimators and convergence were examined. 
 

B. Determining the Unbiased Estimators of the GPD 
Parameter Estimation 

The unbiasedness of α  as the estimator of θ  was 
investigated by determining each element’s unbiased 
estimator. α  is an unbiased estimator of θ  if 
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σ  as well as where ( )ˆ,Bias ξ ξ  is the unbiased estimator of 

ξ̂ . If ,p tσ  with 1, 2p =  is the iteration tσ  of type p  in Table 

II, and if ,q tξ  with 1, 2, 3, 4q =  represents the iteration tξ  of 

type q  in Table II, the unbiased estimator of 1,tσ  is 
determined first. Thus, the unbiased estimator of 1,tσ  must 
be zero. 
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If ( ), 0ˆBias ss  = , σ̂  is the unbiased estimator of σ , the 
unbiased estimator of 1,tξ  must be reviewed. Herein, this 
unbiased estimator of 1,tξ  must be zero. 
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Following this, ln 1 .YE ξ
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As ( ), 0ˆBias ξ ξ = , ξ̂  is the unbiased estimator of ξ , the 

processes of determining the unbiased estimators of 2,tσ , 

2, 3,,t tξ ξ , and 4,tξ  are generally the same as those for 1,tσ  and 

1,tξ . The results of these checks demonstrate that only 3,tξ  is 

biased since it results in ( ) 2 0ˆ,Bias ξ ξ ξ= − ≠ . Therefore, 3,tξ  

was omitted from the schemes, resulting in the iteration 
,

*,

p t
t

q t

σ

ξ

 
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θ , in which 1,2p =  and * 1, 2, 4,q =  are the 

unbiased estimators of θ . 
 

C. Determining the Convergence of the GPD Parameters’ 
Iterations 

The convergence of the iteration equation ( )1t tg −=θ θ  
was determined using Theorem 1. 

 
Theorem 1. Let ( )g |θ y  and ( )g |′ θ y  be continuous for a 

two-dimensional closed set 2∈ , and let 
 

( )  .g | ∈ ∀ ∈θ y θ                 (16) 
 
Moreover, if 
 

( )max 1g | g
∈

′ ≤ <
θ

θ y


,                   (17) 

 
then there is a unique solution α  for ( )g |=θ θ y , and the 
iteration tθ  will converge to α  for any initial estimators 

0 ∈ θ . 
 
Proof. (16) shows that there is at least one solution α  for 

( )g |=θ θ y  in  . Thus, the solution for α  is unique. 
Contrastingly, if there are two solutions for ( )g |=θ θ y , 
namely 1α  and 2α , using the mean value theorem, it can be 
seen that 
 

( ) ( ) ( )( )1 2 1 2 1 2 ,g | g | g |− = − = −′α α α y α y c y α α      (18) 
 
where 1 2∈ ×c α α . If the absolute value of (18) is taken and 
(17) is then used, we obtain the following: 

( ) ( ) ( )( )1 2 1 2 1 2 g | g | g |− ′− = = −α α α y α y c y α α  

  ( ) 1 2 1 2 .g | g= −′ ≤ −c y α α α α        (19) 

 
Note that 
 

1 2 1 2 ,γ− ≤ −α α α α  

( ) 1 2  1 0.γ− − ≤α α                (20) 
 

Since 1γ < , 1α  is the same as 2α , the solution for α  is 
unique. Following this, the iteration tθ  will converge to α  
for any initial estimators 0 ∈θ  . Based on (16), it is 
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inductively clear that 0 , t∈ ∈θ θ  . This is similar to (18), 
which demonstrates that 

 
( ) ( ) ( )( )1  t t tg | g | g |+− = − = −′α θ α y θ y d y α θ  

   ( ) ( ) ,t tg | g= − −′ ≤d y α θ α θ      (21) 

 
where t∈ ×d α θ . Thus, equation (21) can be inductively 
generalized as follows: 
 

0 .t
t γ− ≤ −α θ α θ               (22) 

 
Since 1γ < , 0 0tγ − →α θ  as t → ∞ , this demonstrates 

that t →θ α  as t → ∞ .  
In practice, the convergence of iteration tθ  using 

Theorem 1 is rarely determined. This is because it is not easy 
to find the closed set 2∈  that satisfies (16). Therefore, 
Theorem 1 can be practically used by applying Corollary 1. 
 
Corollary 1. If ( )g |θ y  and ( )g |′ θ y  are continuous for a 

two-dimensional closed set 2∈ , in which the solution α  
of ( )g |=θ θ y  is included, and if 
 

( ) 1g |′ <α y ,                 (23) 

 
there is a closed neighbourhood   for α , thereby proving 
the results of Theorem 1. 
 
