
A New Interval Arithmetic Approach to Solve the
Trapezoidal Intuitionistic Fuzzy Linear

Programming Problem
R. Sanjana and ∗G. Ramesh

Abstract—Linear programming Problem (LPP) is intended
to assist executives in making decisions. It is a mathematical
technique to determine the best allocation of resources such as
labour, employees, components, machinery, and other facilities
in order to achieve a specific goal. The parameters in our real-
life situations are hazy and imprecise. The Intuitionistic Fuzzy
Set (IFS) is a tool for dealing with decision-making issues under
uncertainty. Due to various types of complexity, determining the
accurate Membership Function (MF) by an ordinary fuzzy set is
not always possible. Interval numbers are thus used to describe
the unpredictability. LPP is resolved in this study using novel
interval arithmetic operations with Trapezoidal Intuitionistic
Fuzzy Numbers (TrIFNs) as parameters. In order to obtain the
optimal solution, LPP is solved using three methods: Simplex
Method (SM), Robust Two Step Method (RTSM) and Alter-
native Solution Method (SOM-2). Additionally, the proposed
methods are numerically shown, and results are compared and
represented diagrammatically.

Index Terms—Linear Programming problem, TrIFNs, Inter-
val Arithmetic, SM, RTSM, SOM-2.

I. INTRODUCTION

LPP is used to determine the maximum or minimum
value of any variable in a function. To handle complicated
problems in wartime activities, George B. Dantzig [1] in
1947 developed Simplex method to solve LPP. The problem
is typically presented as a linear function that are optimized
with variety of constraints. LPP is widely employed in
various industries, including resource management, wealth
management, commercial funding, etc. Fuzzy Set (FS)
is demonstrated as a beneficial technique for recognising
situations in which the data appears to be unclear or
imprecise. FS deals with these conditions by attributing a
degree of membership to each object in the set. Furthermore,
the FS is discovered in 1965 by Zadeh [2] is an extended
form of the classical notation system. The Interval-valued
fuzzy set is an extension of FS in which the membership
values are intervals rather than crisp and this concept is first
introduced by Zadeh in 1975. K. T. Atanassov offered a
generalisation of the idea using FS known as Intuitionistic
fuzzy sets (IFS) [3] at the beginning of 1983 in which the
non-membership is a new degree that is added to the degree
of membership, with the restriction that their sum be less
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than or equal to 1. The hesitation margin, a component of
IFS, is a measure of hesitancy and is described as 1 less than
the total of membership and non-membership, respectively.
Additionally, it has been found that a single membership
and non-membership degree do not adequately capture the
state of volatility that arises in real-life problems, Atanassov
and Gargov [4] created Interval-valued Intuitionistic Fuzzy
sets (IVIFS), a generalisation of IFS in which membership
and non-membership degrees are intervals rather than fixed
real numbers, to improve the ability of an IFS to handle
ambiguity and hesitancy. Therefore, the goal is to use IFS
theory to solve LPP.

First, we can observe how the LPP is addressed through
FS theory. Wan et al. [5] discovered a novel possibility
for LPP with Trapezoidal Fuzzy Numbers (TrFNs) and
presented the auxiliary multi-objective programming to
solve the associated potential LPP with TrFNs for the
imprecise objective coefficients and/or the imprecise
technical parameters and/or materials. Saghi et al. [6]
used hesitant cost factors to deal with the Hesitant Fuzzy
Linear Programming Problem (HFLPP). Due to information
loss, HFLPP cannot be turned into LPP or Fuzzy Linear
Programming Problem (FLPP). SM can fix this problem
as it retains data and is illustrated with two examples.
Maximization problems are used in application to farm
planning: Yano [7] introduced a decision-making approach
for fuzzy multi-objective LPP with fuzzy goals and
integrated two membership functions and ultimately, pareto
optimal solution is obtained with maximizing profit. Akram
et al. [8] demonstrated the Fully Fuzzy Linear Programming
(FFLP) by the simplex approach with the new arithmetic
operations of TrFNs and compared to the current techniques.
Ghoushchi [9] resolved FFLP employing Triangular fuzzy
numbers (TFNs) as decision variables and is based on
modified TFNs and α-cut theory for obtaining the best
optimal fuzzy solution. To manage uncertainty using interval
numbers in LPP, G. Ramesh [10] defined an extension of the
traditional LPP to an imprecise environment, by applying a
new simple ranking and new extended interval arithmetic.

After that, we observe how an IFS can make LPP
to address ambiguity. Arpita Kabiraj [11] suggested an
approach to solve Intuitionistic fuzzy linear programming
problem (IFLPP) using FLPP method and by ranking
function, finally a comparative investigation are given.
Nalla Veerraju [12] suggested a new ranking technique
called the GM-R approach based on support and resulting
membership of an Intuitionistic Fuzzy Numbers (IFNs).
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The proposed approach has been applied to IFLPP and
is investigated for superior outcomes in providing an
optimal solution. Considering a case study of fruit orchards
in Baluchistan, Pakistan, Sajida Kousar [13] has been
able to solve an IFLP model for fruit production using
Triangular Intuitionistic Fuzzy Numbers (TIFNs), a tactical
tool for controlling uncertainty. Sukhpreet Kaur Sidhu [14]
addressed the shortcomings from the paper Parvathi et al.
[15] in which by using a distinct ranking function and the
linearity property, Intuitionistic fuzzy simplex algorithm
for solving IFLPP is done with Symmetric Trapezoidal
Intuitionistic Fuzzy Numbers (STrIFNs). Sidhu et al. [16]
highlighted the disadvantages of current approaches, and a
new method termed Mehar method is outlined to overcome
the drawbacks with an example. As a result, IFS plays
a significant role in solving LPP in many areas to deal
with hesitancy. Following that, IVIFS is more effective in
handling uncertainty than IFS, as IFS are very challenging
to represent precise real numbers in several real-world
decision-making consequences. E. Fathy [17] expressed
the decision variables as Interval-valued IFNs and these
numbers are split into nine distinct, crisp linear problems
using the reduction methodology providing the most and
least acceptable outcomes of the objective function and
technique is shown numerically.

RTSM is designed by Y. R. Fan et al. [18] to deal with
the Interval Linear Programming problem (ILPP). When
compared to previous approaches, this approach produces
a bigger solution space and prevents significant loss of
decision-related knowledge. RTSM provides simpler solution
process and does not require a large amount of computing.
SOM-2 is designed by Lu et al. [19] to solve ILPP and this
method is simple and useful in several cases. The numerical
illustrations are obtained from Ritika Chopra [20] in which
the notion of value and ambiguity indices for TIFNs is ex-
tended to TrIFNs by applying a novel ranking function, and it
is apparent that the decision makers determine the outcome.
Also, another example is observed from Nachammai et al.
[21], in which centroid based distance is used for ranking
IFNs and IFLPP is solved with the arithmetic operations
of Generalized Trapezoidal Intuitionistic Fuzzy Numbers
(GTrIFNs). The following are the major characteristics of
our suggested methods:

• A unique approach to IFLPP is presented, in which
all objective function and constraint coefficients are
specified in terms of STrIFNs and GTrIFNs.

• The given STrIFNs and GTrIFNs are then turned into
an interval number using the (α, β)-cut method.

• The suggested methods are demonstrated for solving
LPP in an Intuitionistic fuzzy environment, and the
findings are contrasted to the procedure of Chopra et al.
and Nachammai et al. by using SM, RTSM and SOM-2.

• The specified intervals are then transformed using the
midpoint and width in order to produce the most optimal
outcomes.

• The optimal solution provided by Chopra’s method is
in crisp value whereas in Nachammai’s method, it is
STrIFNs. However, we compare the value in terms of
intervals as it enables more adaptable value through the

use of SM, RTSM and SOM-2, and a diagrammatic
representation is presented.

• At last, the most effective solution for TrIFNs is dis-
played and contrasted with the current one.

