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Abstract—In QSPR studies topological indices plays vital
role. To enrich this field we put forward novel topological
indices namely Mass Zagreb indices. In this paper first we study
the mathematical properties of new variance of Zagreb indices
then followed by its chemical applications in QSPR studies.

Index Terms—first mass Zagreb index; second mass Zagreb
index; QSPR-analysis.

I. INTRODUCTION

A
graph is said to be simple if it doesn’t contain multiple

edges or loops. Throughout this paper simple and

undirected graphs are considered with vertex set V and edge

set E. The order and size of G is denoted by |V | = n

and |E| = m respectively. The degree of a vertex v ∈ V

is the number of edges incident to v and it is denoted

by dG(v). The degree of an edge e = uv is defined as

dG(e) = dG(u) + dG(v) − 2. For undefined terminology

in this paper refer [5].

The topological index is just a number related to the

molecular network. Many researchers have proposed a huge

number of such values dating back to 1972 [2]. Prof. Gutman

(Personal Communication) defines a relevant topological

index as one that has a high predictive potential in QSPR

investigations. As a result, topological indices can be divided

into two categories: useful and not so useful TI’s see [3],

[4], [6], [7], [13], [15]. Zagreb indices are one of the most

valuable topological indices, and they are defined as:

M1(G) =

n
∑

i=1

dG(v)
2

M2(G) =
∑

uv∈E(G)

dG(u)dG(v)

where M1 and M2 are the first and second Zagreb indices

respectively.

In response to the Zagreb indices, we propose the Mass

version of the first and second Zagreb indices. To begin,

we must define the vertex and edge Mass of a graph G as

follows:

Vertex Mass: Let w1, w2, w3 · · · , wn be the Mass of the ver-

tices v1, v2, v3, · · · , vn such that w1 = dG(v1), w2 = dG(v2),
w3 = dG(v3), · · ·, wn = dG(vn).

Edge Mass: Let e1, e2, e3, · · · , em be the edges of a graph

G. Then the edge Mass of e = uv ∈ E(G) is defined as

w(e) = dG(u) + dG(v) − 2.
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Mass Degree of a Vertex: The Mass degree of a vertex

v ∈ V (G) is defined as:

dwG(v) =
∑

e=uv

w(e)

The maximum mass degree and minimum mass degree

of a vertex v ∈ V (G) is denoted by ∆w(v) and δw(v)
respectively.

II. MASS ZAGREB INDICES

The first Mass Zagreb index Zm
1 (G) is defined as

Zm

1 (G) =
∑

v∈V

dwG(v)
2 (1)

The second Mass Zagreb index Zm
2 (G) is defined as

Zm

2 (G) =
∑

e=uv∈E

dwG(u) · d
w

G(v) (2)

Example 1: Consider the following graph G, with

V (G) = {v1, v2, v3, v4, v5} and the edge set E(G) =
{e1, e2, e3, e4, e5}. Then clearly the Mass of vertices and

edges are given by their corresponding degrees. Therefore,

the Mass degree of each vertex is given by:

dwG(v1) = w(e1) + w(e2) = 2 + 3 = 5

dwG(v2) = w(e2) + w(e4) = 2 + 2 = 4

dwG(v3) = w(e3) + w(e4) = 3 + 2 = 5

dwG(v4) = w(e1) + w(e3) + w(e5) = 3 + 3 + 2 = 8

dwG(v5) = w(e5) = 2 = 2

Hence the first Mass Zagreb index Zm
1 (G) of G is

Zm

1 (G) =
∑

v∈V

dwG(v)
2

= dwG(v1)
2 + dwG(v2)

2 + dwG(v3)
2

+ dwG(v4)
2 + dwG(v5)

2

= 52 + 42 + 52 + 82 + 22

= 134.