Proof. Using assumption (23), we can create a 
neighbourhood for   with a radius 0ε >  around α , 

{ }2 ε= ∈ − ≤k α k  , which satisfies the following 

conditions: 
 

( )max 1.g | g
∈

≤ <′
k

k y


              (24) 

 
It must be shown that ( )g  | ∈ ∀ ∈k y k  . If any element 

∈k   is selected, it must be noted that 
 

( ) ( ) ( )| | |g g g− = −α k y α y k y  

  ( ) ,g | gε ε= ′ − ≤ ≤s y α k       (25) 

 
where  ∈ ×s α k . Equation (25) indicates that ( )g | ∈k y  . 

Finally, the iteration tθ  converging to α  for any initial 
estimator 0 ∈θ   can be justified in the same ways as the 
methods used in Theorem 1, except by replacing   with 
 . □ 
 

In this study, the convergence for both ,p tσ  and *,
 

q t
ξ  was 

determined using Corollary 1. To facilitate this 
determination, we used the data on the disaster losses in the 

United States from 1977 to 2021 in billions of dollars, with a 
data size of 280 being obtained. This information was 
accessed at https://www.emdat.be (accessed 8 November 
2022). The data were confirmed to have extreme values 
since the probability function tail was fat and sloped more to 
the right. The fat tail of the probability function can be seen 
in the data’s Kurtosis (80.1725), which was >3, and the 
slope can be seen in the data skewness (8.0095), which was 
positive. 

To obtain the vector y , the threshold value µ  was first 
determined. Herein, the threshold value was determined 
using the Kurtosis method. The threshold value selection 
algorithm is presented in Fig. 1. 
 

 
 
The data were first partitioned into 280 sub-data sets. The 

first sub-data set was the data itself, and the second sub-data 
set was the former sub-data set without the most prominent 
datum. The threshold value was the most prominent datum 
of the largest sub-data set that had a Kurtosis of ≤3. The 
threshold value was determined using the Kurtosis method in 
Scilab v. 6.1.1. The threshold value obtained was 4.4881, 
and the most prominent datum was the 196th sub-data set, 
which was the largest sub-data set, with a Kurtosis of <3, 
namely 2.9399. The vector of y  is presented as follows: 
 

0.0118
0.1754

.

204.2792

 
 
 =
 
 
 

y


                (26) 

 
The next stage comprised running each iteration pair. The 

algorithm for determining the convergence with the data is 
presented in Fig. 2. The initial vector estimator and the 
tolerance error were determined in advance. According to 
Hosking and Wallis [19], the initial vector can be determined 
using the following equation: 
 

  

Threshold value

Finish

Sorting data from smallest to largest

The data

Create data partitions as large as their size

Start

Threshold value is the largest datum of the subdata

The first subdata is the data itself

Kurtosis 3 ?
No

Yes

Kurtosis calculation of subdata

The new subdata is 
the previous without 

the largest datum

 
Fig. 1.  The threshold value selection algorithm via the kurtosis method. 
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0
2 , 2 ,

2 2

T
y y

y y
λ

λ λ
 

= − − − 
θ            (27) 

 
where y  represents the average of y , and 
 

1

1 .
1

m

i
i

m i y
m m

λ
=

−
=

−∑                (28) 

  
Alternatively, the initial vector can also be determined using 
the following equation [15]: 
 

0 2 2
11 , 1 ,

2 2

T
y y y

s s
    = + −    

    
θ           (29) 

 
where 2s  represents the variance of y . This study 
determined the initial vector estimator using equation (27). 
Following this, the selected tolerance error was 61 10ε −= × . 

The iteration pairs involved were the vector 
,

*,

p t

q t

σ

ξ

 
 
  

 with 

1, 2p =  and * 1,2,4q = . The iteration results for each 

,

*,

p t

q t

σ

ξ

 
 
  

 are presented in Table III, which shows that only 

iterations 
1,

*,

t

q t

σ
ξ

 
 
  

 converge, whereas the other iterations 

diverge. The fixed point α  obtained was almost the same for 

each iteration. Therefore, each iteration 
1,

*,

t

q t

σ
ξ

 
 
  

 has a 

( )g |′ α y  value <1. Thus, based on Corollary 1, there are 

closed neighbourhoods for α , so each iteration 
1,

*,

t

q t

σ
ξ

 
 
  

