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Abstract—In recent years, data has been developing rapidly.
However, Monte Carlo expectation maximization (MCEM)
method and parameter extended expectation maximization (PX-
EM) method experience slow running speeds and cannot meet
the requirements of data processing in the context of big data
and distributed data, due to the lack of response in random
effects model. This article introduces a distributed monotonic
overrelaxation PX-EM (DMOPX-EM) method based on the PX-
EM method by using a overrelaxation factor. The proposed
method not only has less iteration time, but also has higher
estimation accuracy when processing big or distributed data.

Index Terms—distributed processing, expectation maximiza-
tion, random effects model, residual maximum likelihood.

I. INTRODUCTION

THE missing data issue in random effects model is
gaining increasing attention from scholars. Yucel [1]

(2008) and Kline et al. [2] (2017) have already studied the
imputation methods for level 1 variables. Many scholars have
conducted in-depth research on response missing problems.
Field and Welsh [3] (2007) shows various methods for
handling clustered data, but these methods have dependency
assumptions. The use of the expectation maximization (EM)
method to calculate maximum likelihood (ML) estimates by
Hall [4] (2000), but the EM method has advantages over
the Newton-Raphson or Fisher scoring method when dealing
with models with a large number of covariance parameters.
The Monte Carlo EM (MCEM) method proposed by Ibrahim
et al. [5] (2001) has been used for parameter estimation in
choice models with non-negligible missing response data,
with improvements made by Ibrahim and Molenberghs [6]
(2009). Yu [7] (2012) shows the idea of overrelaxed methods
to accelerate the EM algorithm, with a focus on preserving
its simplicity and monotonic convergence. Diffey et al. [8]
(2017) shows the parameter extension EM (PX-EM) method
under the residual maximum likelihood (REML) of the
random effects model and proved that this method converges
to a local maximum of the residual log-likelihood function,
resulting in better estimation performance. However, this
method requires a large number of iterations. Guo et al.
[9] (2020) shows statistical calculations under a distributed
framework. Guo [10] (2012) shows the representation of
parallel statistical computation, was provided to facilitate the
statistical computation process. Guo et al. [11] (2015) shows
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the parallel maximum likelihood estimator for multiple linear
regression models, which has experienced significant devel-
opment in the field of statistics.

In this paper, we propose an monotonic overrelaxed PX-
EM (MOPX-EM) method based on the PX-EM method.
This method is similar to the Newton acceleration PX-EM
method. The basic idea is to obtain the parameter estimation
results of multiple processes in the M step based on the
sufficient utilization of information in the E step, and intro-
duce overrelaxation factors to accelerate the PX-EM method.
Under distributed data, we perform distributed processing
on the PX-EM method to obtain distributed PX-EM (DPX-
EM) method. By combining the DPX-EM method with the
MOPX-EM method, we obtain the distributed monotonic
overrelaxed PX-EM (DMOPX-EM) method. This method
divides the data into blocks and uses extremum statistics to
improve the accuracy of estimation. In this way, not only
the computational program is simplified and the computation
time is reduced, but also the estimation accuracy is improved.

II. THE METHOD

A. Random Effects Model Of Missing Response

First, we introduce the response missing data. Considering
the n× 1 dimensional truth data matrix Y ∗, when the truth
value exists, Y ∗ is a complete matrix, expressed as:

Y ∗ = (y∗ij)n×1 = (Y ∗
1 , ..., Y

∗
n )

⊤. (1)

We construct the n × 1 dimensional indicator matrix ℜ ,
expressed as:

ℜ = (γ1, ..., γn)
⊤,

where

γi =

{
1, if Ymis is unobserved.

0, if Yobs is observed.

The n×1 dimensional missing data matrix Y is expressed
as:

Y = Y ∗
⊗

ℜ = (Y1, ..., Yn)
⊤, (2)

where
⊗

is the Hadamard product, for matrix ℜ, if γi =
1, position i corresponds to the observed value, if γi = 0,
position i corresponds to the missing value, and the observed
and missing values in matrix Y are expressed as Yobs and
Ymis, respectively. In addition, we define nob as the number
of observed data, and nna as the number of missing data,
with n = nob + nna.