Following the introduction in section 1, some fundamental
ideas required for the creation of a system for resolving prob-
lems are presented including preliminaries, ranking function
and novel arithmetic operations. There are six sections in the
article.
(i) Section 2 describes the basic ideas relevant to our work
in more detail.
(ii) Section 3 provides a complete explanation of the math-
ematical model of IFLPP.
(iii) The efficiency of SM, RTSM and SOM-2 to solve LPP
is provided in Section 4.
(iv) The themes of this paper are studied numerically, and
the obtained outcomes are analyzed in section 5.
(v) Section 6 includes the results and discussions of our
current article.

II. PRELIMINARIES

In this section, the fundamental definitions of FS, IVFS,
IFS, IVIFS, ranking, and arithmetic operations are discussed
in detail with references to the original study.

Definition 1: (Fuzzy set). [22] The Fuzzy set M̃ is con-
stituted by a membership function that maps the constituents
of a domain, space, or universe of discourse Z to the unit
interval [0,1]. i.e., M̃ : Z → [0,1], a generic element y ∈ Z
and its grade of membership may be expressed as a set of
ordered pairs to describe a fuzzy set M̃ in Z.

M̃ = {y, µM̃ (y) : y ∈ Z, µM̃ (y) ∈ [0, 1]}

Definition 2: (Intuitionistic Fuzzy set). [3] A fuzzy set is
said to be an IFS M̃ in Z, if it takes the following form:

M̃ = {y, µM̃ (y), νM̃ (y) : y ∈ Z}

whereas this equation contains the functions, µM̃ (y) : Z →
[0, 1] and νM̃ (y) : Z → [0, 1], determines the degree of
membership and non-membership of the element y ∈ Z
respectively.

The formula πM̃ (y) = 1−µM̃ (y)−νM̃ (y) is characterized
as the degree of non-determinacy (hesitation) of the element
y in Z based on the IFS M̃ .

Definition 3: (Intuitionistic Fuzzy Number). [11] The
Intuitionistic fuzzy number IM̃ should be an Intuitionistic
fuzzy subset of the real line R is conveyed below,
• IM̃ is Normal: i.e., y0 ∈ R in which the grades of

membership and non-membership are µIM̃ (y0) = 1
and νIM̃ (y0) = 0 respectively.

• For the membership degree, IM̃ is convex, i.e.,

µIM̃ (λy1 + (1− λ)y2) ≥ min(µIM̃ (y1), µIM̃ (y2))

∀y1, y2 ∈ R, λ ∈ [0, 1]

• IM̃ is concave for the non-membership degree, i.e.,

νIM̃ (λy1 + (1− λ)y2) ≤ max(νIM̃ (y1), νIM̃ (y2))

∀y1, y2 ∈ R, λ ∈ [0, 1]

Definition 4: (i) (Symmetric TrIFNs). [20] A fuzzy num-
ber is known to be a Trapezoidal Fuzzy Number (TrFN) M̃
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= (t1, t2, t3, t4) in R with the membership function µM̃ : Z
→ [0,1] is listed below.

µM̃ (x) =



x−t1
t2−t1

, t1 ≤ x ≤ t2

1 t2 ≤ x ≤ t3
t4−x
t4−t3

t3 ≤ x ≤ t4

0 otherwise

The TrFN M̃ = (t′1, t2, t3, t
′
4) in R of the Non-Membership

Function (NMF) νM̃ : Z → [0,1] is comprised of the follow-
ing:

νM̃ (x) =



t2−x
t2−t′1

, t′1 ≤ x ≤ t2

0 t2 ≤ x ≤ t3
x−t3
t′4−t3

t3 ≤ x ≤ t′4

1 otherwise

Fig. 1. Symmetric TrIFNs

where t′1 ≤ t1 ≤ t2 ≤ t3 ≤ t4 ≤ t′4 and
µM̃ (x) + νM̃ (x) ≤ 1. TrIFNs is an advanced form for
the fusion of TrFN=(t1, t2, t3, t4) (membership) grade and
TrFN=(t′1, t2, t3, t

′
4) (non-membership) grade, it is shown in

Fig. 1 and symbolised by,

TIM̃ = {(t1, t2, t3, t4); (t′1, t2, t3, t′4)}

(ii) (GTrIFNs) [23] GTrIFNs is denoted by TIM̃ =
(t1, t2, t3, t4;mM̃ ), (t′1, t2, t3, t

′
4;nM̃ ) with the membership

and non-membership function µM̃ , νM̃ : Z → [0,1] is given
as,

µM̃ (x) =



mM̃ ( x−t1
t2−t1

), t1 ≤ x ≤ t2

mM̃ , t2 ≤ x ≤ t3

mM̃ ( t4−x
t4−t3

), t3 ≤ x ≤ t4

0 otherwise

νM̃ (x) =



nM̃ ( t2−x
t2−t′1

), t′1 ≤ x ≤ t2

nM̃ , t2 ≤ x ≤ t3

nM̃ ( x−t3
t′4−t3

), t3 ≤ x ≤ t′4

1 otherwise

where t′1 ≤ t1 ≤ t2 ≤ t3 ≤ t4 ≤ t′4 and
µM̃ (x) + νM̃ (x) ≤ 1. The diagrammatic representation is
shown in Fig. 2.

Fig. 2. Generalized TrIFNs

Definition 5: (i) (α, β-cut of TrIFNs [20]). The specifica-
tion of the TrIFNs cut sets is as described in the following:
The general representation of (α, β)-cut for IFN IM̃ in R is
stated as,

M̃α
β = {x : µM̃ (x) ≥ α, νM̃ (x) ≤ β, 0 ≤ α+ β ≤ 1}

On combining the above equation with Def. 4 (i), we get
an (α, β)-cut set of TIM̃ = (t1, t2, t3, t4); (t

′
1, t2, t3, t

′
4) is

a crisp component of R, the α − cut of lower and upper
membership value is,

M1(α) =
x− t1
t2 − t1

≥ α = x− t1 ≥ α(t2 − t1)

= x ≥ t1 + α(t2 − t1)

M2(α) =
t4 − x

t4 − t3
≥ α = t4 − x ≥ α(t4 − t3)

= x ≤ t4 − α(t4 − t3)

∴ [M1(α),M2(α)] = [t1 + α(t2 − t1), t4 − α(t4 − t3)]

Likewise, β−cut of lower and upper non-membership value
is,

M ′
1(β) =

t2 − x

t2 − t′1
≤ β = t2 − x ≤ β(t2 − t′1)

= x ≥ t2 − β(t2 − t′1)

M ′
2(β)

x− t3
t′4 − t3

≤ β = x− t3 ≤ β(t′4 − t3)

= x ≤ t3 + β(t′4 − t3)

∴ [M ′
1(β),M

′
2(β)] = [t2 − β(t2 − t′1), t3 + β(t′4 − t3)]

The general representation of TrIFNs with the (α, β)-cut is
represented in the below equation.

