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Abstract—The resonance phenomena of a weakly nonlinear, 

damped, Duffing-van der Pol oscillation is studied analytically 

and numerically. The methods of multiple scales is used to 

obtain uniformly valid asymptotic approximate solutions of the 

governing equation for various cases of primary harmonic 

resonance, super-harmonic resonance and sub-harmonic 

resonance respectively. The study shows that the steady 

amplitudes in the solutions of the nonlinear equation 

demonstrate the nonlinear phenomena involving jump and 

bistability at some bifurcation points. The quantitative relations 

of Frequency-Amplitude involving the parameters of damping, 

nonlinear, external force in the oscillator are obtained. The 

asymptotic approximation and numerical solutions are in 

vertically perfect agreement for all the cases considered. The 

results enrich previous researches just for Duffing or van der 

Pol oscillation respectively. 

 
Index Terms—resonance analysis, multiple scales, 

amplitude-frequency relations, bi-stability 

 

I. INTRODUCTION 

HE Duffing oscillations or van der Pol oscillations are 

studied in many literatures [Holmes, 2013; Benney & 

Newell, 1967; Yang et al, 1998; Han & Bi, 2011, Macouo & 

Woafo, 2017; Pan & Chen, 2020] . The problem to be 

considered here is a damped weakly nonlinear Duffing-van 

der Pol oscillation that is forced at frequencies near resonance. 

The concrete problem that will be investigated is 

 
2 3'' ( 1) ' cosu u u u u F t           (1) 

(0) 0, '(0) 0u u                                  (2) 

Wherein 0 1  is the small parameter that describes 

the weak non-linearity and the small external forcing. 

, 0   describe the damping term and non-linearity 

respectively, F contributes to the amplitude of external 

forcing,  denotes the frequency of the external forcing. 

Because of small external forcing and zero initial 

conditions, it is natural to expect that the solution to be small 

as usually, i.e. the amplitude of the solution is proportional to 

the amplitude of the external forcing, but this supposition is 

not true when the driving frequency   takes some particular 
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values. It will be seen that the amplitude of the solution may 

be the order of magnitude larger than the external forcing. To 

investigate these phenomena, we’ll apply the method of 

multiple-scale  [Holmes, 2013; Nayfeh, 2004; Johnson, 2005; 

Shen et al, 2008; Wang & Zhang, 2019 ; Ramos, 2007; 

Ghaleb et al, 2021, Ginoux, et al, 2022]to find the uniformly 

valid asymptotic approximation of the solution near the 

resonance frequencies and do some nonlinear analysis to it. 

The results enriches existing researches just for Duffing or 

van der Pol oscillation respectively. 

The response of a weakly nonlinear, 

single-degree-of-freedom with near resonance external forces 

(1), (2) is studied analytically and numerically, the research 

shows that the peak amplitude in the solutions of the nonlinear 

equations can be several times those in the solutions of the 

reduced linearized equations. The obtained asymptotic 

approximations and numerical solutions of the cases 

considered here are in virtually perfect agreement, but differ 

markedly to the exact solution of the reduced linearized 

problem. 

The rest of the paper is organized as follows. First, the 

multiple time scale version of the original problem is obtained. 

In section 2, the asymptotic analysis for the case of 

primary-harmonic resonances is underway, next, in section 3, 

the asymptotic behavior for the case of Super-harmonic and 

sub-harmonic resonances is investigated, finally, section 4 

concludes the paper and gives some remarks. 

Take the two scales 

   1 2,t t t t                                (3) 

And consider the case of primary resonance, we assume the 

solution ( , )u t   possess the asymptotic expansion 

0 1 2 1 1 2( , ) ( , ) ( , )u t u t t u t t                (4) 

then equation (1) becomes 

1 1 2 2

1 2

2 2 2 3
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( 2 )

            ( 1)( ) cos

t t t t

t t

u u u

u u F t
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   

       

     
   (5) 

Substituting (4) into (5) and making an effort to include 

only the terms that might contribute to the first two terms of 

the expansion, we have that 

1 1 1 2

1

2 2 3

0 0 1 1 0 0

2

0 0 1

( 2

            ( 1) ) cos

t t t t
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With this and the initial values (2), the following problem is 

resulted in 
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The general solution of this problem is 

0 1 2 2 1 2( , ) ( ) cos( ( ))u t t A t t t                  (6) 

With 

(0) 0, (0)
2

A


                                 (7) 

Similar to the order of ( )O  , we have 
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II. ASYMPTOTIC ANALYSIS FOR THE CASE OF 

PRIMARY-HARMONIC RESONANCES 

Substituting 
0 1 2( , )u t t  in (6) into the equation involving  

1 1 2( , )u t t , we find that the choice of 
2( )A t and 

2( )t  can be 

made to demand the obtained equation possessing bounded 

solution, essentially nearby the resonance frequencies, as 

follows. 