The linear mixed model at two levels is expressed as:

Y = Xβ + Zb+ e, (3)

where X = (X1, ..., Xn)
⊤ is a matrix of known fixed-

effect covariates of n× p, β = (β1, ..., βp)
⊤ is an unknown

parameter vector of p × 1, the random effect matrix Z =
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(Z1, ..., Zn)
⊤ is a matrix of known random effect covariates

of n × q, b = (b1, ..., bq)
⊤ is a q × 1 parameter vector of

random effects, distributed as bi ∼ N(0, σ2
b ), random error

e = (e1, ..., en)
⊤, distributed as ei ∼ N(0, σ2

e). D is the
variance matrix of b, G is the variance matrix of e, In×n is
the array of units.

For PX-EM method (Diffey et al, 2017), the random
effects model is reformulated by introducing a secondary
parameter λ, which extending the random effects model to

Y = Xβ + ZΛf + e, (4)

where Λ = Λ(λ) is a q × q real reversible matrix, which is
a function of the v × 1 auxiliary parameter vector λ.[

f
e

]
∼ N(

[
0
0

]
,

[
D 0
0 R

]
)

with b = Λf and G = ΛDΛ⊤. For missing response variable
Y , the method has fewer iterations and better outcomes
compared to the EM.

B. The DMOPX-EM Method

The full data set {X,Z, Y } in Equation (4) is divided into
M data subsets, that is {XIm , ZIm , YIm}, here

X = (X1, ..., Xn)
⊤ = (XI1 , ..., XIM ), (5)

Z = (Z1, ..., Zn)
⊤ = (ZI1 , ..., ZIM ), (6)

Y = (Y1, ..., Yn)
⊤ = (YI1 , ..., YIM ), (7)

where
⋃
Im = I , and I ∈ (1, ..., n).

The amount of data on each machine can be equal
or not equal, here we have an aliquot, that is, there are
nIm subset number on mth machine, expressed as YIm =
(YIm1, ..., YImnIm

) and
∑

nIm = n. The data are chunned,
{Yobs,Im , Xobs,Im , Zobs,Im} are the observed data after pro-
jection and {Ymis,Im , Xmis,Im , Zmis,Im} are the missing
data after projection. βIm and bIm are unknown parameter
vectors of fixed effects and random effects in distributed
manner, respectively. To estimate random effects model, the
conditional derivation of REML starts by considering the
transformation:

L⊤
ImYIm =

[
L⊤
1,Im

Yobs,Im

L⊤
2,Im

Yobs,Im

]
=

[
Y1,Im

Y2,Im

]
,

where LIm = (L1,Im , L2,Im) is a non-singular matrix. L1,Im

and L2,Im are nob,Im ×p and nob,Im ×(nob,Im −p) matrices,
respectively, are all column rank and satisfy L⊤

1,Im
Xobs,Im =

Ip and L⊤
2,Im

Xobs,Im = 0. The distribution of the trans-
formed data as follows:[
Y1,Im

Y2,Im

]
∼ N(

[
βIm

0

]
,

[
L⊤
1,Im

HImL1,Im L⊤
1,Im

HImL2,Im

L⊤
2,Im

HImL1,Im L⊤
2,Im

HImL2,Im

]
),

where
HIm = Zobs,ImGImZ⊤

obs,Im +RIm . (8)

For the REML estimation of the variance parameters, a log-
likelihood function on Y2,Im is expressed as

ℓ(θ;Y2,Im) = −1

2
[log(det(L⊤

2,ImHImL2,Im))

+ Y ⊤
2,Im(L⊤

2,ImHImL2,Im)−1Y2,Im ].

and θ = (βIm , bIm) is the vector of variance parameters.
From Verbyla [12] (1990), we can get

PIm = L2,Im(L⊤
2,ImHImL2,Im)−1L⊤

2,Im

= H−1
Im

−H−1
Im

Xobs,Im(X⊤
obs,ImH−1

Im
Xobs,Im)−1

X⊤
obs,ImH−1

Im
. (9)

So we can get log-likelihood function

ℓ(θ;Y2,Im) = −1

2
[log(det(HIm)) + log(det(X⊤

obs,Im

H−1
Im

Xobs,Im)) + Y ⊤
obs,ImPImYobs,Im ].