TIM̃α
β = {[M1(α),M2(α)]; [M

′
1(β),M

′
2(β)]},

α+ β ≤ 1, α, β ∈ [0, 1]

M1(α) = t1 + α(t2 − t1) M2(α) = t4 − α(t4 − t3)

M ′
1(β) = t2 − β(t2 − t′1) M ′

2(β) = t3 + β(t′4 − t3)

(ii) (α, β-cut of GTrIFNs [24]). α, β-cut of TIM̃ =
(t1, t2, t3, t4;mM̃ ), (t′1, t2, t3, t

′
4;nM̃ ) is a crisp subset of real

number R is defined as,

M̃α
β = {x : µM̃ (x) ≥ α, νM̃ (x) ≤ β}
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The equations in Def. 4 (ii) is combined with the above
equation, the α-cut of lower and upper degree of membership
is,

M1(α) = mM

(
x− t1
t2 − t1

)
≥ α

= mM (x− t1) ≥ α(t2 − t1)

= x− t1 ≥ α

mM
(t2 − t1)

= x ≥ t1 +
α

mM
(t2 − t1)

M2(α) = mM

(
t4 − x

t4 − t3

)
≥ α

= mM (t4 − x) ≥ α(t4 − t3)

= t4 − x ≥ α

mM
(t4 − t3)

= x ≤ t4 −
α

mM
(t4 − t3)

[M1(α),M2(α)] = [t1 +
α

mM
(t2 − t1), t4 −

α

mM
(t4 − t3)]

The β-cut of lower and upper degree of non-membership is,

M ′
1(β) = nM

(
t2 − x

t2 − t′1

)
≤ β

= nM (t2 − x) ≤ β(t2 − t′1)

= t2 − x ≤ β

nM
(t2 − t′1)

= x ≥ t2 −
β

nM
(t2 − t′1)

M ′
2(β) = nM

(
x− t3
t′4 − t3

)
≤ β

= nM (x− t3) ≤ β(t′4 − t3)

= x− t3 ≤ β

nM
(t′4 − t3)

= x ≤ t3 +
β

nM
(t′4 − t3)

[M ′
1(β),M

′
2(β)] = [t2 −

β

nM
(t2 − t′1), t3 +

β

nM
(t′4 − t3)]

The equation below represents the general
expression for TrIFNs having α, β-cut of TIM̃ =
(t1, t2, t3, t4;mM̃ ), (t′1, t2, t3, t

′
4;nM̃ ) is given by,

TIM̃α
β = {[M1(α),M2(α)]; [M

′
1(β),M

′
2(β)]},

0 ≤ α+ β ≤ 1, 0 ≤ α ≤ mM̃ , nM̃ ≤ β ≤ 1

M1(α) = t1 +
α

mM̃

(t2 − t1) M2(α) = t4 −
α

mM̃

(t4 − t3)

M ′
1(β) = t2 −

β

nM̃

(t2 − t′1) M ′
2(β) = t3 +

β

nM̃

(t′4 − t3)

Definition 6: (Interval number). [25], [26] Consider an
interval on the real line R, the interval number i = [i1, i2] =
{y ∈ R : i1 ≤ y ≤ i2 and i1, i2 ∈ R} If ĩ = i1 = i2 =
i, then ĩ = [i1, i2] = i is a real number or degenerate inter-
val, then the midpoint and width of an interval ĩ = [i1, i2]
can be written as ĩm =

(
i1+i2

2

)
, ĩw =

(
i2−i1

2

)
respectively.

This interval number ĩ can be redefined with regard to its
midpoint and width as ĩ = [i1, i2] = ((̃im), (̃iw)).

A. Ranking of Interval numbers

Sengupta et al. [27] demonstrated a straightforward ap-
proach for linking any two intervals on real numbers with
considering decision-maker’s opinion into analysis.
For a set of two intervals ẽ = [e1, e2] and f̃ = [f1, f2],
⃝< denotes the extended order connection that exists among
these intervals, then
(i) If(ẽm) < (f̃m), then ẽ < f̃ (or) ẽ is inferior to f̃ .
(ii) If(ẽm) > (f̃m), then ẽ > f̃ (or) ẽ is superior to f̃ .
(iii) If(ẽm) = (f̃m), then ẽ = f̃ (or) ẽ is equal to f̃ .

Fig. 3. Interval Number

The Acceptibility Function (AF) can be used to formulate
overlapping intervals, for example, if we consider two inter-
vals [0.5,0.9] and [0.6,0.8], which is pictured in Fig. 3 where
the midpoints are equal but the intervals are not equal.
Let I be the set of all closed intervals on the real line R.
We define AF, A : I x I → [0,∞) such that A(E ⃝< F) or
A⃝< = m(F )−m(E)

w(F )+w(E) , where w(B)+w(A) ̸=0, A(E ⃝< F) may
be interpreted as the grade of acceptibility of the first interval
to be inferior to the second interval (i.e., ”E is inferior to F”).
The grade of acceptability of A(E ⃝< F) may be classified
and interpreted as,

A(E ⃝< F ) =


= 0 if m(E) = m(F ),

> 0, < 1 if m(E) < m(F )

≥ 1 if m(E) < m(F )

• If A(E ⃝< F ) = 0, then the interval numbers are
equivalent or non-inferior to each other.

• If 0 < A(E ⃝< F ) < 1, then the premise (E ⃝< F )
is accepted with different grades of satisfaction
ranging from 0 to 1 (excluding 0 and 1).

• If A(E ⃝< F ) ≥ 1, the interpreter (E ⃝< F ) is
accepted.

B. New Interval Arithmetic Operations

Ming Ma [28] projected a new interval fuzzy arithmetic
which is built on both “location index and fuzziness index
functions”. For any two intervals, Ẽ = [e1, e2], F̃ = [f1, f2],
the arithmetic operations on Ẽ and F̃ are well established
and justified as,

IAENG International Journal of Applied Mathematics

Volume 54, Issue 2, February 2024, Pages 262-276

 
______________________________________________________________________________________ 



(i)Ẽ + F̃ = ⟨ẽm, ẽw⟩+ ⟨f̃m, f̃w⟩ =
⟨ẽm + f̃m,max(ẽw, f̃w)⟩

(ii)Ẽ − F̃ = ⟨ẽm, ẽw⟩ − ⟨f̃m, f̃w⟩ =
⟨ẽm − f̃m,max(ẽw, f̃w)⟩

(iii)Ẽ × F̃ = ⟨ẽm, ẽw⟩ × ⟨f̃m, f̃w⟩ =
⟨ẽm × f̃m,max(ẽw, f̃w)⟩

(iv)Ẽ ÷ F̃ = ⟨ẽm, ẽw⟩ ÷ ⟨f̃m, f̃w⟩ =
⟨ẽm ÷ f̃m,max(ẽw, f̃w)⟩

III. INTUITIONISTIC FUZZY LPP

The major aim of linear optimization is to minimize
or maximize a linear objective function that is relevant to
linear constraints, which can be equalities or inequalities.
The primary goal of LPP is to find the most effective
solution, which includes estimating loss or gain. It is a
method for analysing various inequalities in a situation and
assessing the cheapest option that must be obtained in those
circumstances. LPP in intuitionistic fuzzy environment has
four key elements: objective function, decision variables,
constraints, and parameters.

• LPP is comprised of a statement of fact that the
objective is recognised as the objective function. The
objective might be profit maximization or loss mini-
mization.

• These variables determine the unknown value that
must be calculated. The decision maker has the ability
to control the objective through the use of decision
variables.

• Constraints are limitations or restrictions that arise
from various sources that helps a decision maker’s
ability to choose the values of the decision variables.
There are three classes, and they are as follows.

• System Constraints: It involves several decision
variables.

• Individual Constraints: There is only one variable
involved.

• Non-negative Constraints: No variable is allowed
to assume a negative value.

• The objective function and constraints are composed of
symbols that symbolize the decision variables as well
as numerical values known as parameters.

LPP states, “A mathematical method to define the prob-
lem using a linear objective function and linear inequality
constraints and to distribute finite resources to competing
activities in an optimal way.”
Among some of the descriptions used mostly in LPP are as
follows:

Definition 7: In the maximization problem, a simplex
solution is optimal if the I c̃j − I x̃j row is completely
composed of zeros and negative numbers that is, there aren’t
any positive numbers in the rows.

Definition 8: A basic solution of a LPP in general form
is a solution (I x̃1,

I x̃2, ...
I x̃n; s1, s2, ..., sk) of the constraint

equations in which at least m variables are nonzero; these

variables are known as basic variables. A basic feasible
solution is one that has all variables that are non-negative.

Definition 9: In a basic feasible solution, basic and non-
basic variables have a non-zero and zero coefficient respec-
tively. These variables classifies an optimization problem’s
decision variables.

Definition 10: To change inequality constraints into equal-
ity constraints, different variables known as slack variables
are added to the given constraints of a LPP.
The model of the LPP is represented in this section, along
with some fundamental ideas for the solution.

