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Abstract—Based on the estimation of the Cauchy matrix of
linear impulsive differential equation, by using Banach fixed
point theorem and exponential dichotomy, sufficient conditions
for the existence of almost periodic solutions in shifts δ± of some
nonlinear dynamic equations with impulses on time scales are
established. Finally, two impulsive ecosystems defined on some
specific time scales are studied to illustrate the effectiveness of
the main results.

Index Terms—Almost periodic solution; Nonlinear dynamic
equation; Shift operator; Impulse; Time scale.

I. INTRODUCTION

IN this paper, we study the following impulsive dynamic
equations on time scales:
y∆(x) = D(x, y(x))y(x) + ξ(x, y(δ−(τ, x))),
x ̸= xk, k ∈ Z,
y(x+) = y(x−)−Bky(x) + I(y(x)) + γk,
x = xk, k ∈ Z,

(1)

and
y∆(x) = D(x)y(x) + ξ(x, y(δ−(τ, x))),
x ̸= xk, k ∈ Z,
y(x+) = y(x−)−Bky(x) + I(y(x)) + γk,
x = xk, k ∈ Z,

(2)

and
y∆(x) = D(y(x))y(x) + ξ(x, y(δ−(τ, x))),
x ̸= xk, k ∈ Z,
y(x+) = y(x−)−Bky(x) + I(y(x)) + γk,
x = xk, k ∈ Z,

(3)

where x ∈ T, T is a time scale; Dn×n and ξn×1 are
continuous functions.

Choose appropriate functions of Dn×n and ξn×1, the
equations (1), (2) and (3) can be used to describe many
phenomena in physics and biology and so on under some
special time scales.

It is well known that periodic dynamic systems in nature
world may exhibit almost periodicity due to the influence of
external or human factors; see, for example [1-11].

A general time scale is usually not closed to the addition
operation, the theory of almost periodic differential (differ-
ence) equation on R (Z) is no longer applicable to the study
of almost periodicity of dynamic equations on general time
scales. In recent years, by means of the shift operators δ±,
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the concepts and properties of periodic and almost periodic
functions in shift δ± on time scales have been defined and
studied in [12-15] and [16-18], respectively. Since then the
theory of periodic and almost periodic dynamic equations
in shift δ± on time scales have been rapidly developed and
applied.

On the basis of the above works, to further construct
the theory of almost periodicity in shift δ± of dynamic
equations with impulses on time scales, the main work of this
paper is to explore the existence theorems of almost periodic
solutions in shift δ± of (1), (2) and (3). Furthermore, based
on the obtained results, we bring two dynamic systems under
investigation on some specific time scales to obtain more
general results.

Let y(x) = y(x;x0, y0). The initial value of the equations
(1), (2) and (3) is defined by

y(x0 + 0;x0, y0) = y0. (4)

II. PRELIMINARIES

The theory of time scales and its applications on dynamic
equations, see [19].

Let B = {{xk} ⊂ T : xk < xk+1, k ∈ Z, lim
k→±∞

xk =

±∞} is the set of all sequences that are unbounded and
strictly increasing, θ = inf

k∈Z
{xk − xk−1 : xk ∈ B}.

Let PC(T,Rn) is the set of all piecewise continuous
functions from T to Rn with the first kind discontinuous
points xk(k ∈ Z), at which it is continuous from the left.

Definition 1. The set of sequences {xjk}, x
j
k = xk+j −

xk, k, j ∈ Z, {xk} ∈ B is said to be uniformly almost
periodic in shift δ±, if for any ε > 0, there exists a common
relatively dense set of ε-almost periodic in shift δ± for any
sequences.

Definition 2. The function ψ(x) ∈ PC(T,Rn) is said to be
almost periodic in shift δ±, if the following hold:
(a) The set of sequences {xjk}, x

j
k = xk+j − xk, k, j ∈

Z, {xk} ∈ B is uniformly almost periodic in shift δ±.
(b) For any ε > 0 there exists a real number δ > 0 such

that if the points x
′

and x
′′

belong to one and the same
interval of continuity of ψ(x) and satisfy the inequality
|x′ − x

′′ | < δ, then |ψ(x′
)− ψ(x

′′
)| < ε.