The least squares method, the initial estimator of βIm is
expressed as:

ˆβIm = (X⊤
obs,ImH−1

Im
Xobs,Im)−1X⊤

obs,ImH−1
Im

Yobs,Im . (10)

When represented by matrix notation, the coefficient ma-
trix of the Henderson mixture model equation can be written
as

C =

[
X⊤

obs,Im
R−1

Im
Xobs,Im X⊤

obs,Im
R−1

Im
Zobs,Im

Z⊤
obs,Im

R−1
Im

Xobs,Im Z⊤
obs,Im

R−1
Im

Zobs,Im +G−1
Im

]
=

[
CXX CXZ

CZX CZZ

]
. (11)

The inverse of CZZ in Equation (11) is:

CZZ = (Z⊤
obs,ImSImZobs,Im +G−1

Im
)−1, (12)

where SIm = R−1
Im

−R−1
Im

Xobs,Im(X⊤
obs,Im

R−1
Im

Xobs,Im)−1

X⊤
obs,Im

R−1
Im

.
The derivation of DPX-EM and DMOPX-EM methods is

achieved by considering the fixed effect vector as a random
effect where the variance tends to infinity, see Zhou and Tang
[13] (2021). We call this implementation the random effects
method. Using this method, we will assume that the βIm ∼
N(0, B). We define the joint distribution of Yobs,Im , bIm and
eIm as[

Yobs,Im

bIm
eIm

]
∼ N(

[
0
0
0

]
,

[
FIm Zobs,ImGIm RIm

GImZ⊤
obs,Im GIm 0

RIm 0 RIm

]
).

Among them, have

F = Xobs,ImBX⊤
obs,Im + Zobs,ImGImZ⊤

obs,Im +RIm

= Xobs,ImBX⊤
obs,Im +HIm .

with

F−1 = H−1
Im

−H−1
Im

Xobs,Im(B−1 +X⊤
obs,ImH−1

Im
Xobs,Im)−1

X⊤
obs,ImH−1

Im
.

The random effects method assumes that the variance of
βIm tends to infinity, namely B−1 −→ 0. Therefore ,

F−1 −→ H−1
Im

−H−1
Im

Xobs,Im(X⊤
obs,ImH−1

Im
Xobs,Im)−1

X⊤
obs,ImH−1

Im
= PIm .

The joint distribution is

eIm |Yobs,Im ∼ N(RImPImYobs,Im ,WC−1W⊤). (13)

bIm |Yobs,Im ∼ N(GImZ⊤
obs,ImPImYobs,Im , CZZ), (14)

where W = (Xobs,Im , Zobs,Im) ∈ Rnob,Im×(p+q).
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E-step: For given θ
(0)
Im

, at the iteration t,

QIm = −1

2
[log(det(L⊤

2,ImRImL2,Im)) + log(det(GIm))

+ (Yobs,Im − Zobs,Im b̃
(t)
Im

)⊤SIm(Yobs,Im − Zobs,Im b̃
(t)
Im

)

+ tr(Z⊤
obs,ImSImZobs,ImCZZ(t)

) + tr(G−1
Im

CZZ(t)

)],

where

b̃
(t)
Im

= G
(t)
Im

Z⊤
obs,ImP

(t)
Im

Yobs,Im ,

ẽ
(t)
Im

= R
(t)
Im

P
(t)
Im

Yobs,Im .

M-step: Update the parameter estimates of each compo-
nent under the DPX-EM method as

d
(t+1)
Im

= −1

q
[(̃b

(t)
Im

)⊤b̃
(t)
Im

+ tr(CZZ(t)

)], (15)

σ̂2(t+1)

e,Im,PXEM =
1

nob,Im − p
[(Yobs,Im − Zobs,Im b̃

(t)
Im

)⊤K

(Yobs,Im − Zobs,Im b̃
(t)
Im

) + T ], (16)

λ
(t+1)
Im

=
Y ⊤
obs,Im

KZobs,Im b̃
(t)
Im

(̃b
(t)
Im

)⊤Z⊤
obs,Im

KZobs,Im b̃
(t)
Im

+ T
, (17)

where

K = In,Im −Xobs,Im(X⊤
obs,ImXobs,Im)−1X⊤

obs,Im ,

T = tr(Z⊤
obs,ImKZobs,ImCZZ(t)

).