 

converges to α . 
 Following this, the diverging values of ( )g |′ α y  for each 

iteration 
2,

*,

t

q t

σ
ξ

 
 
  

 were analysed (see Table III). Assume that 

the α  for each iteration 
2,

*,

t

q t

σ
ξ

 
 
  

 is 
4.9749
0.6857

 
 
 

, which is the 

mean of α  in iteration 
1,

*,

t

q t

σ
ξ

 
 
  

. The ( )g |′ α y  values for 

each iteration 
2,

*,

t

q t

σ
ξ

 
 
  

 are presented in Table IV, which 

demonstrates that the ( )g |′ α y  value of each iteration 

2,

*,

t

q t

σ
ξ

 
 
  

 had a value of >1. According to Corollary 1, this 

indicates that there is no closed neighbourhood for α , in 

which each iteration 
2,

*,

t

q t

σ
ξ

 
 
  

 converges to α . 

 

 

D. Fixed-Point Iterations in GPD Parameter Estimation 
using the ML Method 

These results indicate that three iterations meet the 
unbiased estimator and convergence conditions, namely 

  

error error tolerance ?

Initialize the initial parameter 
estimators and error tolerance

GPD parameter estimators

Finish

The extreme excess data

Start

No
Yes

Estimate the new parameter 
and calculate the iteration error

 
Fig. 2.  Checking iteration convergence algorithm. 
  

TABLE IV 

( )|′ α yg  VALUES FOR THE DIVERGE-ITERATIONS 

Iteration ( )|g ′ α y  

2,

1,

t

t

σ
ξ

 
 
 

 1.3450 

2,

2,

t

t

σ
ξ

 
 
 

 1.3941 

2,

4,

t

t

σ
ξ

 
 
 

 1.3748 

 
 
 

 

TABLE III 
THE ITERATION RESULTS OBTAINED 

Iteration Iteration 
Number 

α  ( )|g ′ α y  

1,

1,

t

t

σ
ξ

 
 
 

 18 4.9712
0.6866

 
 
 

 0.7780 

1,

2,

t

t

σ
ξ

 
 
 

 41 4.9793
0.6839

 
 
 

 0.9249 

1,

4,

t

t

σ
ξ

 
 
 

 27 4.9743
0.6856

 
 
 

 0.8656 

2,

1,

t

t

σ
ξ

 
 
 

 diverges - - 

2,

2,

t

t

σ
ξ

 
 
 

 diverges - - 

2,

4,

t

t

σ
ξ

 
 
 

 diverges - - 
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1,

*,

t

q t

σ
ξ

 
 
  

 with * 1,2,4q = . Expanding on this, the iteration 

1,

*,

t

q t

σ
ξ

 
 
  

 for each *q  is expressed as follows: 

 

( )1 1

1 11

1,

11, 1 1

1 1 1 1

1

,ln 1
1

m
t t i

t t ii

t m it tt i t
m i

t i t t i

y
m y

y

y
y

σ ξ
σ ξ

σ
ξξ σ

ξ
σ ξ

− −

− −=

−= −

− = − −

 +
 

+ 
     = =  +      −
 
 + 

∑

∑

∑

θ     (30) 

 

( )

( )

1 1

1 11

1,

1 12, 1 1

1 1 1 1

1

,ln 1

1

m
t t i

t t ii

t m it t tt i t
m i

t i t t i

y
m y

y

y
y

σ ξ
σ ξ

σ
ξ ξξ σ

ξ
σ ξ

− −

− −=

− −= −

− = − −

 +
 

+ 
     = =  +      
 

+ + 

∑

∑

∑

θ     (31) 

 
and 
 

( )

( )

1 1

1 11

1,

14, 1 1

1 1 1 1

1

.ln 1

1

m
t t i

t t ii

t m it tt i t
m i

t i t t i

y
m y

y

y
y

σ ξ
σ ξ

σ
ξξ σ

ξ
σ ξ

− −

− −=

−= −

− = − −

 +
 

+ 
     = =  +      
 + + 

∑

∑

∑

θ     (32) 

 
Therefore, professionals and practitioners can use 

Equations (30), (31), and (32) to estimate GPD parameters 
using the ML method. 

 

V. DISCUSSION 

A. The Unbiased Estimator Is Not Necessarily Convergent 
The determination of the unbiased estimators of the GPD 

parameters in Section IV (B) shows that iteration 
2,

*,

t

q t

σ
ξ

 
 
  

 

with * 1,2,4q =  is an unbiased estimate of θ , and it is 
justified by each unbiased estimator that is equal to zero. 
However, after determining the convergence of iteration 

2,

*,

t

q t

σ
ξ

 
 
  

 in Section IV (C), only iteration 
2,

*,

t

q t

σ
ξ

 
 
  

 was found 

to not meet the convergence criterion. Thus, an unbiased 
estimator of the GPD parameter is not necessarily 
convergent. 

