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Abstract—To improve the computational efficiency of data
interpolation, we have exploited the diagonally compensated
splitting iteration for the collocation matrix equation. The pro-
posed splitting iteration is the matrix form of the preconditioned
progressive iterative approximation (PPIA). Therefore, the pro-
posed iteration format is convergent. Moreover, the proposed
iteration involves only BLAS-3 operations, and we can expect
that the proposed iteration would perform better than the PPIA
regarding computational efficiency. The numerical results also
show that the proposed splitting iteration outperforms the PPIA
regarding computational time and stability.

Index Terms—splitting iteration, PPIA, tensor product Bézier
surface, diagonally compensated reduction.

I. INTRODUCTION

CONSIDER the data interpolation by using the progres-
sive iterative approximation (PIA) for tensor product

Bézier surfaces [1], [2]. Let {vij}j=0,1,...,m
i=0,1,...,n ∈ R3 be a set

of data to be interpolated, and let (xi, yj) be the parameters
of vij . Then, using the procedure of PIA, we can iteratively
generate a Bézier surface sequence

B(k)(x, y) =
n∑
i=0

m∑
j=0

u(k)
ij b

n
i (x)b

m
j (y), k = 0, 1, . . . ,

where {bni (t)}ni=0, {bmj (t)}mi=0 are the Bernstein bases, and{
u(k)
ij = vij , k = 0,

u(k)
ij = u(k−1)

ij + [vij − B(k−1)(xi, yj)], k = 1, 2, · · · .
(1)

As noted in [1], for k = 0, 1, . . . , the sequence B(k)(x, y)
iteratively approximates to the Bézier interpolation surface
of {vij}j=0,1,...,m

i=0,1,...,n , i.e.,

lim
k→∞

B(k)(xi, yj) = vij , i = 0, 1, . . . , n; j = 0, 1, . . . ,m.

Denote by Inm the identity matrix of order nm, by vec(A)
the column-stacking vector of a matrix A, by ⊗ the Kroneck-
er product, and by B1 = (bnj (xi))n×n, B2 = (bmj (yi))m×m
the collocation matrices resulting from the Bernstein bases.
By using the Kronecker product, Equation (1) can be written
in the matrix-vector form

vec(U(k+1)) = vec(V)+ (Inm−B2⊗B1)vec(U(k)), (2)
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where
U(0) = V = (vij)j=0,1,...,m

i=0,1,...,n

and
U(k) = (u(k)

ij )j=0,1,...,m
i=0,1,...,n .

The iteration (2) is the so-called PIA, which has played an
important role in data interpolation in recent years; see [3]
and a large literature therein. To improve the interpolation
efficiency, numerous techniques have been vigorously devel-
oped to accelerate the convergence rate of PIA, see [2], [4],
[5], [6], [8], [9], [10], [11] and so on.

Based on the technique of diagonally compensate reduc-
tion, the preconditioned progressive iterative approximation
(PPIA) was proposed in [11], then this preconditioning
technique was extended to the PIA for tensor product Bézier
surfaces ([2]). We remark here that the system (2) can
be solved by equivalently solving its corresponding matrix
equation ([12], [13]). Moreover, numerical algorithms for the
matrix equation are typically the preferred choice because
the system (2) is ill-conditioned and expensive to solve.
This motivates us to exploit numerical algorithms for the
corresponding matrix equation to improve the computational
efficiency and the stability of data interpolation.

The remainder of this paper is organized as follows:
Section II introduces the splitting iteration for the matrix e-
quation and the residual-updating iteration for the collocation
matrix equation. Then, the diagonally compensated splitting
iteration is exploited in Section III. In Section IV, some
numerical examples are given to illustrate the computational
efficiency of our proposed method. Finally, some concluding
remarks are given in the last section.

II. RELATED WORK

A. Splitting iteration of AXB = C

Consider solving the matrix equation AXB = C, where
A is an n× n matrix, B is an m×m matrix, and X,C are
n×m matrices. Let A = F − G and B = F̂ − Ĝ be the
splittings of A and B, respectively. Then, if F and F̂ are
nonsingular, we can obtain the splitting iteration sequence
([12])

X(k+1) = X(k) + F−1(C −AX(k)B)F̂−1. (3)

B. Alternative of PIA

Note that the solution to the system (2) is the column-
stacking vector of the solution to the matrix equation ([12],
[13])

B1UB
T
2 = V. (4)

Remark 1: Although the solution to (2) is the column-
stacking vector of the solution to the matrix equation (4). As
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stated in [14], the system (2) is rather ill-conditioned, and
numerical solvers for (2) are expensive compared to those for
(4). In [13], Liu et al. also pointed out that the system (2)
is suitable for theoretical analysis but impractical to solve
numerically. Furthermore, we are more likely to solve (4)
directly because it involves Level 3 Basic Linear Algebra
Subprograms (BLAS-3) operations, which have better per-
formance on computers [15].