A. Mathematical Formulation of Intuitionistic Fuzzy LPP

1) Simplex method: The general way of formulating an
optimization model with an Intuitionistic fuzzy objective
function and constraints are given below:

maximize or minimize I z̃ =
∑n

j=1
I c̃Ij x̃j

subject to,
∑n

j=1
I ãij

I x̃j ⪯,≈,⪰ I b̃i, where I x̃j ≥ 0

where i = 1,2,....,m ; j = 1,2,....,n and I c̃j ,
I ãij ,

I b̃i are
TrIFNs. Here,

• I x̃j represents the jth decision variable,
• I c̃j represents the coefficient of the objective function

for the jth variable,
• I ãij represents the constraint i’s coefficient on I x̃j ,
• I b̃i represents the individual constraints i’s right-side

coefficient,
• I x̃j ≥ 0 represents the non-negativity constraints.

The Simplex method entails starting with a feasible solution
and iteratively improving it until an optimal solution can
be found. This method guides the search for an optimal
solution by using a collection of theorems. The following
are the theorems connected to LPP and the simplex method.

Theorem 1. Given a basic feasible solution to the LPP,
I x̃B̃ = B̃−1b = (I x̃B̃1

, I x̃B̃2
, ...., I x̃B̃m

) and I Z̃ = I Z̃∗

such that I c̃j − I z̃j ≤ 0 for each column I ãj in Ã but not
in B̃. Then I Z̃ is the objective function’s maximum value,
and I x̃B̃ is the optimal basic feasible solution.

proof: Consider, I x̃B̃ = B̃−1b is the feasible solution
of LPP and I Z̃= I c̃B̃

I x̃B̃ is the corresponding objective
function.
And, I x̃j ≥ 0 (j=1,2,...,n) is any feasible solution of LPP.
The equation AI x̃=b can be written as follows using column
vectors of Ã:

I ã1
I x̃1 +

I ã2
I x̃2 + ....+ I ãn

I x̃n = b (1)

The objective function’s value for this solution is determined
by,

I Z̃∗ = I c̃I x̃ = I c̃1
I x̃1 +

I c̃2
I x̃2 + .....+ I c̃n

I x̃n

Any column vector I ãj of Ã can be represented by a linear
combination of column vectors βi of B̃, which is as follows:

I ãj =
m∑
i=1

Iyijβi
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Substituting I ãj value in eqn.(1) we get,

Ix1

m∑
i=1

I ỹi1βi +
Ix2

m∑
i=1

I ỹi2βi + ....+ Ixn

m∑
i=1

I ỹinβi = b

Substituting the limits,{
m∑
i=1

Ixj
I ỹij

}
β1 +

{
m∑
i=1

Ixj
I ỹ2j

}
β2 + ...+{

m∑
i=1

Ixj
I ỹmj

}
βm = b

Let for every column I ãj which is in Ã but not in B̃, I c̃j−I

z̃j ≤ 0. Now we prove, I Z̃ ¿ I Z̃∗ for any other feasible
solution. For all column vectors of Ã which is in B̃, I ãj ∈ B̃,
we get,

I ỹj = B̃−1I ãj = B̃−1βi =
I ũi (unit vector)

provided I ãj in column i for B̃. then,
I c̃j − I z̃j =

I z̃j − I c̃B̃
I ỹj =

I c̃j − I c̃B̃
I ũi =

I c̃j − I c̃j = 0

Then I c̃j − I z̃j = 0 for all columns of Ã in B̃. Applying the
assumption that I c̃j − I z̃j ≤ 0 for all columns in Ã. Then
from eqn. (1), we have,

m∑
i=1

(I c̃j − I z̃j)
I x̃j ≤ 0

n∑
j=1

I c̃j
I x̃j ≤

n∑
j=1

I z̃j
I x̃j =

n∑
j=1

I x̃j

{
m∑
i=1

I c̃B̃i

I ỹij

}

=


n∑

j=1

I x̃j
I ỹ1j

 I c̃B̃1
+


n∑

j=1

I x̃j
I ỹ2j

 I c̃B̃2
+ ...+

n∑
j=1

I x̃j
I ˜ymj

 I c̃B̃m

= I x̃B̃1

I c̃B̃1
+ I x̃B̃2

I c̃B2
+ ....+ I x̃B̃m

I c̃B̃m
= I Z̃

∴ I Z̃∗ ≤ I Z̃

This concludes the theorem’s proof.

Theorem 2. A sufficient condition for a Basic feasible
solution I x̃B̃ to a LPP

maximize I z̃ =I c̃I x̃

subject to ÃI x̃ = b
I x̃ ≥ 0

to be optimal is that I z̃j −I c̃j ≥ 0 for all the column vector
I ãj of Ã.

Theorem 3. A Linear programming problem,

maximize I z̃ =I c̃I x̃

subject to ÃI x̃ = b
I x̃ ≥ 0

will have no finite optimal solution if there exists atleast one
column vextor I ãj corresponding to a non-basic variable

I x̃j such that I z̃j −I c̃j < 0 and I ỹij for all i.

Theorem 4. If there is an optimal basic feasible solution
to the LPP,

maximize I z̃ =I c̃I x̃

subject to ÃI x̃ = b
I x̃ ≥ 0

and at the optimal stage of the simplex algorithm,
I z̃j −I c̃j = 0 for some non-basic vector I ãj with I ỹij > 0
for atleast one i, then there exists more than one optimal
solution.

2) RTSM and SOM-2: The following is a representation
of an ILPP model:

MaximizeI Z̃± =
n∑

j=1

I C̃±I X̃±

subject to ,
n∑

j=1

I Ã±I X̃± ≤ I B̃±, where I X̃± ≥ 0

where, R± represents a collection of interval numbers,
I Ã± =(I ãij)m×n ∈ (R±)
I C̃± =(c±1 , c

±
2 , ..., c

±
n ) ∈ (R±)q×n

I B̃± =(b±1 , b
±
2 , ..., b

±
m) ∈ (R±)m×q

I X̃± =(x±1 , x
±
2 , ..., x

±
n ) ∈ (R±)n×q

IV. COMPUTATIONAL METHOD

In order to find the optimal solution, the two methods are
employed to solve the given LPP.

A. Simplex method

One of the most widely used approaches to resolving LPP
is the simplex method. The procedures that are involved in
computing an optimal solution is given below,
Step 1: Construct a mathematical model of the problem’s
objective function and constraints by formulating a Intuition-
istic fuzzy linear programming model.
Step 2: Add the slack variable to every inequality formu-
lation to turn the provided inequalities into equations and
generate a zero coefficient in the objective function.
Eg: The given problem becomes,

MaxI z̃ = I c̃I1x̃1+
I c̃I2x̃2+.....+I c̃Inx̃n+0s1+0s2+...+0sk

(2)
Subject to,

I ãI11x̃1 +
I ãI12x̃2 + ....+I ãI1nx̃n + s1 =I b̃1

I ãI21x̃1 +
I ãI22x̃2 + ....+ I ãI2nx̃n + s2 = I b̃2

. . . . . . . . .

I ãIm1x̃1 +
I ãIm2x̃2 + ....+ I ãImnx̃n + sk = I b̃k

Here, I x̃1,
I x̃2, ...

I x̃n and s1, s2, ..., sk are slack variables to
change inequality constraints to equality constraints as well
as non-negative.
Step 3: Build the initial feasible solution. Setting the
decision variables to zero, results in an initial basic feasible
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solution. Then, the objective function in (2) turns into,
I x̃1 = I x̃2 = .... = I x̃n = 0, Then we have, s1 = I b̃1, s2 =
I b̃2,...., sk = I b̃k
The Table I appears to be,

TABLE I
GENERAL REPRESENTATION OF ITERATIONS IN PROPOSED METHOD

I c̃j →
Basic variables I C̃B

IX̃B
I x̃1,

I x̃2....
I x̃k

I s̃1,
I s̃2....