(c) For any ε > 0 there exists a relatively dense set E such
that if p ∈ E , then |ψ(δp±(x))−ψ(x)| < ε for all x ∈ T
satisfying the condition |x− xk| > ε, k ∈ Z.

Consider the following system{
y∆(x) = D(x)y(x), x ̸= xk,
y(x+) = y(x−)−Bky(x), x = xk, k ∈ Z, (5)
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where Dn×n is an almost periodic function in shift δ±, {Bk}
is an almost periodic sequences in shift δ±, that is, for any
ε > 0, there exists a q > 0 such that |Bδq±(k)−Bk| < ε, and
0 < |I −Bk| < 1.

If Uk(x, σ(z)) is the Cauchy matrix of the linear system

y∆(x) = D(x)y(x), xk−1 < x < xk, {xk} ∈ B,

then system (5) has the Cauchy matrix

W (x, σ(z)) =



Uk(x, σ(z)), xk−1 < σ(z) < x < xk,
Uk+1(x, xk + 0)(I −Bk)Uk(x, σ(z)),
xk−1 < σ(z) ≤ xk < x ≤ xk+1,
Uk+1(x, xk + 0)(I −Bk)Uk(xk, xk + 0)
· · · (I −Bi)Ui(xi, σ(z)),
xi−1 < σ(z) ≤ xi < xk < x ≤ xk+1,

and the solution of system (5) can be written as

y(x;x0, y0) =W (x, x0)y0.

Remark 1. Consider the corresponding nonimpulsive dy-
namic equation of (5), that is,

u∆(x) = D(x)u(x), x ∈ T, (6)

and
∏

0≤xk<x

(I−Bk)u(x) = y(x). If (6) satisfies exponential

dichotomy on T, then (5) satisfies exponential dichotomy on
T.

Lemma 1. ([18]) If b ∈ R+, then

eb(x1, x2) ≤ exp

(∫ x1

x2

b(τ)∆τ

)
,

for all x1 ≥ x2.

Lemma 2. ([19]) Suppose that ψ : T → R is strictly
increasing, T̃ := ψ(T) is a time scale. If g : T̃ → R, ψ∆(x)

and g∆̃(ψ(x)) exist for x ∈ Tk, then

(g ◦ ψ)∆ = (g∆̃ ◦ ψ)ψ∆.

Similar to the proof of Lemma 2.3 in [20], we can get the
following lemma.

Lemma 3. If there exist positive constants β and α such
that

W (x, σ(z)) ≤ βe⊖α(x, σ(z)), z, x ∈ T, x ≥ σ(z),

then for any ε > 0, x ≥ σ(z), x, z ∈ T, |x − xk| > ε,
|z − xk| > ε, k ∈ Z, there exist a relatively dense set E of
the function D(t) and a positive constant Γ, such that

|W (δp±(x), δ
p
±(σ(z)))−W (x, σ(z))| ≤ εΓe⊖α

2
(x, σ(z))

for all p ∈ E.

III. MAIN RESULTS

Throughout this paper, we assume that
(H1) D(x, y(x)), D(x), D(y(x)) are almost periodic func-

tions in shift δ± with respect to x.
(H2) The set of sequences {xjk}, xjk = xk+j − xk, k ∈ Z,

j ∈ Z, {xk} ∈ B is uniformly almost periodic in shift
δ± and there exists θ > 0 such that inf

k∈Z
x1k = θ > 0.

(H3) The function ξ(x, y(x)) is ∆-almost periodic in shift δ±
with respect to x, and there exists a positive constant Lξ

such that for u, v ∈ Rn, |ξ(x, u)−ξ(x, v)| ≤ Lξ|u−v|,
and ξ(x, 0) = 0.