In fact, for k = 0, 1, · · · , Equation (1) can also be written
as the matrix form

U(k+1) = U(k) + (V −B1U
(k)BT2 ), (5)

which is known as the residual-updating iteration ([13]). We
remark here that the iteration (5) is mathematically equivalent
to the splitting iteration for solving (4), where B1 = In −
(In − B1) and B2 = Im − (Im − B2) are the splittings of
B1 and B2, respectively.

We end this section with some properties of the Kronecker
product.

Lemma 1 ([16]): Let A be an n× n matrix, B be an
m×m matrix, and let X be an n×m matrix. Then, we
have the following properties of the Kronecker product:

(1) vec(AXB) = (BT ⊗A)vec(X);
(2) A ⊗ B is invertible if and only if both A and B are

invertible, and (A⊗B)−1 = A−1 ⊗B−1;
(3) If A,B,C, and D are matrices of such size that the

matrix products AC and BD can be formed, then (A⊗
B)(C ⊗D) = (AC)⊗ (BD).

III. DIAGONALLY COMPENSATED SPLITTING ITERATION

In this section, we derive the iterative method for solving
Equation (4) after introducing the splitting for the collocation
matrices B1 and B2.

First, let
B1 = B̃q1 +Rq1 ,

where B̃q1 is a band matrix with half-bandwidth q1 (0 ≤
q1 ≤ n− 1) and

Rq1 =

0 . . . 0 bnq1+1(t0) . . . bnn(t0)
...

. . .
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . . bnn(tq1+1)

bn0 (tq1+1)
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . .
. . .

...
bn0 (tn) . . . bnq1+1(tn) 0 . . . 0


.

Then, we define a diagonal matrix

D1 = diag(d0, d1, . . . , dn),

where
di =

∑
|i−j|>q1

bni (tj), i = 0, 1, . . . , n.

Let
Mq1 = B̃q1 +D1. (6)

Therefore, the collocation matrix B1 can be split as

B1 =Mq1 − (D1 −Rq1).

Similarly, the collocation matrix B2 can be split as

B2 =Mq2 − (D2 −Rq2),

where Mq2 = B̃q2 +D1 and B̃q2 being a band matrix with
half-bandwidth q2 (0 ≤ q2 ≤ m− 1).

The method to split a matrix is the diagonally compensated
reduction ([11]). In [11], Liu et al. constructed a class of
preconditioners for PIA and exploited the PPIA format

vec(U(k+1)) = (M−1q2 ⊗M
−1
q1 )vec(V)+

[Inm − (M−1q2 ⊗M
−1
q1 )(B2 ⊗B1)]vec(U

(k)),
(7)

where Mq1 and Mq2 are the preconditioners defined as in
(6).

A. Diagonally compensated splitting iteration format

Having gotten the splittings of B1 and B2, according to
(3), we can obtain the following iteration format

U(k+1) = U(k) +M−1q1 (V −B1U
(k)BT2 )M

−1
q2 . (8)

We call the iteration (8) as the diagonally compensated
splitting iteration (DCSI).

By Lemma 1 it is easy to verify that the iteration format
(7) is the column-stacking form of (8). Thus, the iteration
format (8) can be seen as an alternative to the PPIA for
tensor product Bézier patches. Unlike the iteration (7), the
iteration (8) contains only BLAS-3 operations. Therefore,
the latter would perform better than the former regarding
computational efficiency. Due to the equivalence between
these two iterative formats, the convergence of (7) is the
same as that of (8). In other words, the limit of B(k)(x, y)
interpolates the points {vij}j=0,...,m

i=0,...,n .
Obviously, the choice of the half-bandwidth q1 and q2 will

affect the performance of the algorithm (8). If both q1 and
q2 are set to 0, the iteration (8) will degenerate into the
residual-updating iteration (5), and the convergence rate will
slow down. If q1 = n− 1 and q2 = m− 1, the iteration (8)
will be equivalent to the direct solver for solving the matrix
equation (4) and the computational complexity will increase.
The analytical determination of the optimal half-bandwidth
q1 and q2 is confusing. Due to the equivalence between the
iterations (7) and (8), we adopt the same strategy used in
[2] to find a balance between the convergence rate and the
computational complexity.