B. The Effect of the ( )|′ α yg  Value on Convergence Speed 

As can be seen in Table III, the value of ( )|′ α yg  has a 

positive relationship with the number of iterations required to 
converge to the solution. The closer to zero the value of 

( )|′ α yg  is, the fewer iterations it takes to converge, and 

vice versa. 
 

C. The Estimated GPD Parameters’ Accuracy and Goodness 
of Fit 

The estimated GPD parameters’ accuracy can be 
determined through various measures. Herein, the mean 
absolute percentage error (MAPE) was used. The accuracy 
of the GPD parameter estimation was considered ‘good’ if 
the MAPE value was between 10%–20%, and it was 
considered ‘very good’ if the MAPE values were <10% [41], 
[42]. The MAPE of the estimated GPD parameters was 
calculated using the following equation: 
 

( )( )1

1

1MAPE 100%,
m

Y e i i

ii

F F y y

m y

−

=

−
= ×∑      (33) 

 
where ( )eF ⋅  represented the empirical distribution function 

and ( )1
YF − ⋅  represented the inverse function of (1). The 

MAPE of the estimated GPD parameters from each iteration 

1,

*,

t

q t

σ
ξ

 
 
  

 is presented in Table V, which shows that this 

MAPE value was between 10%–20%. Therefore, the GPD 

parameter estimation for each iteration 
1,

*,

t

q t

σ
ξ

 
 
  

 was 

classified as ‘good’.  

Furthermore, the GPD parameters’ goodness of fit can be 
determined visually or formally. Visually, determining 
goodness of fit can be conducted with probability-probability 
plots (P-P plots), where set 

( ) ( )( ){ }, , 1, 2, ,e i Y iF y F y i m= = …  is placed into a 

Cartesian diagram. The estimated GPD parameters are 
considered visually fit for describing the data if the data for 
set   are scattered around a line with a gradient of 1 [43]. 

TABLE V 
MAPE OF ESTIMATED GPD PARAMETERS  

OF THE CONVERGE-ITERATIONS 

Iteration MAPE (%) 

1,

1,

t

t

σ
ξ

 
 
 

 17.3639 

1,

2,

t

t

σ
ξ

 
 
 

 17.4081 

1,

4,

t

t

σ
ξ

 
 
 

 17.3805 
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The P-P plots for each estimated GPD parameter of iteration 

1,

*,

t

q t

σ
ξ

 
 
  

 are presented in Fig. 3, which demonstrates that the 

scatterplot of set   for each iteration 
1,

*,

t

q t

σ
ξ

 
 
  

 is centred 

around a red line with a gradient of one. Thus, the GPD 

parameters estimated by iteration 
1,

*,

t

q t

σ
ξ

 
 
  

 are visually fit to 

describe the data distribution. Following this, the goodness 
of fit can be formally reviewed using the Kolmogorov-
Smirnov (KS) and AD tests. The statistical value of the KS 

test is determined using the following equation [44], [45], 
[46], [47]: 
 

( ) ( )sup .e Y
y

F y F yτ = −              (34) 

If the statistical value of the KS test is greater than the 
critical value ( )ατ , the estimated GPD parameter is not fit 
for describing the data distribution, and vice versa. The 
statistical value of the AD test can be determined using the 
following equation [48]: 

( ) ( ) ( ){ }1
1

1 2 1 ln ln 1 .
m

Y i Y m i
i

A i F y F y m
m − +

=

   = − − + − −   ∑
 (35) 

 

  
(a) (b) 

 
(c) 

 

 

Fig. 3.  P-P Plots for Estimated GPD Parameters of Iteration 
1,

1,

t

t

σ
ξ

 
 
 

, 
1,

2,

t

t

σ
ξ

 
 
 

, and 
1,

4,

t

t

σ
ξ

 
 
 

 on (a), (b), and (c) respectively. 
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If the statistical value of the AD test is greater than the 
critical value ( )Aα , the estimated GPD parameter is not fit 
for describing the data distribution, and vice versa. With a 
significance level of 0.05, the statistical values of the KS and 
AD tests and their respective critical values for the estimated 

GPD parameters for each iteration 
1,

*,

t

q t

σ
ξ

 
 
  

 are presented in 

Table VI, which shows that the statistical values of the KS 

and AD tests for each iteration 
1,

*,

t

q t

σ
ξ

 
 
  

 were smaller than 

their respective critical values. Therefore, the GPD 

parameters of each iteration 
1,

*,

t

q t

σ
ξ

 
 
  

 were formally fit for 

describing the data distribution. 