σ̂2(t+1)

b,Im,PXEM = (λ
(t+1)
Im

)2d
(t+1)
Im

. (18)

For DPX-EM method, given the initial value β
(0)
Im

, b
(0)
Im

,
σ2(0)

b,Im
, σ2(0)

e,Im
, m = 1, ...,M , first update the parameter value

σ2(t+1)

b,Im,MOPXEM of the t+ 1 iteration is

σ2(t+1)

b,Im,MOPXEM = (1 + ω
(t)
Im

)σ2(t+1)

b,Im,PXEM

− ω
(t)
Im

σ2(t)

b,Im,MOPXEM . (19)

Generally speaking, we call ω(t)
Im

the actual overrelaxation
factor and ωIm the nominal overrelaxation factor. The rela-
tionship of them is as follows:

ω
(t)
Im

=
ωImrIm

1 + ωIm − ωImrIm
,

rIm =
σ2(t+1)

b,Im,PXEM

σ2(t+1)

b,Im,MOPXEM

, ωIm ∈ [0, 1].

With the nominal overrelaxation factor we give the param-
eter value σ2(t+1)

e,Im,MOPXEM for the t+ 1 iteration as

σ2(t+1)

e,Im,MOPXEM = (1 + ωIm)σ2(t+1)

e,Im,PXEM

− ωImσ2(t)

e,Im,MOPXEM . (20)

From this, we can obtain that covariance estimation ma-
trices G0 and R0 of b and e.

After the iteration stops, from the estimated
σ2(t+1)

b,Im,MOPXEM in Equation (19) and σ2(t+1)

e,Im,MOPXEM in
Equation (20), we can obtain

β̂0 = (X⊤
obs,ImH−1

0 Xobs,Im)−1X⊤
obs,ImH−1

0 Yobs,Im , (21)

b̂0 = G0Z
⊤
obs,ImP0Yobs,Im , (22)

where

H−1
0 = Zobs,ImG0Z

⊤
obs,Im +R0,

P0 = H−1
0 −H−1

0 Xobs,Im(X⊤
obs,ImH−1

0 Xobs,Im)−1X⊤
obs,Im

H−1
0 .

Missing values were interpolated, with

Ŷmis,Im = Xmis,Im β̂0 + Zmis,Im b̂0. (23)

So, ˆYIm = {Ŷmis,Im , Ŷobs,Im}.

III. NUMERICAL ANALYSIS

A. Prepare Knowledge

The experiments in this chapter were conducted on a
computer with a Win 10 64-bit operating system and used
simulation software with R software. Based on this foun-
dation, five interpolation methods were employed to handle
missing responses: MCEM, PX-EM, MOPX-EM, DPX-EM
and DMOPX-EM. In the simulation analysis, the mean
squared error (MSE) and mean absolute error (MAE) were
used to evaluate the deviation between the true value and
the estimated value. In real data analysis, the mean squared
forecast error (MSFE) and mean relative error (MRE) are
used to evaluate the deviation between the true value and the
estimated value.

In non-distributed environment, performance metrics are
expressed as

MSE(Ŷ ) =
1

n

n∑
i=1

(Yi − Ŷi)
2,MAE(Ŷ ) =

1

n

n∑
i=1

|Yi − Ŷi|.

MSFE(Ŷ ) =
1

3n

n∑
i=1

(Yi−Ŷi)
2,MRE(Ŷ ) =

1

n

n∑
i=1

|Yi − Ŷi

Yi
|.

where Yi represents the true value after projection, and Ŷi

represents the estimated value after projection. The range of
MSE, MAE, MSFE and MRE is [0, 1]. When the value is
closer to 0, it indicates a better interpolation effect.