IV. NUMERICAL RESULTS

In this section, we present several numerical experiments
to evaluate the computational efficiency of the proposed
method. The experiments were conducted using Matlab
R2016a on a PC with an AMD Ryzen 7 4800U CPU and 16
GB RAM.

We utilized

ε(k) = max
0≤i≤n,0≤j≤m

‖vij −B(k)(xi, yj)‖ (9)

to measure the interpolation error of the k-th approximate
interpolation surface B(k)(x, y).

In our experiments, we utilized the PPIA and the DCSI
to iteratively interpolate the points given in Examples 1 – 4
and utilized the PIA, the PPIA, and the DCSI to iteratively
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interpolate the points given in Example 5. We took the half-
bandwidth q1 = b(n+ 1)/2c and q2 = b(m+ 1)/2c, where
b·c is the round operation.

For simplicity, we introduce some notations in the tables
below, “k” represents the number of iterations, “ε(k)” repre-
sents the interpolation error, and “T ” represents the runtime
(in seconds).

Example 1: Consider data interpolation of 20 points:
(1, 1, 1), (1, 2, 4), (1, 3, 2), (1, 4, 2), (1, 5, 2), (2, 1, 2),
(2, 2, 2), (2, 3, 3), (2, 4, 6), (2, 5, 4), (3, 1, 3), (3, 2, 2),
(3, 3, 4), (3, 4, 4), (3, 5, 3), (4, 1, 4), (4, 2, 6), (4, 3, 1),
(4, 4, 1), (4, 5, 2).

Example 2: Consider data interpolation of 21×21 points:

(
i

20
,
j

20
, f(

i

20
,
j

20
)), i = 0, 1, . . . , 20; j = 0, 1, . . . , 20,

where

f(x, y) =
3

4
e−

(9x−2)2+(9y−2)2

4 +
3

4
e−

(9x+1)2

49 − 9y+1
10

+
1

2
e−

(9x−7)2+(9y−3)2

4 − 1

5
e−(9x−4)

2−(9y−7)2 .

Example 3: Consider data interpolation of 25×26 points:

(−8 + 2i

3
,−8 + 16j

25
, g(−8 + 2i

3
,−8 + 16j

25
)),

i = 0, 1, . . . , 24; j = 0, 1, . . . , 25,

where g(x, y) = sin(
√
x2 + y2)/

√
x2 + y2.

Example 4: Consider data interpolation of 29× 29 points
sampled uniformly from the shell surface x = 1

5 (1−
v
2π ) cos(2v)(1 + cosu) + 1

10 cos(2u)
y = 1

5 (1−
v
2π ) sin(2v)(1 + cosu) + 1

10 sin(2u)
z = v

2π + 1
5 (1−

v
2π ) sin(2u)

,

where 0 ≤ u, v ≤ 2π.
Example 5: Consider data interpolation of (n+1)×(m+

1) points sampled uniformly from the function

z =
cos(10x(1 + y2))

1 + 10(x+ 2y)2
,

where 0 ≤ x, y ≤ 1.

TABLE I
COMPARISON OF PPIA WITH DCSI IN EXAMPLES 1 – 4.

Example k
PPIA DCSI

ε(k) T ε(k) T

Example 1

1 4.4137e-02 3.28e-03 4.4137e-02 3.19e-03
2 7.7061e-04 4.50e-03 7.7061e-04 3.55e-03
5 5.5664e-09 4.63e-03 5.5664e-09 3.70e-03
8 4.6185e-14 4.76e-03 4.6185e-14 3.80e-03

Example 2

1 1.3105e-04 5.57e-03 1.3096e-04 3.65e-03
5 4.3060e-05 8.96e-03 4.3060e-05 4.72e-03
10 2.3587e-05 1.09e-02 2.3587e-05 5.56e-03
20 8.2450e-06 1.45e-02 8.2450e-06 7.24e-03
50 3.5525e-07 2.62e-02 3.5522e-07 1.20e-02

Example 3

1 1.2983e-02 5.14e-03 3.0047e-08 2.32e-03
2 2.9035e-04 6.68e-03 1.6211e-10 2.69e-03
5 1.7334e-09 1.08e-02 3.5238e-11 3.11e-03
10 1.8234e-11 1.53e-02 1.4202e-11 3.59e-03

Example 4

1 3.7865e-02 6.24e-03 2.6816e-09 2.31e-03
2 4.4019e-02 8.85e-03 1.0057e-10 2.78e-03
5 4.0183e-02 1.14e-02 1.6311e-11 3.34e-03
10 1.9669e-01 2.32e-02 8.1278e-12 3.38e-03

(a) Initial surface B(0)(x, y). (b) B(5)(x, y) by PPIA.