(H4) The function Ik(y(x)) is almost periodic in shift δ±
with respect to x, and there exists a positive constant
LI such that for u, v ∈ R, |Ik(u)− Ik(v)| ≤ LI |u− v|,
and Ik(0) = 0.

(H5) {Bk} and {γk} are almost periodic sequences in shift
δ±, 0 < |I −Bk| < 1 and maxk{γk} = γ̂.

Theorem 1. If
(I) The conditions (H1)-(H5) hold;

(II) Suppose that the linear system

y∆(x) = D(x, φ(x))y(x)

satisfies exponential dichotomy on T with projection
P and positive constants β and α, and the dichotomy
constants β and α does not depend on φ, where φ(x)
is a bounded continuous function;

(III) λ < 1, where λ = β( 1
α + 1

inf |⊖α| )Lξ +β(
1

inf |1−e−αθ| +
1

inf |1−e⊖αθ| )LI ;
then (1) exists a unique almost periodic solution in shifts δ±.

Proof: Define the set X = {φ(x) : φ(x) ∈ PC(T,Rn)
is an almost periodic function } and the norm

∥φ∥ = sup
x∈T

|φ(x)|,

then (X, ∥ · ∥) is a Banach space.
For φ ∈ X, consider the following system
y∆(x) = D(x, φ(x))y(x) + ξ(x, φ(δ−(τ, x))),
x ̸= xk, k ∈ Z
y(x+) = y(x−)−Bkφ(x) + Ik(φ(x)) + γk,
x = xk, k ∈ Z.

(7)

Let W (x, σ(z)) is the Cauchy matrix of
y∆(x) = D(x, φ(x))y(x),
x ̸= xk, k ∈ Z
y(x+) = y(x−)−Bky(x),
x = xk, k ∈ Z.

(8)

By Remark 1, (II) and (H5), (8) satisfies exponential
dichotomy. Suppose that Ψ(x) is the fundamental solution
matrix of (8), and

W1(x, σ(z)) = Ψ(x)PΨ−1(σ(z)),

W2(x, σ(z)) = Ψ(x)(I − P )Ψ−1(σ(z)),

then (7) has a solution yφ(x), and

yφ(x) =

∫ x

−∞
W1(x, σ(z))ξ(z, φ(δ−(τ, z)))∆z

−
∫ +∞

x

W2(x, σ(z))ξ(z, φ(δ−(τ, z)))∆z

+
x∑

−∞
W1(x, x

+
k )(Ik(φ(x)) + γk)

−
+∞∑
x

W2(x, x
+
k )(Ik(φ(x)) + γk)

=

∫ x

−∞
W1(x, σ(z))ξ(z, φ(δ−(τ, z)))∆z

−
∫ +∞

x

W2(x, σ(z))ξ(z, φ(δ−(τ, z)))∆z
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+
∑

−∞<xk<x

W1(x, x
+
k )(Ik(φ(x)) + γk)

−
∑

x<xk<+∞
W2(x, x

+
k )(Ik(φ(x)) + γk).

Define the mapping Φ : X → X by

(Φφ)(x) = yφ(x).

Let X∗ is a subset of X, and

X∗ = {φ ∈ X : ∥φ− φ0∥ ≤ λA

1− λ
},

where

φ0 =
∑

−∞<xk<x

W1(x, x
+
k )γk −

∑
x<xk<+∞

W2(x, x
+
k )γk,

by Lemma 1 and (II),

∥φ0∥

= sup
t∈R

∣∣∣∣ ∑
−∞<xk<x

W1(x, x
+
k )γk

−
∑

x<xk<+∞
W2(x, x

+
k )γk

∣∣∣∣
≤ β

(
1

inf |1− e−αθ|
+

1

inf |1− e⊖αθ|

)
γ̂

:= A. (9)

For any φ ∈ X∗, from (7) and (9), we have

∥φ∥ ≤ ∥φ− φ0∥+ ∥φ0∥ ≤ λA

1− λ
+A =

A

1− λ
.