I s̃k

I s̃1 0 I b̃1
I ã11,

I ã12, ....,
I ã1n 1 0 0 . . . 0

I s̃2 0 I b̃2
I ã21,

I ã22, ....,
I ã2n 0 1 0 . . . 0

...
...

...
...

. . .
I s̃k 0 I b̃k

I ãm1,
I ãm2, ....,

I ãmn 0 0 0 . . . 1
I z̃j . . . . . . . . . . . .

I c̃j − I z̃j . . . . . . . . . . . .

Step 4: Analyze the I c̃j − I z̃j values. These three scenarios
are possible:
• The basic feasible solution is optimal if all I c̃j−I z̃j ≤ 0
• If the coefficients matrix contains at least one column

for which I c̃j − I z̃j > 0 and all other elements are
negative (i.e., aij < 0), then the presented problem has
an unbounded solution.

• If there is at least one I c̃j − I z̃j > 0 and each of these
columns contains at least one positive element (i.e.,
aij > 0) for some row, this suggests that the objective
function I z̃ is feasible and it is continued in next step.

The procedure that needs to be followed to solve the
problem is explained in the flowchart of Fig. 4.

Step 5: If there exists multiple positive solutions in the
bottom of the table, select the largest positive among them,
then the corresponding column is considered as the entering
column which is denoted as (CE).
Step 6: Calculate the ratio

I C̃B

(CE) in which IC̃B is the
objective function’s cost value and is written in the separate
column, then choose the value that is the least of the values
and is represented as the leaving row. The key element of
the table is the component that is presented common in
both the entering column and the exiting row.
Step 7: After tracking down the key element, divide its
row by the maximum element so that the outcome which
is equal to 1, and can make all of the other elements in its
column equal to 0 by deducting the proper multiples of this
new row from the other rows.
Step 8: Once completing these steps, if either one of
the numbers in the I c̃j − I z̃j row are still positive, repeat
steps from (5-7) once again until the optimal solution is
discovered. Otherwise, the given problem came up with the
finest optimal solution.

B. Robust two step method

For the purpose of solving interval LPP, a robust
two-step method (RTSM) is developed and separated
into two submodels that correspond to z. This is done
in order to prevent a total violation of the constraints
as the decision variables in the generated decision space
changed. It’s probable that the RTSM approach won’t
require much calculation. The RTSM method’s solution

Start

Formulate the model
using TrIFLPP

Identify the
slack variables

Compute
I z̃j and I c̃j − I z̃j

I c̃j − I z̃j ≤ 0,
solution

is optimal
Stop

Find the entering column
which is most positive

Find the leaving row and
identify the key element which is
(entering column ∩ leaving row)

Create the new
table using
the relevant
calculations

Once the Optimal
solution is obtained,
Conclude

yes

No

No

yes

Fig. 4. Flowchart of Simplex method

space is completely feasible.
In this technique, when the objective function is to
be maximised, the primary sub-model is formulated to
correspond to I z̃−, and the second sub-model is formulated
to correspond to I z̃+, utilising the results of the first
sub-model. The RTSM method’s sub-models can be defined
below: (assume I z̃± > 0, I b̃±i > 0)
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1) Sub-model 1:

Max I z̃− =

p∑
j=1

I c̃−j
I x̃−

j +
n∑

j=p+1

I c̃−j
I x̃+

j

Subject to
p∑

j=1

|I ãij |+ sign(ã±ij)
I x̃−

j +
n∑

j=p+1

|I ãij |− sign(ã±ij)
I x̃+

j

≤I b̃−i , i = 1, 2, ....,m,

I x̃−
j ≥ 0, j = 1, 2, ....,p and I x̃+

j ≥ 0, j = p+1, p+2,....,n

The values of |I ãij |± and sign(ã±ij) are,

|I ãij |− =

{
I ã−ij ,

I ã±ij ≥ 0

−I ã+ij ,
I ã±ij < 0

|I ãij |+ =

{
I ã+ij ,

I ã±ij ≥ 0

−I ã−ij ,
I ã±ij < 0

sign(ã±ij) =

{
1, I ã±ij ≥ 0

−1, I ã±ij < 0

The optimal solution that sub-model 1 may yield is I x̃−
jop,

and I z̃−op is the optimal objective function for this model.
Using the solution from the first sub-model, the second
sub-model is presented and is defined as

2) Sub-model 2:

Max I z̃+ =

p∑
j=1

I c̃+j
I x̃+

j +
n∑

j=p+1

I c̃+j
I x̃−

j

Subject to
p∑

j=1

|I ãij |− sign(ã±ij)
I x̃+

j +

n∑
j=p+1

|I ãij |+ sign(ã±ij)
I x̃−

j

≤I b̃+i , i = 1, 2, ....,m

qi1∑
j=1

|I ãij |−I x̃+
j +

p∑
j=qi1+1

|I ãij |−I x̃−
jop +

qi2∑
j=p+1

|I ãij |−I x̃−
j

+
n∑

j=qi2+1

|I ãij |−I x̃+
jop ≤I b̃+i

I x̃+
j ≥ I x̃−

jop, j = 1, 2, ....., p
I x̃−

j ≤ I x̃+
jop, j = p+1, p+2, ....., n

I x̃+
j ≥ 0, j = 1, 2, ....,p and I x̃−

j ≥ 0, j = p+1, p+2,....,n

where c̃±j ≥ 0 for j = 1, 2, ....., p and c̃±j ≤ 0 for j = p+1,
p+2, ....., n; I ãij ≥ 0 for j = 1, 2, ... qi1; j = qi1+1, qi1+2,
..., n and I ãij ≤ 0 for j = qi1 + 1, qi1 + 2, ..., qi2, where
qi1 ≤ p, and qi2 ≥ p.

The optimal solution that sub-model 2 can generate is
I x̃+

jop, and the best objective function for this model is
I z̃+op. As a result, the combined conclusions of Sub-models
1 and 2 are interpreted as, I x̃±

jop = [I x̃−
jop,

I x̃+
jop] and

I z̃±jop = [I z̃−op,
I z̃+op].

C. Alternative Solution Method

An alternative solution method (SOM-2) for solving inter-
val LPP model is introduced by Lu et al. [19] for minimising
the objective function (i.e., min z± =

∑p
j=1

I c̃±j
I x̃±

j ) with
the help of its sub-models. This method can produce alterna-
tive solution that are flexible to the practical circumstances
of decision makers. This paper solves the maximization
problem and considers the SOM-2 sub-models as,

1) Sub-model 1:

Max I z̃− =
∑
j∈A1

I c̃−j
I x̃−

j +
n∑

j=p+1

I c̃−j
I x̃+

j

Subject to∑
j∈A1

|I ãij |+ sign(ã±ij)
I x̃−

j +
n∑

j=p+1

|I ãij |− sign(ã±ij)
I x̃+

j

≤I b̃+i , i = 1, 2, ....,m,

I x̃−
j ≥ 0, j ∈ A1 and I x̃+

j ≥ 0, j ∈ A2,
A1 = {j : c̃±j ≥ 0}, A2 = {j : c̃±j ≤ 0}, A1,A2 are index
sets.
The optimal solution of sub-model 1 is I x̃−

jop for j ∈ A1,
I x̃+

jop for j ∈ A2 and I z̃−op is the optimal objective function
for sub-model 1. Using the solution from the first sub-model,
the sub-model 2 is defined as

2) Sub-model 2:

Max I z̃+ =

p∑
j∈A1

c̃+j
I x̃+

j +

n∑
j=p+1

I c̃+j
I x̃−

j

Subject to∑
j∈A2

|I ãij |− sign(ã±ij)
I x̃+

j +
n∑

j=p+1

|I ãij |+ sign(ã±ij)
I x̃−

j

≤I b̃−i , i = 1, 2, ....,m,

I x̃+
j ≥ I x̃−

jop, for j ∈ A1, 0 ≤ I x̃−
j ≤ I x̃+

jop, for j ∈ A2.