 

D.  The Necessary Conditions for Reaching the Maximum 
Solution for the Estimated GPD Parameters 

The estimated GPD parameters for each iteration 
1,

*,

t

q t

σ
ξ

 
 
  

 

must meet the necessary conditions to reach the maximum 
solution of the log-likelihood function (4). The maximum 
local solution of the GPD log-likelihood function (4) is 
reached at the critical point α  if the Hessian matrix of (4), 
denoted by ( )|H θ y , at α  is a negative definite, namely 
[49]: 

 

{ } ( )1 2

2
0 , 0.Ta

|
a

 
∀ = ∈ − < 

 
H α y<a a a        (36) 

 
The results from reviewing the necessary conditions for 

reaching the maximum solution for the estimated GPD 

parameters for each iteration 
1,

*,

t

q t

σ
ξ

 
 
  

 are presented in Table 

VII, which delineates that the ( )TH α ya a│  value of each 

iteration 
1,

*,

t

q t

σ
ξ

 
 
  

 was negative for each { }2 0∈ −a . 

Therefore, every α  in each iteration 
1,

*,

t

q t

σ
ξ

 
 
  

 satisfied the 

maximum solution of the log-likelihood function (4). 
 

VI. CONCLUSION 
This study presented the design of fixed-point iteration 

equations for estimating GPD parameters using the ML 
method. The fixed-point iteration method was used because 
it is the simplest numerical method for determining a 
function’s solution. This method was also used to determine 
the solution for the first derivative of the GPD log-likelihood 
function, which does not have a closed form. 

In the initial stage of designing the iterations, eight fixed-
point iteration equations were obtained (see Table II). After 
this, the eight fixed-point iteration equations were reviewed 
to determine their unbiased estimators and convergence, with 
three of them satisfying these conditions, as presented in 
equations (30), (31), and (32). Thus, numerical proof was 
obtained for the assertion that an unbiased iteration equation 
of the GPD parameter is not necessarily convergent to the 
solution. Moreover, the closer to zero the value of the first 
derivative of the iteration at the solution, the fewer iterations 
it takes to converge. Moreover, it was found that the 
estimated GPD parameters obtained through the simulation 
have good accuracy and goodness of fit. The accuracy was 
demonstrated by the MAPE value of 17%, while the 
goodness of fit was determined using KS and AD tests, 
which resulted in values less than their respective critical 
values. Finally, the estimated GPD parameters met the 
necessary conditions for the maximum solution of the GPD 
log-likelihood function. 

Therefore, the fixed-point iteration equations designed in 
this study can facilitate the estimation of GPD parameters 
when modelling the extreme distribution of random variables. 
By using these fixed-point iteration equations, professionals 
and practitioners no longer need to design fixed-point 
iteration equations when estimating GPD parameters and 
when reviewing unbiased estimators and convergence. 
 

 

TABLE VII 
CHECKING THE HESSIAN MATRIX OF THE GPD LOG-LIKELIHOOD 

FUNCTION AT α  OF THE CONVERGE-ITERATIONS  

Iteration ( )T H α ya  a│  Value  

1,

1,

t

t

σ
ξ

 
 
 

 ( )2 2
1 2 21.4338 2.9331  29.7677 0a a a − + + <  

 

1,

2,

t

t

σ
ξ

 
 
 

 ( )2 2
1 2 21.4315 2.9473 30.0156 0a a a − + + <  

 
1,

4,

t

t

σ
ξ

 
 
 

 ( )2 2
1 2 21.4327 2.9384 29.8554 0a a a − + + <  

 

 
 
 

 

TABLE VI 
THE KS AND AD STATISTICAL TEST VALUES AND THEIR RESPECTIVE 
CRITICAL VALUES OF THE ESTIMATED GPD PARAMETERS FOR THE 

CONVERGE-ITERATIONS 

Iteration τ  0.05τ  A  0.05A  

1,

1,

t

t

σ
ξ

 
 
 

 0.0624 

0.1460 

0.3162 

2.5018 
1,

2,

t

t

σ
ξ

 
 
 

 0.0627 0.3164 

1,

4,

t

t

σ
ξ

 
 
 

 0.0625 0.3163 
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