Now we prove that Φ is a self-mapping from X∗ to X∗.
Firstly, we show that Φφ ∈ X∗, ∀φ ∈ X∗. In fact

∥Φφ− φ0∥

= sup
x∈T

∣∣∣∣ ∫ x

−∞
W1(x, σ(z))ξ(z, φ(δ−(τ, z)))∆z

−
∫ +∞

x

W2(x, σ(z))ξ(z, φ(δ−(τ, z)))∆z

+
∑

−∞<xk<x

W1(x, x
+
k )Ik(φ(x))

−
∑

x<xk<+∞
W2(x, x

+
k )Ik(φ(x))

∣∣∣∣
≤

(
β

(
1

α
+

1

inf | ⊖ α|

)
Lξ

+β

(
1

inf |1− e−αθ|
+

1

inf |1− e⊖αθ|

)
LI

)
∥φ∥

= λ∥φ∥ ≤ λA

1− λ
. (10)

Next, we show that Φφ is almost periodic in shifts δ±. In
fact, for x ∈ T, p > 0, by Lemmas 2 and 3,∫ δp±(x)

−∞
W1(δ

p
±(x), σ(z))ξ(z, φ(δ−(τ, z)))∆z

=

∫ x

−∞
W1(δ

p
±(x), δ

p
±(σ(z)))

×ξ(δp±(z), φ(δ−(τ, δ
p
±(z))))δ

∆p
± (z)∆z; (11)

∫ +∞

δp±(x)

W2(δ
p
±(x), σ(z))ξ(z, φ(δ−(τ, z)))∆z

=

∫ +∞

x

W2(δ
p
±(x), δ

p
±(σ(z)))

×ξ(δp±(z), φ(δ−(τ, δ
p
±(z))))δ

∆p
± (z)∆z. (12)

Consider the δp+(x) case,

|(Φφ)(δp+(x))− (Φφ)(x)|

=

∣∣∣∣ ∫ δp+(x)

−∞
W1(δ

p
+(x), σ(z))ξ(z, φ(δ−(τ, z)))∆z

−
∫ +∞

δp+(x)

W2(δ
p
+(x), σ(z))ξ(z, φ(δ−(τ, z)))∆z

+
∑

−∞<xk<δp+(x)

W1(δ
p
+(x), x

+
k )(Ik(φ(δ

p
+(x)))

+γk)

−
∑

δp+(x)<xk<+∞

W2(δ
p
+(x), x

+
k )(Ik(φ(δ

p
+(x)))

+γk)

−
∫ x

−∞
W1(x, σ(z))ξ(z, φ(δ−(τ, z)))∆z

+

∫ +∞

x

W2(x, σ(z))ξ(z, φ(δ−(τ, z)))∆z

−
∑

−∞<xk<x

W1(x, x
+
k )(Ik(φ(x)) + γk)

+
∑

x<xk<+∞
W2(x, x

+
k )(Ik(φ(x)) + γk)

∣∣∣∣
=

∣∣∣∣ ∫ x

−∞
W1(δ

p
+(x), δ

p
+(σ(z)))

×[ξ(δp+(z), φ(δ−(τ, δ
p
+(z))))δ

∆p
+ (z)∆z

−ξ(z, φ(δ−(τ, z)))]∆z

+

∫ x

−∞
[W1(δ

p
+(x), δ

p
+(σ(z)))−W1(x, σ(z))]

×ξ(z, φ(δ−(τ, z)))∆z

−
∫ +∞

x

W2(δ
p
+(x), δ

p
+(σ(z)))

×[ξ(δp+(z), φ(δ−(τ, δ
p
+(z))))δ

∆p
+ (z)∆z

−ξ(z, φ(δ−(τ, z)))]∆z

−
∫ +∞

x

[W2(δ
p
+(x), δ

p
+(σ(z)))−W2(x, σ(z))]

×ξ(z, φ(δ−(τ, z)))∆z
+

∑
−∞<xk<x

W1(δ
p
+(x), x

+
k+q)(Ik+q(φ(x))