Observe that the first Zagreb index of G is

M1(G) =
∑

v∈V

dG(v)
2

= dG(v1)
2 + dG(v2)

2 + dG(v3)
2

+ dG(v4)
2 + dG(v5)

2

= 22 + 22 + 22 + 32 + 12

= 22.
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As a result, for any non-trivial graphs with at least three

vertices, the values of the Mass first Zagreb index and the

first Zagreb index differ dramatically. As a result, QSPR

investigations of the Mass first Zagreb index will demonstrate

the utility of this new parameter.
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Figure 1. A graph on five vertices.

Proposition 1: Zw
1 (Kn) = n[(n − 1)(2n − 4)]2 where ;

n ≥ 2.

Proof: Let G = Kn;ngeq2 represent the full graph with

n vertices. Because delta(G) = delta(G) = n − 1. As a

result, the mass of an edge einG is 2n − 4. As a result,

using this information in (1) yields the desired result.

Proposition 2: Zw
1 (Cn) = 16n where ; n ≥ 3.

Proof: The proof stems from the fact that G = Cn;n ≥
3 is a two-regular graph with a mass of two edges.

Proposition 3: Zm
1 (Pn) = 8n− 12 where ; n ≥ 2.

Proof: Let G = Pn;n ≥ 2 represent a path of order n.

Let v1 and vn represent the beginning and terminal vertices

of G. Then w(e1) = w(en) = 1 and w(ei); 2 ≤ ileqm−1 =
2 are obvious. Using this information in (1) yields the desired

result.

Proposition 4: Zm
1 (Wn) = n2(n−1)2+144(n−1) where

; n ≥ 4.

Proof: Let G = Wn;n ≥ 4 be an order n wheel. Let

v1 represent its central vertex. since deg(v1) = n − 1 and

deg(vi); 2 ≤ i = 3. As a result, the mass of each edge

may be divided into two groups, with n − 1 edges having

w(ei) = 3 and the remaining n− 1 edges having w(ei) = 4.

As a result, using (1) yields the desired outcome.

Proposition 5: For any k−regular graph k ≥ 1 G,

Zm

1 (G) = 4nk2(k − 1)2

Proof: Assume G is a k−regular graph with k ≥ 1.

The proof is then derived from the fact that the mass of each

edge in G equals 2k − 2.

Observation 6: Let G be a with edge Mass

w1, w2, w3, · · · , wm. Then the following holds good:
∑

v∈V

dwG(v) = 2[M1(G)− 2m]. (3)

III. BOUNDS FOR Zm
1 (G)

We employed the mathematical inequalities from [1], [8]–

[10], [12], [14] to get constraints for the first Mass Zagreb

index.

Theorem 7: Let G be a simple connected graph with n

vertices and m edges. Then

Zm

1 (G) ≥
4M2

1 (G) − 16m(M1(G)) + 16m2

n

Proof: Let v1, v2, v3, · · · , vn be the vertices of a simple

graph G with mass w(v1), w(v2), w(v3), · · · , w(vn). Let

degw(v1), degw(v2), degw(v3), · · · , degw(vn) be the corre-

sponding mass vertex degrees of G. Allow a1, a2, a3, · · · , an
and b1, b2, b3, · · · , bn to be non-negative integers. Then bythe

Cauchy-Schrwz inequality. we have
( n
∑

i=1

aibi

)2

≤

( n
∑

i=1

a2i

)

·

( n
∑

i=1

b2i

)

(4)

by setting ai = degw(vi) and bi = 1 we have
( n
∑

i=1

degw(vi) · 1

)2

≤

( n
∑

i=1

degw(vi)
2

)

·

( n
∑

i=1

12
)

By Observation 6, we have
∑

v∈V

dwG(v) = 2[M1(G)− 2m].

Therefore,
(

2[M1(G)− 2m]

)2

≤

(

Zm

1 (G)

)

·

(

n

)

Thus,

Zm

1 (G) ≥
4M2

1 (G) − 16m(M1(G)) + 16m2

n

as asserted.

