
 

  

Abstract—In this study, a novel scheme for the Caputo-

Fabrizio fractional derivative is employed to solve the problem 

of a fractional SIR model and a financial chaotic system. It is 

discovered that the proposed method yields equivalent 

solutions to some approximate results presented by the other 

techniques. Therefore, the strategy could be generalized to 

other systems to get more precise solutions. A novel fractional 

derivative scheme and algorithm presented here can be used to 

create and simulate fractional models for solving challenging 

problems in physics, biology, and engineering in the future. 

 
Index Terms— Numerical solutions, Numerical scheme, 

Simulation, Chaos. 

 

I. INTRODUCTION 

n recent decades, fractional calculus has become 

increasingly popular for modeling diffusion, control, and 

viscoelasticity. Engineering and scientific disciplines utilize 

fractional differential equations [1], [2]. Fractional 

differential equations can be solved in a variety of ways [3], 

[4]. The models of hyper-chaotic and chaotic systems have 

been widely applied in different disciplines such as 

electrical circuits, biology, and physics [5], [6]. Extensive 

research has focused on understanding complex systems 

such as cancer tumor dynamics, Zika virus transmission, 

Chaplygin gas models, biological population migration, and 

drift-flux models. Various mathematical techniques have 

been employed, including Lie symmetry analysis and 

numerical methods, to investigate these systems and derive 

exact solutions, conservation laws, and analyze their 

behavior [7]-[11]. 

Chaos theory finds significant applicability in the field of 

electrical circuit modeling, as discussed in a number of 

papers [12]-[14]. Considering the difficulty of predicting 

many real-world events, it is justifiable to use chaotic 

models. Asymptotic stability is a new technique for 

assessing chaotic systems by describing how the model 

parameter affects the dynamics of chaotic models, and 
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Lyapunov's inverse identifies the exact nature of chaos. 

Fractional calculation has a wide range of mathematical and 

scientific applications. Fractional computation has become 

increasingly common in science, mathematics, biology, and 

other fields for some of the latest research and applications 

[15]-[21]. This discovery is significant because fractional 

operators have multiple meanings [22]. The fractional 

derivative is particularly beneficial because it accounts for 

the effects of long-term memory. 

This paper investigates numerical solutions of fractional 

order systems and fractional SIR models utilizing diverse 

approaches. We have employed mathematical approaches to 

thoroughly examine and develop sophisticated and 

optimized solutions for both the fractional SIR model and a 

chaotic system model. Hence, the proposed methodology 

holds the potential for conducting additional investigations 

on alternative models. 

Recent research [23] has uncovered multiple compelling 

justifications for utilizing fractional derivatives in practical 

scenarios. The literature abounds with countless instances of 

chaotic systems, wherein it is widely acknowledged that 

chaotic systems exhibit tumultuous responses to the given 

initial conditions and even slight alterations in the 

parameters. Refer to the following fractional calculus papers 

[24] for study on the utilization of fractional derivatives in 

the modeling of chaotic systems. Various approaches, such 

as those derived from physics and engineering, have been 

utilized to address issues in management, economics, and 

biology, among other fields. [25]–[31]. The fractional SIR 

model has gained recent attention due to the proliferation of 

diseases like COVID-19 and others. observe [32]-[36]. 

The importance of this research lies in its ability to offer a 

numerical solution for a fractional SIR model and a chaotic 

fractional derivative system. This demonstration showcases 

the implementation of the Caputo-Fabrizio fractional 

derivative (CF fractional derivative e) scheme using 

MATLAB, a software platform for numerical computations. 

Therefore, the methodology presented is commendable for 

future investigations in different models. The presented 

study was done with the intention of making it relevant to 

future applications of fractional systems in the fields of 

physics and engineering. 

The significance and use of this approach lie in its ability to 

provide numerical solutions in various models, that includes 

chaotic and disease models. Moreover, it can be extended to 

include additional models in the field of pathology, 

dynamical models, coding, and hyper-chaos. Moreover, it 

has demonstrated remarkable efficacy in precisely 

identifying images, whether by predicting diseases or 

showing attractor chaos. 

The subsequent content presents the organization of this 
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article: Section 2 provides definitions of fractional 

derivatives. In Section 3, we explain the steps of a novel 

scheme for The Caputo-Fabrizio fractional derivative. In 

Section 4, we implement the novel scheme to solve the 

problem of a fractional SIR model and a financial chaotic 

system. At the end of this article, we present the conclusion. 

II. PRELIMINARIES AND BASIC DEFINITIONS 

In this section, we provide a concise summary of the 

fractional operators essential to our study. 

Definition 2.1: Let  )1,q   and   be open subset of 

,R  the Sobolev space ( )   qH   is defined by [1]: 

( ) ( ) ( ) 2 2    : , for allqH f L D f L q   =    . 