+γk+q)

−
∑

x<xk<+∞
W2(δ

p
+(x), x

+
k+q)(Ik+q(φ(x))

+γk+q)

−
∑

−∞<xk<x

W1(x, x
+
k )(Ik(φ(x)) + γk)

+
∑

x<xk<+∞
W2(x, x

+
k )(Ik(φ(x)) + γk)

∣∣∣∣
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≤
(
β + 2ΓLξ∥φ∥

α
+
β + 2ΓLξ∥φ∥
inf | ⊖ α|

+
2Γ

1− e
α
2 θ

(LI∥φ∥+ γ̂)

+2β

(
1

inf |1− e−αθ|
+

1

inf |1− e⊖αθ|

))
ε. (13)

It follows from (10) and (13) that Φφ ∈ X∗.
For any φ ∈ X∗, ψ ∈ X∗, we can get

∥Φφ− Φψ∥

= sup
x∈T

∣∣∣∣ ∫ x

−∞
W1(x, σ(z))[ξ(z, φ(δ−(τ, z)))

−ξ(z, ψ(δ−(τ, z)))]∆z

−
∫ +∞

x

W2(x, σ(z))[ξ(z, φ(δ−(τ, z)))

−ξ(z, ψ(δ−(τ, z)))]∆z
+

∑
−∞<xk<x

W1(x, x
+
k )(Ik(φ(x))− Ik(ψ(x)))

−
∑

x<xk<+∞
W2(x, x

+
k )(Ik(φ(x))− Ik(ψ(x)))

∣∣∣∣
= λ∥φ− ψ∥ < ∥φ− ψ∥. (14)

By (III) and (14), Φ is a contraction mapping in X∗, then
Φ has a unique nonzero fixed point φ∗ ∈ X∗ such that
Φφ∗ = φ∗, that is, system (1) has exactly one nonzero almost
periodic solution in shifts δ±. This completes the proof.

Theorem 2. If
(I) The conditions (H1)-(H5) hold;

(II’) Suppose that the linear system

y∆(x) = D(x)y(x)

satisfies exponential dichotomy on T with projection P
and positive constants β and α;

(III) λ < 1, where λ = β( 1
α + 1

inf |⊖α| )Lξ +β(
1

inf |1−e−αθ| +
1

inf |1−e⊖αθ| )LI ;
then (2) exists a unique almost periodic solution in shifts δ±.

Theorem 3. If
(I) The conditions (H1)-(H5) hold;

(II”) Suppose that the linear system

y∆(x) = D(φ(x))y(x)

satisfies exponential dichotomy on T with projection
P and positive constants β and α, and the dichotomy
constants β and α does not depend on φ, where φ(x)
is a bounded continuous function;

(III) λ < 1, where λ = β( 1
α + 1

inf |⊖α| )Lξ +β(
1

inf |1−e−αθ| +
1

inf |1−e⊖αθ| )LI ;
then (3) exists a unique almost periodic solution in shifts δ±.

IV. APPLICATIONS

Example 1. Consider the following impulsive dynamic
equation

y∆(x) = A(x, y(x))y(x)

+
∫ t

−∞ C(x, z)y(z)∆z

+g(y(x− τ(x))),
x0 ∈ T, x ̸= xk, k ∈ Z,

y(x+) = y(x−)−Bky(x) + Ik(y(x)) + γk,
x = xk, k ∈ Z.