The equivalent bound is obtained by using the following

inequalities:

Lemma 8: Let a1, a2, a3, · · · , an and b1, b2, b3, · · · , bn be

non-negative integers. Then

n
∑

i=1

ari ≥ n1−r

( n
∑

i=1

bi

)r

(5)

Lemma 9: Let a1, a2, a3, · · · , an and b1, b2, b3, · · · , bn be

non-negative integers. Then

n
∑

i=1

ar+1
i

br
i

≥

(

n
∑

i=1

ai

)r+1

(

n
∑

i=1

bi

)r (6)

Lemma 10: Let a1, a2, a3, · · · , an and b1, b2, b3, · · · , bn
be non-negative integers. Then

( n
∑

i=1

bi

)α−1( n
∑

i=1

bia
α

i

)

≥

( n
∑

i=1

aibi

)α

(7)

where α is any positive integer.

Corollary 11: Let G be a simple connected graph with n

vertices and m edges. Then by setting ai = degw(vi) and

r = 2 in (6) we get

Zm

1 (G) ≥
4M2

1 (G) − 16m(M1(G)) + 16m2

n

Corollary 12: Let G be a simple connected graph with n

vertices and m edges. Then by setting ai = degw(vi), bi = 1
and r = 1 in (7) we get

Zm

1 (G) ≥
4M2

1 (G) − 16m(M1(G)) + 16m2

n

Corollary 13: Let G be a simple connected graph with n

vertices and m edges. Then by setting ai = degw(vi), bi = 1
and α = 2 in (7) we get

Zm

1 (G) ≥
4M2

1 (G) − 16m(M1(G)) + 16m2

n
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Theorem 14: Let G be a simple connected graph with n

vertices and m edges with maximum(minimum) Mass degree

∆w(δw). Then

Zm

1 (G) ≥
α(n)(∆w − δw)

2 + (2M1(G) − 4m)2

n

where α(n) = n⌊n

2 ⌋(1−
1
n
⌊n

2 ⌋). where ⌊x⌋ smallest integer

less than or equal to x.

Proof: Let v1, v2, v3, · · · , vn be the vertices of a simple

graph G with Mass w(v1), w(v2), w(v3), · · · , w(vn). Let

degw(v1), degw(v2), degw(v3), · · · , degw(vn) be the corre-

sponding Mass vertex degrees of the vertices of G. Let

a1, a2, a3, · · · , an and b1, b2, b3, · · · , bn be non-negative in-

tegers for which there exist real constants a, b, A and B, so

that for each i, i = 1, 2, · · · , n, a ≤ ai ≤ A and b ≤ bi ≤ B.

Then the following inequality is valid

| n

n
∑

i=1

aibi −

n
∑

i=1

ai

n
∑

i=1

bi | ≤ α(n)(A − a)(B − b)(8)

We choose ai = degw(vi) = bi, A = ∆w = B and a =
δw = b, inequality (9), becomes

n

n
∑

i=1

degw(vi)
2 −

( n
∑

i=1

degw(vi)

)2

≤ α(n)(∆w − δw)

(∆w − δw)

nZw

1 ≤ α(n)(∆w − δw)
2

+ (2M1(G)− 4m)2

Thus,

Zm

1 (G) ≥
α(n)(∆w − δw)

2 + (2M1(G) − 4m)2

n

Theorem 15: Let G be a nontrivial graph of order n and

size m. Then

Zm

1 (G) ≤ (δw +∆w)(2M1(G)− 4m)− δw∆w.

Proof: Let a1, a2, · · · , an and b1, b2, · · · , bn be real

numbers for which there exist real constants r and R so

that for each i, i = 1, 2, · · · , n holds rai ≤ bi ≤ Rai. Then

the following inequality is valid.

n
∑

i=1

b2i + rR

n
∑

i=1

a2i ≤ (r +R)

n
∑

i=1

aibi. (9)

We choose bi = degw(vi), ai = 1, r = δw and R = ∆w in

inequality (10), then

n
∑

i=1

degw(vi)
2 + δw∆w

n
∑

i=1

1 ≤ (δw +∆w)

n
∑

i=1

degw(vi)

Zm

1 (G) + δw∆wn ≤ (δw +∆w)

(2M1(G)− 4m)

Zm

1 (G) ≤ (δw +∆w)

(2M1(G)− 4m)− δw∆w

as desired.