Definition 2.2: The Riemann-Liouville fractional integral  

operator of order 0   for a function ( )y t  is given by [1]: 
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Definition 2.3: The Caputo derivative of a function 

( )y t  of order  , where 0 1n n −    and with the 

lower limit zero, is defined as follows [34]:  
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Definition 2.4: For ( )1 0, ,       0y H t t  , 

( 0,   0,1T   . The CF fractional operator [37] is 

defined as follows: 
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The expression ( )B   must satisfy the requirement 

( ) ( )0 1 1B B= = . 

Theorem 2.1: (Generalized Fundamental Theorem of the 

Fractional Calculus) [38] 
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III. NUMERICAL SCHEME FOR THE FRACTIONAL DERIVATIVE  

The objective of this section is to examine an innovative 

approach for the CF fractional derivative, which is 

expressed in the following form [39]: 

( ) ( )( )
0

, .
CF

t
D y t f t y t


=  (5) 

Applying Theorem 2.1 in Equation (5), we have the 

following 
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where ( )
2

2
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=

−
  is a normalization function such that 

( ) ( )0 1 1M M= = . In this way 
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Replacing (8) in (7) we have 
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where 
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The numerical solution is derived using the following 

mathematical expression 
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IV. APPLICATIONS 

This section analyzes the practicality of the innovative 

suggestion for CF-FD on the numerical resolution of a 

fractional SIR model and a Chaotic system. 

Problem 4.1: We start with the fractional SIR model. In 

the early 20th century, Kermack and McKendrick published 

[40]. SIR, a quantitative model, was introduced for the first 

time.  The SEIR model was created by adding Exposed (E) 

as a fourth compartment to the SIR model [41] in order to 

describe how an outbreak disease 

,

I,

.

dS
aSI

dt

dI
aSI r

dt

dR
rI

dt

= −

= −

=

 (12) 
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In Table I below, we provide numerical approximate 

solutions of system (12) the fractional SIR model 

considering the values: 1 = , 2e 3 / 7,   0.15a r= − = , 

3

0
10S e= , 

0
1I = , 

0
1R =  and 1.t =  Applying the RK4 

approach at 1t =  and a numerical strategy for the FC 

operator. Moreover, when the step size h is short enough, 

the proposed numerical outcomes in this study are noticed to 

be in good agreement with that solutions derived by the 

RK4 method. We gave precise, near-identical solutions that 

closely resembled RK4. 

 

In Table II, The numerical solutions were provided using 

fractional order, with a values of 0.95 = , 

2e 3 / 7,   0.15a r= − = , 3

0 10S e= , 
0

1I = , 
0

1R =  and 

40 t = , and this demonstrates that the technique works well 

and is adaptable to other fractional systems. 
 

 
In Figure 1, we demonstrate the numerical solution of the 

fractional order model described in equation (12) using the 

fractional CF approach. This method is derived via 

evaluating the dynamics of the susceptible, infected, and 

recovered classes over a period of 40 days, with a fractional 

order value of 0.95 = . 

Problem 4.2: The financial chaotic system discussed in 

[42] is made up of product, capital, labor force, and debt. 

The model takes into account the interest rate ( )x t , which 

is influenced by two factors: the surplus of savings over 

investment and the structural adjustment based on products 

pricing. The investment demand ( )y t , which is directly 

related to the investment rate, and the price exponent ( )z t , 

which is determined by the market's conflict between supply 

and demand in the commercial sector [40] 

( ) ( )( ) ( )

( ) ( )

( ) ( )

2

,

1 ,

,

dx
z t y t a x t

dt

dy
by t x t

dt

dz
x t cz t

dt

= + −

= − −

= − −

 (13) 

 

the cost of the investment, and 0c   represents the demand 

elasticity of the commercial market. 

Table III below, provides numerical results of the 

fractional derivative FC to solve the financial chaotic system 

in Equation (13), where 1 = , 1,a =  0.1,  1b c= = , 

( )0 3x = , ( )0 1y = , ( )0 1z =  and 1.t =  Applying the 

RK4 approach at 1t =  and a numerical strategy for the FC 

operator. Furthermore, when the magnitude of the step size 

h is sufficiently small, our computational solutions are 

observed to be in exceptional concurrence with those 

obtained by the RK4 methodology. We provided accurate 

and nearly comparable results that closely approximated the 

RK4 method. 

 
In Table IV, the solutions were presented in fractional 

order 0.95 = , 1,a =  0.1, 1b c= = , ( )0 3x = , 

( )0 1y = , ( )0 1z =  and 10t = , and this demonstrates that 

the technique works well and is adaptable to other fractional 

systems. 

 

 
Figure 2 and Figure 3, display the numerical results for the 

financial chaotic system to Equation (13), where 

( ) ( ),   ,       3,   1,   1a b c = − − , and when  1 =  and 0.95 = . 