(15)

where y(x) = (y1(x), y2(x))
T , and

y(x− τ(x)) =

(
y1(x− sin(x))
y2(x− cos(x))

)
,

A(x, y(x))

=

(
−12− 1

40 sin(x) +
1
4y

2
2(x)

44− y22(x)

12− y21(x)
−50− 1

4 sin(x) + 2y21(x)

)
,

C(x, z)

=

 1
800

cos(−(x−z))√
1− 1

4 sin2(−(x−z))

1
1500

cos(−(x−z))√
1− 1

16 sin2(−(x−z))

1
1000

cos(−(x−z))√
1− 1

9 sin2(−(x−z))

1
2000

cos(−(x−z))√
1− 1

25 sin2(−(x−z))

 ,

g(y(x− τ(x)))

=

(
1
45 sin(y1(x− sin(x)))
1
40 sin(y2(x− cos(x)))

)
,

Bk =

(
0 −1

4 cos(
√
2k)

1 + cos(
√
2k) 1

)
,

Ik(y(x)) =

(
1
8 (1− cos(y1(x)

2k
))

1
8 sin(

y2(x)
2k

)

)
,

γk =

(
2 sin(k)
cos(2k)

)
.

Let T = R. It is easy to check that the conditions (H1)−
(H5) and (I)-(II) hold, and

λ = 0.0172 < 1.

According to Theorem 1, (15) exists a positive almost
periodic solution in shift δ±.

The dynamic simulations of (15), see Figure 1.
Example 2. Consider the following Schoener’s competition

system with impulses



y∆1 (x)

= 1.8−0.1 cos(
√
3x)

exp{y1(δ−(τ1,x))}+(5+0.2 cos(x))

−(0.2 + 0.01 cos(x)) exp{y1(x)}
−(0.003− 0.001 sin(x)) exp{y2(x)}
−0.001,
y∆2 (x)

= 1+0.1 sin(
√
5x)

exp{y2(δ−(τ2,x))}+(6+0.1 sin(x))

−(0.004− 0.001 sin(x)) exp{y1(x)}
−(0.1 + 0.01 sin(x)) exp{y2(x)}
−0.005, x ̸= xk, k ∈ Z,
y1(x

+) = y1(x
−) + 0.3y1(x),

y2(x
+) = y2(x

−) + 0.3y2(x),
x = xk, k ∈ Z.

(16)

with the initial conditions

y(x0) = (y10, y20)
T , y10 > 0, y20 > 0, x0 ∈ T.
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Fig. 1. Numerical solution of (15) (Example 1) with the initial
value y(0) = (2.5, 4)T .

System (16) can be written as

(
y1(x)
y2(x)

)∆

=

(
−(0.2 + 0.01 cos(x)) exp{y1(x)}

y1(x)

−(0.004− 0.001 sin(x)) exp{y1(x)}
y1(x)

−(0.003− 0.001 sin(x)) exp{y2(x)}
y2(x)

−(0.1 + 0.01 sin(x)) exp{y2(x)}
y2(x)

)
×
(
y1(x)
y2(x)

)
+

(
1.8−0.1 cos(sqrt(3)x)

exp{y1(δ−(τ1,x))}+(5+0.2 cos(x)) − 0.001
1+0.1 sin(sqrt(5)x)

exp{y2(δ−(τ2,x))}+(6+0.1 sin(x)) − 0.005

)
,

x ̸= xk, k ∈ Z,
y1(x

+) = y1(x
−) + 0.3y1(x),

y2(x
+) = y2(x

−) + 0.3y2(x),
x = xk, k ∈ Z.

Let

T =
∪
n∈Z

[2n, 2n+ 1].

It is easy to check that the conditions (H1)−(H5) and (I)-(II)
hold, and

λ = 0.1086 < 1.

According to Theorem 1, (16) exists a positive almost
periodic solution in shift δ±.

Let δ−(τi, x)) = x− 1, i = 1, 2, the dynamic simulations
of (16), see Figure 2.
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Fig. 2. Numerical solution of (16) (Example 2) with the initial
value y(0) = (0.2, 0.2)T .

V. CONCLUSION

By means of the shift operators, this paper deals with the
existence of almost periodic solutions in shifts δ± for three
kinds of impulsive dynamic equations on time scales. The
new approach will enable researchers to investigate almost
periodicity notion on a large class of time scales whose
members may not to be closed under the operation x ± z
for a fixed z ∈ T or to be unbounded. Besides, the results of
this paper lay a foundation for further exploring the influence
of impulsive effects on the dynamic behaviors of one system.
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