IV. APPLICATIONS OF MASS FIRST ZAGREB INDEX IN

QSPR STUDIES

We chose a range of alkanes ranging from n-butanes to

nonanes for chemical applications of the first mass Zagreb

index. We used eight representative physical parameters

for modeling: boiling points (BP), molar volumes (mv) at

20circC, molar refractions (mr) at 20◦C, heats of vaporiza-

tion (hv) at 25◦C, surface tensions (st) at 20◦C, and melting

points (mp). The values for these properties were derived

from Dejan Plavsiacutec et. al [13].

V. MASS FIRST ZAGREB INDEX Zm
1 (G)

1) Linear Model

bp = 2.194 + [Zm

1 (G)]2.582

mv = 107.696 + [Zm

1 (G)]2.806

mr = 21.911 + [Zm

1 (G)]1.556

hv = 24.808 + [Zm

1 (G)]1.505

ct = 144.038 + [Zm

1 (G)]3.713

cp = 33.082− [Zm

1 (G)]1.248

st = 16.125 + [Zm

1 (G)]1.198

mp = −146.169+ [Zm

1 (G)]2.462

2) Quadratic Model

bp = 8.5[Zm

1 (G)]2 − 0.12[Zm

1 (G)]− 65.6

mv = 3.6[Zm

1 (G)]2 − 0.42[Zm

1 (G)] + 81.2

mr = 2.1[Zm

1 (G)]2 − 0.21[Zm

1 (G)] + 15.1

hv = 3.3[Zm

1 (G)]2 − 0.15[Zm

1 (G)] + 13.2

ct = 9.1[Zm

1 (G)]2 − 0.10[Zm

1 (G)] + 78.4

cp = −1.9[Zm

1 (G)]2 + 0.14[Zm

1 (G)] + 41.9

st = 1.3[Zm

1 (G)]2 − 0.3[Zm

1 (G)] + 12.4

mp = 3.6[Zm

1 (G)]2 − 0.35[Zm

1 (G)]− 154.6

3) Logarithmic Model

bp = −154.5 + ln[Zm

1 (G)]81.3

mv = 34.3 + ln[Zm

1 (G)]37.1

mr = 0.7 + ln[Zm

1 (G)]12.6

hv = 22.8 + ln[Zm

1 (G)]0.5

ct = −56.1 + ln[Zm

1 (G)]101.8

cp = 44.4− ln[Zm

1 (G)]6.9

st = 8.2 + ln[Zm

1 (G)]5.1

mp = −191.7 + ln[Zm

1 (G)]27.1

The correlation of the first mass Zagreb index with the above-

mentioned physical qualities of alkanes is depicted in the

figures below:
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Figure2. The correlation of the first mass Zagreb index

with the above-mentioned physical qualities of alkanes.

Table 2: Model summary for the boiling point of alkanes

and Mass first Zagreb index

Equation R2 F Sig

Linear 0.894 63.73 0.000

Logarithmic 0.753 93.65 0.000

Quadratic 0.771 51.72 0.000

According to the correlation coefficient value r = 0.894 for

the linear model in Table 2, the prediction power of the mass

first Zagreb index is good in predicting boiling points. In

other words, our results indicate an accuracy of 89.4 percent

in forecasting the boiling points of alkanes.