As a result, the combined solutions of Sub-models 1 and
2 are interpreted as, I x̃±

jop = [I x̃−
jop,

I x̃+
jop] and I z̃±jop =

[I z̃−op,
I z̃+op].

V. NUMERICAL ILLUSTRATION

A. Example 1:

This section uses the numerical demonstration from [20]
to validate the trapezoidal IFLPP’s suggested numerical
method. The challenge in the actual world is determining
the production’s maximum profit. Consider the subsequent
maximization LPP. A businessman who wishes to increase
profits with two separate products, A and B, each of
which has a net profit per item close to Rs. 5 and Rs. 3,
respectively. He can only spend a certain amount of money
on labour and supplies. Product A took 4 hours of labour
to produce each unit, while Product B just needs 3 hours.
While each unit of product A only needs one unit of raw
materials, each unit of product B needs three units. The
maximum number of raw material units and labour hours
permitted are 12 and 6, respectively.
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max Ĩ5x1 + Ĩ3x2

Subject to Ĩ4x1 + Ĩ3x2 ≤ Ĩ12

Ĩ1x1 + Ĩ3x2 ≤ Ĩ6

x1, x2 ≥ 0

The objective function and constraints are expressed in
STrIFNs in this particular instance.

c1 = Ĩ5 = (4, 5, 5.5, 6); (4, 5, 5.5, 6.1);

c2 = Ĩ3 = (2.5, 3, 3.1, 3.2); (2, 3, 3.1, 3.5)

a11 = Ĩ4 = (3.5, 3.8, 4, 4.1); (3, 3.8, 4, 5);

a12 = Ĩ3 = (2.5, 3, 3.1, 3.5); (2.4, 3, 3.1, 3.6)

a21 = Ĩ1 = (0.8, 1, 1.2, 2); (0.5, 1, 1.2, 2.1);

a22 = Ĩ3 = (2.8, 2.9, 3, 3.2); (2.5, 2.9, 3, 3.2)

b1 = Ĩ12 = (11, 11.8, 12.2, 13); (11, 11.8, 12.2, 14);

b2 = Ĩ6 = (5.5, 6, 6.2, 7.5); (5, 6, 6.2, 8.1)

The flowchart in Fig. 5 explains the process that must be
maintained throughout the problem.

Address the given problem
as in STrIFNs and GTrIFNs

Interval numbers are created
from these TrIFNs by (α, β)-cut

Solving LPP using interval numbers
and using RTSM, SOM-2 algorithms

To generalize the findings, these
intervals are shifted into midpoint

and width, then solved by SM

To manage uncertainty, the values are
given for different values of α and β

Lastly, the results are shown by
using SM, RTSM and SOM-2

Fig. 5. Process flow diagram

1) Simplex method: The solution of the given problem is:
With the use of the (α, β)-cut, these STrIFNs are turned into
interval numbers and the values are tabulated in Table II.

In order to explicitly handle the uncertainty, we obtain
the Interval valued Intuitionistic fuzzy numbers (IVIFNs) by
changing the TrIFNs to IVIFNs by assigning α and β values
amongst 0 and 1.
Let us characterize all interval parameters as Ẽ =
[e1, e2] and F̃ = [f1, f2] in aspects of midpoint and width,
respectively, as

Ẽ = ⟨ẽm⟩, ⟨ẽw⟩ and F̃ = ⟨f̃m⟩, ⟨f̃w⟩

TABLE II
INTERVAL VALUES USING (α, β)-CUT

Linear values Result using (α, β)-cut

c1 [4+α, 6-0.5α], [5-β, 5.5+0.6β]

c2 [2.5+0.5α, 3.2-0.1α], [3-β, 3.1+0.4β]

a11 [3.5+0.3α, 4.1-0.1α], [3.8-0.8β, 4+β]

a12 [2.5+0.5α, 3.5-0.4α], [3-0.6β, 3.1+0.5β]

a21 [0.8+0.2α, 2-0.8α], [1-0.5β, 1.2+0.9β]

a22 [2.8+0.1α, 3.2-0.2α], [2.9-0.4β, 3+0.2β]

b1 [11+ 0.8α, 13-0.8α], [11.8-0.8β, 12.2+1.8β]

b2 [5.5+0.5α, 7.5-1.3α], [6-β, 6.2+1.9β]

The IVIFNs is then converted into numbers which is repre-
sented in terms of midpoint and width with the help of new
interval arithmetic operations.
When α, β value is 0.5 we acquire for the membership value
as,

max ⟨5.125, 0.625⟩x1 + ⟨2.95, 0.2⟩x2

Subject to ⟨3.85, 0.2⟩x1 + ⟨3.025, 0.275⟩x2 ≤ ⟨12, 0.6⟩

⟨1.25, 0.35⟩x1 + ⟨2.975, 0.125⟩x2 ≤ ⟨6.3, 0.55⟩

x1, x2 ≥ 0

Accordingly, the non-membership value for α, β = 0.5 is,

max ⟨5.15, 0.65⟩x1 + ⟨2.9, 0.4⟩x2

Subject to ⟨3.95, 0.55⟩x1+ ⟨3.025, 0.325⟩x2 ≤ ⟨12.25, 0.85⟩

⟨1.2, 0.45⟩x1 + ⟨2.9, 0.2⟩x2 ≤ ⟨6.325, 0.825⟩

x1, x2 ≥ 0

By solving through the simplex method, the solution for
the above LPP problem in terms of midpoint and width is,
For membership function, the solution is, x1 =
⟨3.1169, 0.6⟩, x2 = ⟨0, 0⟩ and Z̃ = ⟨15.974, 0.625⟩
It is then converted into interval and the value we got is, x1
= [2.5,3.7], x2 = [0,0] and Z̃ = [15.3,16.65] which satisfies
Theorem 3.2 as I z̃j −I c̃j ≥ 0 and the Intuitionistic basic
feasible solution is obtained.
For non-membership function, the solution is,
x1 = ⟨3.1013, 0.85⟩, x2 = ⟨0, 0⟩ and Z̃ = ⟨15.9715, 0.85⟩.
It is then converted into interval and the value we got is, x1
=[2.2,3.95], x2 = [0,0] and Z̃ = [15.15,16.85].

2) RTSM: If α and β are both 0.5, the interval numbers
for MF are expressed as,

max I z̃± = [4.5, 5.75]x1
± + [2.75, 3.15]x2

±

Subject to [3.65, 4.05]x1
± + [2.75, 3.3]x2

± ≤ [11.4, 12.6]

[0.9, 1.6]x1
± + [2.85, 3.1]x2

± ≤ [5.75, 6.85]

x1
±, x2

± ≥ 0
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The following is an expression for the RTSM method’s sub-
models:

Sub-model 1:

max I z̃− = 4.5x1
− + 3.15x2

+

Subject to 4.05x1
− + 2.75x2

+ ≤ 11.4

1.6x1
− + 2.85x2

+ ≤ 5.75

x1
+, x2

− ≥ 0

The solution of the initial Submodel through RTSM are:
x1

−
op = 2.335, x2

+
op = 0 and I z̃−op = 12.

Sub-model 2:

max I z̃+ = 5.75x1
+ + 2.75x2

−

Subject to 3.65x1
+ + 3.3x2

− ≤ 12.6

0.9x1
+ + 3.1x2

− ≤ 6.85

x1
+ ≥ 2.335, x2

− ≤ 0

0.9x1
+ ≤ 4.836

x1
+, x2

− ≥ 0

The solution of the final Submodel through RTSM are:
x1

+
opt = 3.452, x2

−
opt = 0 and I z̃+opt = 20.

The optimal Membership solutions using RTSM for α, β
= 0.5 in terms of interval are:
x1

± = [2.335, 3.452], x2
± = 0 and I z̃± = [12, 20].