In distributed environment, performance metrics are ex-
pressed as

MSE( ˆYIm) =
1

nIm

M∑
m=1

(YIm − ˆYIm)2,

MAE( ˆYIm) =
1

nIm

M∑
m=1

|YIm − ˆYIm |,

MSFE( ˆYIm) =
1

3nIm

M∑
m=1

(YIm − ˆYIm)2,

MRE( ˆYIm) =
1

nIm

M∑
m=1

|YIm − ˆYIm

YIm

|.

where YIM represents the true value after projection, and
ˆYIm represents the estimated value after projection.

B. Simulation

In this section, we will conduct two simulation analyses to
validate the stability and sensitivity of the five interpolation
methods in handling missing responses.
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1) Stability analysis: Varying (M,ωIm ,MR) with fixed
(n, p, q)

For (n, p, q) = (600, 10, 5). We verified the impact of M
on DPX-EM method, the impact of M and ωIm on DMOPX-
EM method, and the impact of missing ratio (MR) on EM,
MCEM, PX-EM, MOPX-EM, DPX-EM, and DMOPX-EM
methods. The range of values for the aforementioned control
factors is shown in Table 1.

TABLE I
THE NUMERICAL SELECTION OF EACH CONTROL FACTOR IN

SIMULATION 1

M 5 10 15 20

ωIm 0.15 0.3 0.45 0.6

MR 0.1 0.2 0.3 0.4

Case 1. Varying M on DPX-EM
For MR = 0.1, change M = {5, 10, 15, 20}, Figure 1

presents the comparison of MSE values and MAE values
of DPX-EM with respect to the changes in M . Subfigure
(a) illustrates the variations in MSE values of the estimated
response variable, while subfigure (b) represents the changes
in MAE values. From the observation of Figure 1, it can be
seen that the trends in the change of MSE values and MAE
values are generally similar. As M increases, the values
of MSE and MAE first decrease and then increase. When
M increases from 5 to 10, the MSE value decreases from
0.0917928 to 0.08130032, and the MAE value decreases
from 0.08367735 to 0.08272665, with a small magnitude
of change. When M increases from 10 to 15, the MSE
value decreases from 0.08130032 to 0.004041909, and the
MAE value decreases from 0.08272665 to 0.01005225, with
a larger magnitude of decrease. When M increases from
15 to 20, the MSE value increases from 0.004041909 to
0.01391535, and the MAE value increases from 0.01005225
to 0.02847215. When M = 15, DPX-EM achieves the
minimum values for MSE and MAE.

0.000

0.025

0.050

0.075

5 10 15 20
M

M
S

E
Ŷ

(a) MSE

0.00

0.02

0.04

0.06

0.08

5 10 15 20
M

M
A

E
Ŷ

(b) MAE

5 10 15 20

Fig. 1. Comparison Results Of DPX-EM In The Simulation

Case 2. Varying M and ωIm on DMOPX-EM
For MR = 0.1, changes M = {5, 10, 15, 20} and ωIm =

{0.15, 0.3, 0.45, 0.6}. Figure 2 presents the comparison of
MSE values and MAE values for DMOPX-EM method
with respect to the changes in M and ωIm . Subfigure (a)
illustrates the variations in MSE values of the estimated
response variables, while subfigure (b) represents the changes
in MAE values. Based on figure 2, it can be observed
that the value of ωIm has little impact on the DMOPX-EM
method. Specifically, when the parameter M is fixed and
different values of ωIm are considered, the MSE values and

MAE values remain quite consistent and stable. On the other
hand, with a fixed parameter ωIm and varying values of M ,
the MSE values and MAE values of DMOPX-EM method
decrease as M increases. For instance, when M = 5, the
maximum MSE value is 0.1001999 and the maximum MAE
value is 0.08783184; as M further increases, the MSE values
and MAE values fluctuate significantly. When M = 20, the
minimum MSE value is 0.00139224, while the minimum
MAE value is 0.006812342.