Table 3: Model summary for the critical pressure of

alkanes and Mass first Zagreb index

Equation R2 F Sig

Linear 0.819 41.96 0.000

Logarithmic 0.53 13.44 0.001

Quadratic 0.711 31.23 0.000

The correlation coefficient value r = 0.819 for the linear

model in Table 3 reveals that the Mass first Zagreb index has

strong predictive capacity in predicting the critical pressure

of alkanes. In other words, our results indicate an 81.9%

accuracy in forecasting the critical pressure of alkanes.

Table 4: Model summary for the critical temperature of

alkanes and Mass first Zagreb index

Equation R2 F Sig

Linear 0.059 0.83 0.456

Logarithmic 0.248 3.713 0.112

Quadratic 0.79 32.98 0.000

The correlation coefficient value r = 0.79 for the quadratic

model in Table 4 demonstrated that the Mass first Zagreb

index has strong predictive capacity in predicting the critical

temperature of alkanes. In other words, our results indicate

a 79% accuracy in forecasting the critical temperature of

alkanes.

Table 5: Model summary for the heats of vaporization of

alkanes and Mass first Zagreb index

Equation R2 F Sig

Linear 0.814 60.77 0.000

Logarithmic 0.864 91.55 0.000

Quadratic 0.891 51.7 0.000

The correlation coefficient value r = 0.891 for the quadratic

model in Table 5 reveals that the prediction power of the

Mass first Zagreb index is good in predicting the tempera-

tures of vaporization of alkanes. In other words, our results

indicate an accuracy of 89.1% in forecasting the temperatures

of vaporization of alkanes.

Table 6: Model summary for the melting point of alkanes

and Mass first Zagreb index

Equation R2 F Sig

Linear 0.571 15.843 0.001

Logarithmic 0.592 14.41 0.000

Quadratic 0.532 6.78 0.003

The correlation coefficient values for all models are less than

0.7, indicating that the prediction power of the Mass first

Zagreb index is not very excellent in forecasting the melting

point of alkanes.

Table 7: Model summary for the molar refraction of

alkanes and Mass first Zagreb index

Equation R2 F Sig

Linear 0.49 11.62 0.004

Logarithmic 0.486 13.355 0.001

Quadratic 0.583 7.662 0.003

The correlation coefficient value for all models is less than

0.7, indicating that the prediction capacity of the Mass first

Zagreb index is not very excellent in forecasting the molar

refraction of alkanes.
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Table 8: Model summary for the molar volume of alkanes

and Mass first Zagreb index

Equation R2 F Sig

Linear 0.738 41.96 0.000

Logarithmic 0.534 13.43 0.001

Quadratic 0.819 31.35 0.000

According to the correlation coefficient value r = 0.819 for

the quadratic model in Table 8, the prediction power of the

Mass first Zagreb index is good in predicting molar volume

of alkanes. In other words, our results demonstrate an 81.9%

accuracy in forecasting the molar volume of alkanes.

Table 9: Model summary for the surface tension of alkanes

and Mass first Zagreb index

Equation R2 F Sig

Linear 0.068 0.90 0.65

Logarithmic 0.126 2.654 0.15

Quadratic 0.837 34.97 0.000

The correlation coefficient value r = 0.837 for the quadratic

model in Table 9 reveals that the prediction capability of

the Mass first Zagreb index is good in predicting the surface

tension of alkanes. In other words, our results demonstrate

an 83.7 percent accuracy in predicting the quadratic model

of alkanes.

VI. CONCLUSION

We investigated the mathematical properties and chemical

applications of the Mass first Zagreb index in this study.

According to a QSPR investigation, the first Mass Zagreb

index is a good option for predicting the physicochemical

properties of alkanes. The interested reader might conduct

additional research on the Second Mass Zagreb index.

REFERENCES

[1] J. B. Diaz, F. T. Metcalf, ”Stronger forms of a class of inequalities of
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characterization of chemical graphs”, J. Math. Chem 12(1993) 235–
250.

[14] G. Polya, G. Szego, ”Problems and Theorems in analysis, Series,
Integral Calculus, Theory of Functions”, Springer, Berlin, 1972.
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