If α and β are both 0.5, the interval numbers for non-
Membership are expressed as,

max I z̃± = [4.5, 5.8]x1
± + [2.5, 3.3]x2

±

Subject to [3.4, 4.5]x1
± + [2.7, 3.35]x2

± ≤ [11.4, 13.1]

[0.75, 1.65]x1
± + [2.7, 3.1]x2

± ≤ [5.5, 7.15]

x1
±, x2

± ≥ 0

Subsequently, the procedure for membership is likewise
applied for the non-membership values.

As a result, the optimal non-Membership solutions for α
and β are both 0.5 using RTSM are:
x1

± = [2.07, 3.85], x2
± = 0 and I z̃± = [12, 23].

3) SOM-2: The value considered for α and β is 0.5.
The problem in terms of interval numbers has already
been represented in the previous method (RTSM). The
sub-models for SOM-2 is discussed below,

Sub-model 1:

max I z̃− = 4.5x1
− + 3.15x2

+

Subject to 4.05x1
− + 2.75x2

+ ≤ 12.6

1.6x1
− + 2.85x2

+ ≤ 6.85

x1
+, x2

− ≥ 0

The solution of the initial Submodel through RTSM are:
x1

−
op = 2.3903, x2

+
op = 1.0616 and I z̃−op = 14.2.

Sub-model 2:

max I z̃+ = 5.75x1
+ + 2.75x2

−

Subject to 3.65x1
+ + 3.3x2

− ≤ 11.4

0.9x1
+ + 3.1x2

− ≤ 5.75

0.9x1
+ ≤ 2.3903

x1
+, x2

− ≥ 1.0616

The solution of the final Submodel through RTSM are:
x1

+
opt = 3.1233, x2

−
opt = 0 and I z̃+opt = 17.9.

The optimal MF solutions using SOM-2 for α, β = 0.5 in
terms of interval are: x1± = [2.39, 3.123], x2

± = [0, 1.06]
and I z̃± = [14.2, 17.9].

Subsequently, the procedure for membership is likewise
applied for the non-membership values.
As a result, the optimal non-Membership solutions for α and
β are both 0.5 using SOM-2 are:
x1

± = [2.08, 3.35], x2
± = [0, 1.37] and I z̃± = [13.9, 19.4].

B. Example 2:

Another numerical depiction is presented to solve IFLPP
which is extracted from Nachammai et al. [21]. The illustra-
tions helps us to understand the significance of our findings.
A toy manufacturing company wishes to maximize profits
by determining the number of units required to make two
types of toys, Toy A and Toy B. The number of units of Toy
A to make each month and the number of units of Toy B to
be manufactured each month are represented by the decision
variables x1 and x2, respectively. Maximizing the monthly
profit is the primary goal. Toy A makes Rs. 4 per unit, also
Toy B makes Rs. 4 per unit. The total labour hours used in
creating Toy A (1.8 hours) and Toy B (3 hours) shouldn’t
be more than 11 hours per day provided. The total amount
of raw material utilised to make Toy A (5.5 kg) and Toy B
(4.6 kg) shouldn’t go above 12 kg every day. The quantity
produced cannot be negative. The toy production in the form
of IFLPP is given as,

max Ĩ4x1 + Ĩ4x2

Subject to Ĩ1.8x1 + Ĩ3x2 ≤ Ĩ11

Ĩ5.5x1 + Ĩ4.6x2 ≤ Ĩ12

x1, x2 ≥ 0

The objective function and constraints are expressed in
GTrIFNs in this illustration.

c1 = Ĩ4 = (3, 4, 5, 5.5; 0.3); (2, 4, 5, 6; 0.6);

c2 = Ĩ4 = (3.5, 4, 4.5, 6; 0.3); (3, 4, 4.5, 7; 0.6)

a11 = Ĩ1.8 = (1, 1.8, 2, 3; 0.4); (0.5, 1.8, 2, 4; 0.6);

a12 = Ĩ3 = (2, 3, 5, 5.8; 0.4); (1, 3, 5, 6; 0.5)

a21 = Ĩ5.5 = (4, 4.5, 5, 8; 0.7); (3, 4.5, 5, 9; 0.2);

a22 = Ĩ4.6 = (3.8, 4, 6, 9; 0.7); (3, 4, 6, 10; 0.2)

b1 = Ĩ11 = (10, 11, 13, 15; 0.3); (9, 11, 13, 17; 0.6);

b2 = Ĩ12 = (11, 12, 15, 17; 0.6); (8, 12, 15, 19; 0.3)
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1) Simplex method: The solution of the given problem by
using SM is:
These GTrIFNs are converted into interval numbers using
the (α, β)-cut, and the values are tabulated in Table III.

TABLE III
(α, β)-CUT OF GTRIFN INTO INTERVAL VALUES

Linear values Result using (α, β)-cut

c1
[
3 + α

0.3
, 5.5− 0.5α

0.3

]
,
[
4− 2β

0.6
, 5 + β

0.6

]
c2

[
3.5 + 0.5α

0.3
, 6− 1.5α

0.3

]
,
[
4− β

0.6
, 4.5 + 2.5β

0.6

]
a11

[
1 + 0.8α

0.4
, 3− α

0.4

]
,
[
1.8− 1.3β

0.6
, 2 + 2β

0.6

]
a12

[
2 + α

0.4
, 5.8− 0.8α

0.4

]
,
[
3− β

0.5
, 5 + β

0.5

]
a21

[
4 + 0.5α

0.7
, 8− 3α

0.7

]
,
[
4.5− 1.5β

0.2
, 5 + 4β

0.2

]
a22

[
3.8 + 0.2α

0.7
, 9− 3α

0.7

]
,
[
4− β

0.2
, 6 + 4β

0.2

]
b1

[
10 + α

0.3
, 15− 2α

0.3

]
,
[
11− 2β

0.6
, 13 + 4β

0.6

]
b2

[
11 + α

0.6
, 17− 2α

0.6

]
,
[
12− 4β

0.3
, 15 + 4β

0.3

]

To explicitly handle uncertainty, we generate IVIFNs by
converting GTrIFNs to IVIFNs by assigning α and β values
between 0 and 1.

In terms of midpoint and width, let us characterize all
interval parameters as Ẽ = [e1, e2] and F̃ = [f1, f2].

Ẽ = ⟨ẽm⟩, ⟨ẽw⟩ and F̃ = ⟨f̃m⟩, ⟨f̃w⟩

When dealing with uncertainty, the midpoint and width rep-
resentation of interval numbers is beneficial in optimization
problems. Furthermore, interval arithmetic with a midpoint
improves in capturing imprecision and uncertainty in calcu-
lation. After the conversion to midpoint and width, the given
problem is displayed in Table IV for different values of α, β.

TABLE IV
CONVERSION OF INTERVALS INTO MIDPOINT, WIDTH FOR VARIOUS α

AND β VALUES

α, β c1 c2 a11 a12 a21 a22 b1 b2

0
⟨4, 1.3⟩ ⟨5, 1.3⟩ ⟨2, 1⟩ ⟨4, 1.9⟩ ⟨6, 2⟩ ⟨6, 2.6⟩ ⟨12, 2.5⟩ ⟨14, 3⟩

⟨4, 0.5⟩ ⟨4, 0.3⟩ ⟨2, 0.1⟩ ⟨4, 1⟩ ⟨5, 0.3⟩ ⟨5, 1⟩ ⟨12, 1⟩ ⟨13, 1.5⟩

0.2
⟨4.5, 0.8⟩⟨4, 0.6⟩ ⟨2, 0.5⟩ ⟨4, 1.5⟩ ⟨5.6, 1.5⟩ ⟨6, 2.1⟩ ⟨12, 1.5⟩⟨13.8, 2.5⟩