(c) B(1)(x, y) by DCSI. (d) B(5)(x, y) by DCSI.

Fig. 1. The points to be interpolated and the approximate interpolation
surfaces obtained by PPIA and DCSI for Example 1.

(a) Initial surface B(0)(x, y). (b) B(5)(x, y) by PPIA.

(c) B(1)(x, y) by DCSI. (d) B(5)(x, y) by DCSI.

Fig. 2. The points to be interpolated and the approximate interpolation
surfaces obtained by PPIA and DCSI for Example 2.

(a) Initial surface B(0)(x, y). (b) B(5)(x, y) by PPIA.

(c) B(1)(x, y) by DCSI. (d) B(5)(x, y) by DCSI.

Fig. 3. The points to be interpolated and the approximate interpolation
surfaces obtained by PPIA and DCSI for Example 3.
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(a) Initial surface B(0)(x, y). (b) B(10)(x, y) by PPIA.

(c) B(1)(x, y) by DCSI. (d) B(10)(x, y) by DCSI.

Fig. 4. The points to be interpolated and the approximate interpolation
surfaces obtained by PPIA and DCSI for Example 4.

(a) Initial surface B(0)(x, y). (b) B(5)(x, y) by PPIA.

(c) B(1)(x, y) by DCSI. (d) B(5)(x, y) by DCSI.

Fig. 5. The points to be interpolated and the approximate interpolation
surfaces obtained by PPIA and DCSI for Example 5.

TABLE II
INTERPOLATION ERROR OF PIA, PPIA, AND DCSI WITH DIFFERENT n

AND m FOR EXAMPLE 5.

n m k PIA PPIA DCSI

16 15

1 1.3047e-01 4.9748e-06 4.9748e-06
2 7.6177e-02 1.2574e-06 1.2574e-06
5 2.4709e-02 1.8611e-07 1.8611e-07

10 8.9637e-03 2.4524e-08 2.4524e-08

20 20

1 9.7735e-02 1.1684e-06 2.3058e-07
2 5.1139e-02 4.4987e-08 4.4987e-08
5 1.3216e-02 1.9527e-08 1.9527e-08

10 5.3223e-03 1.0413e-08 1.0413e-08

27 28

1 6.3552e-02 1.2354e-02 7.8685e-10
2 2.7938e-02 9.1171e-03 2.7415e-10
5 5.2011e-03 3.6081e-02 2.0242e-10

10 2.3782e-03 2.3586e-02 1.5838e-10

In Table I, we list the interpolation errors and the runtime
by implementing the PPIA and the DCSI to interpolate the
points given in Examples 1 – 4. In Table II, we list the
interpolation errors of the PIA, the PPIA, and the DCSI with
different n and m for Examples 5.

We can see from Table I that, with the same number
of iterations, the runtime of the DCSI is less than that of
the PPIA. And the advantage becomes more apparent as
the number of iterations or the size of the data increases.
Moreover, it is evident from Tables I and II that for a small
number of data points, the interpolation errors obtained by
the DCSI are the same as those obtained by the PPIA,
which verifies the equivalence of the DCSI and the PPIA.
While in Examples 3 – 5, the interpolation errors obtained
by the DCSI are smaller than those obtained by the PPIA,
especially in the first few iterations. It should be pointed out
that the interpolation error in Examples 4 and 5 increases
sharply as we continue to increase the values of m and n;
the interpolation error of the PIA is even smaller than that
of the PPIA. This is due to the numerical instability caused
by the increase in the condition number. As mentioned in
Remark 1 and Reference [2], for large data, the system (2)
is more ill-conditioned than (4), so the results of the PPIA
may be less unstable and accurate.

In Figures 1 – 4, we show the approximate Bézier inter-
polation surfaces implemented by the PPIA and the DCSI.
Figure 5 shows the approximate Bézier interpolation surfaces
with n = 27 and m = 28 obtained by the PPIA and the
DCSI. It is apparent that these surfaces obtained by the DSCI
effectively interpolate the given data sets.

The numerical results indicate that our method is a compe-
tent replacement for PPIA and warrants further consideration
for data interpolation.

V. CONCLUSIONS

Based on the diagonally compensated splitting, in this pa-
per, we have proposed a splitting iteration for the collocation
matrix equation, namely DCSI, to iteratively interpolate data
sets. The proposed method is proved to be the matrix form of
PPIA, thereby demonstrating its convergence. Additionally,
the DCSI exclusively includes BLAS-3 operations, inducing
superior computational efficiency compared to PPIA. The
numerical results also show that the proposed DCSI outper-
forms the PPIA in terms of computational time and stability
of the numerical algorithm.
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