We display the Equation (13) attractors that were calculated 

with this numbers. For specific values of the parameters, the 

numerical scheme of the FC operator can display a similar  

type of attractors in chaos as its fractional order 

0.95. = and integer orders 1 = . This method's 

advantage is that it displays chaos in an understandable and 

efficient way, much like the integer order, and its pictures 

are accurate 

 

TABLE IV 

SOLUTIONS OF EQUATION (13), WHERE 0.95 = , 1,a =  0.1,  1b c= = , 

( )0 3x = , ( )0 1y = , ( )0 1z =  AND 10t = . 

h  S  I  R  

1/320 -0.114945270518440 2.461003090354902 0.078920896300135 

1/640 -0.114886963398490 2.460443007000058 0.078898975169522 

1/1280 -0.114855046856798 2.460158283451454 0.078886471458949 

1/2560 -0.114838399904129 2.460014754790493 0.078879834662401 

1/5120 -0.114829904519515 2.459942699184568 0.078876420136375 

1/10240 -0.114825613883149 2.459906598618383 0.078874688854980 

1/20480 -0.114823457833114 2.459888530151504 0.078873817211395 
1/40960 -0.114822377125635 2.459879491372964 0.078873379889088 

 

TABLE III 

SOLUTIONS OF EQUATION (13) WHERE 1 = , 1,a =  0.1,  1b c= = , 

( )0 3x = , ( )0 1y = , ( )0 1z =  AND 1t =  

h  S  I  R  

1/320 1.392480462893589 -1.456089389634900 -0.304025735714919 

1/640 1.395421662728035 -1.455404284769252 -0.303162624174348 

1/1280 1.396886454030830 -1.455074812429870 -0.302732773906679 

1/2560 1.397617390759015 -1.454913350981111 -0.302518275688362 

1/5120 1.397982493535476 -1.454833439527427 -0.302411133373569 
1/10240 1.398164953419043 -1.454793688692286 -0.302357588922827 

1/20480 1.398256160471136 -1.454773864506897 -0.302330823375111 

1/40960 1.398301758273062 -1.454763965223381 -0.302317442270793 

  4R K  1.398347391565288 -1.454753677519081 -0.302304022169948 

 

TABLE II 

SOLUTIONS OF EQUATION (12), WHERE 0.95 = . 

h  S  I  R  

1/320 0.000468606557601543 822.26585208617 9178.73367930738 

1/640 0.000468350478449073 822.366986579088 9178.63254507064 

1/1280 0.000468230348661944 822.422783614156 9178.57674815549 

1/2560 0.000468173321761604 822.45318900555 9178.5463428211 
1/5120 0.000468146115540744 822.469636926625 9178.52989492752 

1/10240 0.000468133122363914 822.478491758963 9178.52104010755 

1/20480 0.000468126924699345 822.483242155794 9178.51628971674 

1/40960 0.000468123976367115 822.485783604041 9178.51374827362 

 

TABLE I 

SOLUTIONS OF EQUATION (12), WHERE 1 = . 

h  S  I  R  

1/320 9996.95318699669 3.886830948692717 0.159982054607931 

1/640 9996.96173824264 3.878728779002160 0.159532978368678 

1/1280 9996.96603533265 3.874657354516271 0.159307312828754 

1/2560 9996.96818923873 3.872616562754912 0.159194198503111 

1/5120 9996.96926753133 3.871594897687368 0.159137570989833 

1/10240 9996.9698070125 3.871083747944641 0.159109239650452 

1/20480 9996.97007683664 3.870828093782068 0.159095069585691 

1/40960 9996.97021176968 3.870700246879310 0.159087983454617 

  4R K  9996.97034666668 3.870572434101 0.159080899213 
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Fig. 1. The numerical solution of SIR model. 

 

 

 
 

 
 

Fig. 2. The financial chaotic system (13), where ( ) ( ), , 3, 1, 1a b c = − − , when 1 = . 
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V. CONCLUSION 

This study solved a fractional SIR model and a chaotic 

system using a novel method. A numerical strategy for the 

Caputo-Fabrizio fractional derivative is provided using 

MATLAB. Decreasing the step size h  in numerical 

simulations reveals that the numerical technique for the CF 

fractional derivative yields numerical outcomes that closely 

resemble the precise solutions or RK4 solutions when 

dealing with integer orders. The numerical results obtained 

clearly indicate that our approach executes fractional 

operations with numerical stability. The phase portrait of the 

model exhibits chaotic behavior when specified values are 

supplied to the attached parameters. Therefore, the 

approaches presented are highly relevant for future research 

on different models. The purpose of this research was to 

create a valuable resource for future applications of 

fractional systems. The complexity of physics and 

engineering problems is growing, so we recommend a 

broader application of this technique. This method is widely 

applicable to other chaotic and hyperchaotic systems. 

Moreover, in the future, our method can be applied to 

modeling diseases and predicting disease spread. 

Additionally, it possesses the capability to solve Chaos 

systems, and we anticipate the method to be successful in 

hyperchaotic systems as well as its potential for application 

in engineering and coding. The purpose of this study is to 

solve some novel fractional models such as those described 

in [44]–[45], and to compare them with other numerical 

methods [46]–[50]. 
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