Considering the case of primary resonance for the external 

force, we set 1   to describe quantitatively the 

nearness of   to 1, the frequency of the linearized problem, 

by introducing the detuning parameter  . Thus we have 

   

1

2 3

1 1 1

3

1

3

1

3

1 1 2
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1
                   cos3( ) cos( )

4

t u u A A A t

A A t
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A t F t t

  

  

 
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 
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(8) 

In order to eliminate secular terms in u1, the 1sin( )t   

terms and 1cos( )t   terms in (8) must be removed, it is 

required that 

3

2

1
2 ' sin( ) 0

4
A A A F t                  (9a) 

3

2

3
2 ' cos( ) 0

4
A A F t                        (9b) 

Solving differential equations (9) with initial values (7) will 

give the first term asymptotic approximation 
0 1 2( , )u t t  to, 

( , )u t  , the solution of (1),(2). 

It is worth mentioned that initial value problem (9),(7) 

don’t contain small parameter, it can be solved expediently by 

routine numerical methods such as Runge-Kutta method. 

Unfortunately, the equations (9),(7) can’t be solved 

explicitly in general, thus the nature of the solution of 

equations (9),(7) is not apparent. In order to obtain some 

qualitative behavior of the solution of equations (9),(7),We 

make a transformation to (9), 
1 2t     , such that (9) 

becomes a nonlinear autonomous one (10) 

3

1

1
2 ' sin

4
A A A F                            (10a) 

3

1 1

3
2 ( ') cos

4
A A F                         (10b) 

The equations (10) can’t be solved explicitly still. In 

particular, we can investigate what value, denoted by A , the 

amplitude A approaches if it goes to a steady state 

as t  . Thus it brings about the following algebraic 

equation 

3 2 3 2 21 3
( ) (2 )

4 4
A A A A F              (11) 

It shows that the positive solution, A , is a function of the 

frequency parameter  . Particularly, we can see (0)A  

satisfies  

3 2 3 2 21 3
( ) ( )

4 4
A A A F         

which shows obviously that (0)A  , it means that the 

resonance occurs. 

For given parameters , , F  in the equation (1), equation 

(11) provides quick insight of the oscillation nature into how 

the steady amplitude A  depends on the detuning 

parameter  as in Fig.1. 

 

Fig.1  The relation between A and  in case of Primary-harmonic 

resonance, wherein 0.1, 1, 1F     

The Fig.1 shows that the phenomena of bi-stability and 

jump occur [Holmes, 2013; Nayfeh, 2004; Yang et al, 1998] 

at some bifurcation points. 

Also, the equation (11) provides quantitative insight of the 

oscillation nature into how the steady amplitude A  depends 

on the damping, nonlinear, external force parameters 
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,  and F  in the equation (1).  

For the case of 1    , the discussions are 

analogous. 

 

III. ASYMPTOTIC ANALYSIS FOR THE CASE OF 

SUPER-HARMONIC AND SUB-HARMONIC RESONANCES 

We can continue the above procedure involving searching 

for the asymptotic representation of 1u  to detect the 

super-harmonic and/or sub-harmonic resonance frequencies, 

and to obtain their amplitude-frequency relations. 

Alternatively, we adopt the Holmes strategy of setting the 

formal asymptotic expansion of the solution of (1), (2) as 

0 1 2 1 1 2( , ) ( ( , ) ( , ) )u t u t t u t t               (12) 

Operating similar to segment 2, we have 

1

1

2

0 0 1

0 0
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( ) :

(0,0) (0,0) 0

t

t

u u F t
O

u u




  

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The general solution of this problem is 

0 1 2 2 1 2 12
( , ) ( )cos( ( )) cos

1

F
u t t A t t t t 


  


    (13)  

2( )A t and 2( )t are to be determined later and with which 

the (0)A and (0) can be assigned by (2) .  