●
●

● ●
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(b) MAE

Fig. 2. Comparison Results Of DMOPX-EM In The Simulation

Case 3. Varying MR on EM, MCEM, PX-EM, MOPX-
EM, DPX-EM and DMOPX-EM

For (M,ωIm) = (5, 0.15), change MR =
{0.1, 0.2, 0.3, 0.4}. Figure 3 presents the comparison results
of MSE values and MAE values for five interpolation
methods with respect to the changes in MR. Subfigure (a)
illustrates the variations in MSE values of the estimated
response variables, while subfigure (b) represents the
changes in MAE values. Based on figure 3, it can be seen
that when MR is fixed, the MSE values and MAE values of
the five methods are not significantly different, but it is still
noticeable that the DMOPX-EM method has lower MSE
values and MAE values compared to the other methods. As
MR increases, the MSE values and MAE values of the five
interpolation methods also increase, and the DMOPX-EM
method consistently has lower MSE values and MAE values
than the other methods. When MR = 0.1, the DMOPX-EM
method achieves the minimum MSE value of 0.1001999 and
the minimum MAE value of 0.08756552. When MR = 0.4,
the DMOPX-EM method obtains the maximum MSE value
of 0.4299362 and the maximum MAE value of 0.3087811.

2) Sensibility analysis: Varying (n, p, q) with fixed
(M,ωIm ,MR)

For (M,ωIm ,MR) = (5, 0.15, 0.1). We examine the
MSE values and MAE values of the five interpolation
methods under different sample size n, dimensionality p, and
q for sensitivity analysis.

Case 4. Varying n with fixed (M,ωIm ,MR, p, q)
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Fig. 3. Comparison Results Of The Five Methods In The Simulation

For (M,ωIm ,MR, p, q) = (5, 0.15, 0.1, 10, 5), change
n = {400, 600, 800, 1000}. Figure 4 presents the comparison
results of MSE values and MAE values for five interpolation
methods with respect to the changes in n. Subfigure (a) illus-
trates the variations in MSE values of the estimated response
variables, while subfigure (b) represents the changes in MAE
values. From figure 4, it can be observed that as n increases,
the MSE values and MAE values of MCEM,PX-EM and
MOPX-EM method show a significant variation, initially
decreasing, then increasing, and then decreasing. The MSE
values and MAE values of the DPX-EM and DMOPX-EM
methods, on the other hand, show minimal differences. As n
increases, their MSE values and MAE values first increase,
then decrease, and then increase again. It is evident that the
DMOPX-EM method consistently yields lower MSE values
and MAE values compared to the other methods, indicating
that the DMOPX-EM method has the best interpolation
effect. When n = 400, the DMOPX-EM method achieves
the minimum MSE value of 0.02850028 and the minimum
MAE value of 0.02509272. When n = 1000, the MSE value
is 0.09680235 and the MAE value is 0.07953884.

Case 5. Varying p with fixed (M,ωIm ,MR, n, q)

For (M,ωIm ,MR, n, q) = (5, 0.15, 0.1, 400, 5), change
p = {10, 15, 20, 25}. Figure 5 presents the comparison
results of MSE values and MAE values for five interpolation
methods with respect to the changes in p. Subfigure (a)
illustrates the variations in MSE values of the estimated
response variables, while subfigure (b) represents the changes
in MAE values. From figure 5, it can be seen that as p
increases, the MSE values and MAE values of the MCEM,
PX-EM, and MOPX-EM methods initially decrease, then
increase, and then decrease again. The minimum values
are reached when p = 25. On the other hand, the MSE
values and MAE values of the DPX-EM and DMOPX-EM
methods initially increase, then decrease, and then increase
again as p increases. The minimum values are achieved
when p = 10. It can be observed that the DMOPX-EM
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Fig. 4. Comparison Results Of The Five Methods In The Simulation

method consistently has lower MSE values and MAE values
compared to other methods, indicating better interpolation
performance. Specifically, when p = 10, the DMOPX-EM
method achieves a minimum MSE value of 0.02850028 and
a minimum MAE value of 0.02509272.
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Case 6. Varying q with fixed (M,ωIm ,MR, n, p)
For (M,ωIm ,MR, n, p) = (5, 0.15, 0.1, 400, 10), change

q = {5, 6, 7, 8}. Figure 6 presents the comparison results of
MSE values and MAE values for six interpolation methods
with respect to the changes in q. Subfigure (a) illustrates
the variations in MSE values of the estimated response
variables, while subfigure (b) represents the changes in MAE
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values. From figure 6, it can be observed that there is a
difference in the MSE values and MAE values among the
five interpolation methods. It is evident that the DMOPX-EM
method has lower MSE values and MAE values compared to
the other methods, indicating that the DMOPX-EM method
has the best interpolation performance. As q increases, the
MSE values and MAE values of the DMOPX-EM method
first increase, then decrease, and then increase again. When
q = 7, the DMOPX-EM method achieves the minimum
MSE value of 0.01894107, and when q = 5, it achieves
the minimum MAE value of 0.02509272. When q = 6, the
DMOPX-EM method reaches the maximum MSE value of
0.06750091, and the maximum MAE value of 0.07335642.

●

●

●

●

0.00

0.05

0.10

0.15

0.20

5 6 7 8
q

M
S

E
Y

(a) MSE

●

●

●

●

0.00

0.05

0.10

5 6 7 8
q

M
A

E
Y

● DMOPX−EM
DPX−EM

MCEM
MOPX−EM

PX−EM

(b) MAE

Fig. 6. Comparison Results Of The Five Methods In The Simulation

C. Real Data Analysis

In this section, we analyze popmis dataset, comparing the
performance of the DMOPX-EM method and its comparative
methods by testing two performance indicators in estimating
response variables in random effects model.

The dataset was generated by Hox and records the char-
acteristics of students in different classes, including miss-
ing data in terms of student popularity. It consists of a
2000 × 7 matrix. The popmis dataset was fitted with a
random effects model, with the fixed effects covariate matrix
X = {pupil, texp, teachpop}, the random effects covariate
matrix Z = {school, sex, const}, and popular as the re-
sponse variable. There are 848 missing values. Therefore,
the dimensions are (n, p, q) = (2000, 3, 3). When analyzing
this dataset, the control factors for each algorithm were fixed
as (M,ωIm) = (20, 0.15). The comparison results of the
imputation methods as follows:

Figure 7 shows the comparison results of five interpola-
tion methods, MCEM, PX-EM, MOPX-EM, DPX-EM and
DMOPX-EM in the popmis dataset. Subfigure (a) illustrates
the variations in MSFE values of the estimated response
variables, while subfigure (b) represents the changes in MRE
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values. From the test results in figure 7, it is evident that
the MSFE values and MRE values for MCEM, PX-EM,
and MOPX-EM methods are quite similar. In comparison
to other imputation methods, the DMOPX-EM method has
the lowest MSFE values and MRE values, and MSFE
value is 0.0502788 and MRE value is 0.0359211. This
indicates better performance and higher estimation accuracy,
demonstrating superior imputation effectiveness.

IV. DISCUSSION

The response missing of random effects model is an
essential research topic in various academic and application
fields. To address the missing response variable issue, we
propose a novel distributed monotonic overrelaxation PX-
EM method based on distributed theory and overrelaxation
idea to accurately and quickly estimate the missing values.
For random effects model, we simulate and analyze the
control factors and dimensions using block numbers and
overrelaxation factors, which show that the DMOPX-EM
method has stronger rationality and requires less iteration
time compared to other methods, verifying the effectiveness
of the DMOPX-EM method.

The DMOPX-EM method in this paper improves the
performance of the PX-EM algorithm under certain circum-
stances and can be applied to handle various types of data.
However, there are still some shortcomings:

(1) Affected by the initial value, in the simulation analysis
of section III, especially when analyzing the influence of n,
p, and q on DMOPX-EM method in dealing with response
missing, the mean absolute error (MAE) and mean squared
error (MSE) values of the MCEM, PX-EM, DPX-EM, and
DMOPX-EM methods are not significantly different, and
the differences cannot be clearly seen. It is worth further
studying to improve the performance of these methods from
the perspective of initial values.

(2) In the future, it may be worth while to extend the meth-
ods mentioned in this article to more mixed models, such as
logistic mixed regression models, which also deserves further
research.
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