Denote 
1 21

F
F





, Similar to the order of ( )O  , we 

have for 
2( )O   
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 (14) 

For the problem (1),(2) possessing bounded solution, and 

from the right hand side of equation (14), it is founded that the 

second resonances that contain the so-called superharmonic 

and subharmonic resonance frequencies are 
1

3
 and 3 ,0 

respectively.  

We just discuss the cases of 
1

3
   and 

3,0  respectively, the case of second resonance 

frequency 
1

3
    and 3   can be discussed similarly. 

 

A. Super-harmonic resonances (
1

3
  ) 

For the case of super-harmonic resonance of the external 

force, we set 
1

3
   to describe quantitatively the 

nearness of   to
1

3
 by introducing the detuning parameter 

 . Eliminating secular term of the solution of equation (14) 

gives 
2 3 3

1 1 26 3 sin(3 ) 8 ' 0F A A F t A           (15a)

3 2 3

1 2 1cos(3 ) 4 2 8 ' 0F t A AF A A           (15b) 

The transformation 1 23 t     to (15) will result in 

2 3 3

1 1 1 16 3 sin 8 (3 ') 0F A A F A           (16a) 

3 2 3

1 1 1cos 4 2 8 ' 0F A AF A A                 (16b) 

When we consider the steady state, we thus have 
3 2 2

1

2 3 2 3 2

1 1

( 4 2 ) (24

           6 3 ) ( )

A A A F A

F A A F

   

  

   

 

  

  
      (17) 

Wherein A  represents the steady state of A in (15). 

The positive solution, A , obtained from (17), is shown in 

Fig.2. 

 

Fig.2 The relationship between A and   in case of Super-harmonic 
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resonance 

The Fig.2 shows that the Super-harmonic resonance is 

small compared with the Primary-harmonic resonance that is 

studied in Fig. 1. 

 

B. Sub-harmonic resonance ( 3  ) 

For the case of sub-harmonic resonance of the external 

force, we set 3    to describe quantitatively the 

nearness of   to 3 by introducing the detuning parameter . 

Eliminating secular term of the solution of equation (14) gives 
2 2 3
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Set 1 23 3t    , we have 
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Similarly to (11), we obtain 

                 
2 2 2 2 2

1 1

2 2 2 2 2

1

( ( 2 4)) (6 3

8
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3

A F F A

F A
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
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 


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   
(18) 

The positive solution, A , obtained from (18), is shown in 

Fig.3.

Fig.3 The relationship between A  and   in case of Sub-harmonic 

resonance 

Fig.3 shows that the behavior of Sub-harmonic resonance 

of the Duffing-van der Pol oscillator studied here is almost the 

same to the one of the Duffing oscillator expounded by AH 

Nayfeh[Nayfeh,2004]. 

 

C. Sub-harmonic resonance( 0  ) 

For this case of the second resonance of the external force, 

we set   to describe quantitatively the nearness of  to 

0 by introducing the detuning parameter  . This case is 

similarly to slow variable external force oscillator discussed 

by Holmes in [Holmes 2013]. Eliminating secular term of the 

solution of equation (14) gives 

2 2 3
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1 1 1
( ) cos(2 ) 2 ' 0
2 4 4
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It is noticeable here that the nonlinear equations (19) and 

(20) involving A and   is  in fact decoupled. Fortunately, the 

nonlinear equation (19) involving A is Bernoulli type, thus we 

can solve A explicitly to get 
2

2 1
1 2 2

2
2 1

12

((2 ) sin 2 )
4 2

2

1
((2 ) sin 2 )

4 2 2

0

( ) (

             *( ))
4
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
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




 

  


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   (21) 

The elementary discussion shows that nearby the 

Sub-harmonic resonance ( 0  ), the amplitude A is 

bounded when 1 2F   , the threshold value, 2 , is thus 

obtained. 

 

IV. CONCLUSIONS AND REMARKS 

The resonance phenomena of a weakly nonlinear, damped, 

Duffing-van der Pol oscillation is studied analytically and 

numerically by using the methods of multiple scales. the cases 

of primary resonance frequency, super-harmonic resonance 

frequencies and sub-harmonic resonance frequencies are 

obtained respectively. The study shows the nonlinear 

behaviors such as jump and bistability at some bifurcation 

points for nonlinear Duffing-van der Pol oscillator. The 

results enriches existing researches just for Duffing or van der 

Pol oscillation respectively. 

The problems involving multi-frequency external 

excitations can be considered by the method of multiple 

scales to observe combination resonance phenomena 

similarly.   
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