⟨4.3, 1⟩⟨4.5, 0.8⟩⟨2, 0.6⟩⟨3.8, 1.6⟩⟨6.5, 2.5⟩⟨6.5, 3.5⟩⟨12, 1.8⟩⟨13.5, 4.2⟩

0.4
⟨4.6, 0.2⟩⟨4, 0.1⟩⟨1.9, 0.1⟩ ⟨4, 1⟩ ⟨5.3, 1⟩ ⟨5.6, 1.7⟩⟨12, 0.5⟩ ⟨13.7, 2⟩

⟨4.2, 1.5⟩⟨5, 1.4⟩ ⟨2, 1.2⟩⟨3.6, 2.2⟩⟨8.3, 4.8⟩ ⟨8, 6⟩ ⟨12.9, 3.2⟩⟨13.5, 7⟩

0.6
⟨4.8, 0.3⟩⟨4, 0.8⟩⟨1.9, 0.4⟩⟨4, 0.5⟩ ⟨4.9, 0.5⟩ ⟨5.2, 1⟩⟨11.5, 0.5⟩⟨13.5, 1⟩

⟨4, 2⟩ ⟨5, 2⟩ ⟨2.3, 2⟩⟨3.4, 2.8⟩ ⟨10, 7⟩ ⟨9.5, 8.5⟩ ⟨13, 4⟩ ⟨13.5, 9.5⟩

0.8
⟨5, 0.7⟩⟨3.4, 1.4⟩⟨1.8, 1⟩ ⟨4, 0.1⟩ ⟨4.6, 0⟩ ⟨4.8, 1⟩⟨11.2, 1.5⟩⟨13.3, 1⟩

⟨3.8, 2⟩ ⟨5.3, 2⟩⟨2.4, 2.3⟩⟨3, 3.4⟩⟨11.8, 9.2⟩⟨11, 11⟩ ⟨13.2, 5⟩⟨13.5, 12⟩

1
⟨5, 1.2⟩ ⟨3, 2.1⟩⟨1.8, 1.3⟩⟨4, 0.4⟩ ⟨4.2, 0.5⟩⟨4.4, 0.3⟩⟨11, 2.5⟩⟨13.2, 0.5⟩

⟨3.7, 3⟩ ⟨5, 3.2⟩⟨2.5, 2.9⟩ ⟨3, 4⟩ ⟨13.5, 11⟩⟨12, 13⟩ ⟨13.9, 6⟩⟨13.5, 15⟩

By following the steps mentioned in illustration 1,
the optimal solution of IFLPP is acquired by using SM,
RTSM and SOM-2 are discussed in the next section. As

I z̃j −I c̃j ≥ 0 satisfies Theorem 3.2, the Intuitionistic basic
feasible solution is obtained.

2) RTSM: The solution of RTSM for example 2 is ob-
tained by considering the interval values acquired using α, β-
cut (as it is mentioned in Table III). It also follows the
procedures of illustration 1.

3) SOM-2: The solution of SOM-2 for example 2 is also
obtained by considering the interval values acquired using
α, β-cut (shown in Table III). It also follows the procedures
of illustration 1.

VI. RESULTS AND DISCUSSIONS

In example 1, STrIFNs is converted into interval values
whereas in example 2, GTrIFNs is converted into intervals
rather than crisp conversion. As intervals offer more adapt-
able manner to convey uncertainty and imprecision, they are
frequently preferred. It can be challenging to identify an
accurate number for a parameter in our actual world. Because
of their adaptability and exactness, intervals are frequently
selected over crisp values for portraying uncertainty and
imprecision in a variety of applications. Results from SM,
RTSM and SOM-2 are presented from 2 illustrations and
examined with the previous findings. Lastly, the diagram
displays the comparison.

A. Results using Simplex method of example 1

The optimal solution I z̃ obtained using SM is in intervals,
which provide more information than crisp numbers while
simultaneously increase the complexity of data processing
and computations. Table V contains the values that have
been calculated for various α and β interval parameters.

TABLE V
SOLUTION OF I z̃ FOR VARIOUS VALUES OF α & β OF EXAMPLE 1 USING

SM

Proposed Proposed
α β Existing membership non-membership

(Z∗) (I z̃m) (I z̃nm)

0 0 [14.8,16.9] [16.15,16.35]
0.1 0.1 [14.9,16.85] [15.95,16.45]
0.2 0.2 [15,16.8] [15.75,16.55]
0.3 0.3 [15.1,16.75] [15.55,16.65]
0.4 0.4 [15.2,16.7] [15.35,16.75]
0.5 0.5 6.8509 [15.3,16.65] [15.15,16.85]
0.6 0.6 [15.4,16.6] [14.95,16.95]
0.7 0.7 [15.5,16.55] [14.75,17.05]
0.8 0.8 [15.6,16.5] [14.55,17.15]
0.9 0.9 [15.7,16.45] [14.35,17.25]
1 1 [15.8,16.4] [14.15,17.25]

Fig. 6 and 7 compare the derived lower and upper mem-
bership and non-membership values of α and β from 0 to
1 to the existing crisp value. By examining the graph, it is
evident that the larger α and β value, the greater the profit,
i.e., when α and β are from 0 to 1, considering the lower
value, the maximum profit attained is Rs. 15.8, whereas the
customer’s unsatisfactory rate is 14.15. The optimal outcome
which is acquired by Chopra [20] is Rs. 6.8509. As a result,
employing the simplex method and interval arithmetic yields
the best result.
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Fig. 6. Comparing MF of α and β from 0 to 1 with existing using SM
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Fig. 7. Comparing NMF of α and β from 0 to 1 with existing using SM

B. Results using Simplex method of example 2

GTrIFNs can be used to represent uncertain parameters
with the degrees of membership and non-membership. The
SM approach deals with GTrIFNs, allowing the modelling of
real-world problems when data is unclear or inaccurate. With
the help of interval arithmetic and considering the degrees of
MF and NMF associated with GTrIFNs, enabling uncertainty
to be handled throughout the optimization process. Intervals
are frequently considered to be a more adaptable and prac-
tical manner of representing uncertainty or imprecision and
the optimal solution I z̃ have been calculated for various α
and β in terms of intervals by using (α, β) cut. Table VI
represents the optimal solution of SM in terms of intervals
rather than converting into crisp.

TABLE VI
SOLUTION OF I z̃ FOR VARIOUS VALUES OF α & β USING SM OF

EXAMPLE 2

Proposed Proposed
α β membership (I z̃m) non-membership (I z̃nm)

0 0 [7,13] [11.3,14.3]
0.1 0.1 [7.6,13.1] [7.9,13.5]
0.2 0.2 [8.5,13.5] [5.1,13.5]
0.3 0.3 [9.1,13.6] [3.2,14.2]
0.4 0.4 [9.8,13.8] [1.2,14.8]
0.5 0.5 [10.6,14.1] [-0.6,15.8]
0.6 0.6 [11.6,14.6] [-2.4,16.6]
0.7 0.7 [12.3,14.8] [-4.1,17.5]
0.8 0.8 [13.3,15.3] [-5.8,18.6]
0.9 0.9 [14.2,16.2] [-7.3,19.7]
1 1 [14.6,17.1] [-8.9,20.7]

For various values of α, β, if α value increases, the profit
also increases for toy manufacturing, i.e., the maximum profit
is Rs. 14.6 to 17.1 per toy.

C. Results using RTSM of example 1

The RTSM produces an optimal solution I z̃ in intervals.
Table VII shows the computed values for various α and
β parameters in intervals.

TABLE VII
SOLUTION OF I z̃ FOR VARIOUS VALUES OF α, β USING RTSM OF

EXAMPLE 1

Proposed Proposed

α β Existing MF NMF

(Z∗) (I z̃m) (I z̃nm)

0 0 [10.8,22.5] [14.5,18]

0.1 0.1 [11.2,22] [14,19]

0.2 0.2 [11.6,21.5] [13.5,20]

0.3 0.3 [12,21] [13,21]

0.4 0.4 [12.4,20.5] [12.5,22]

0.5 0.5 6.8509 [12.8,20] [12,23]

0.6 0.6 [13.2,19.5] [11.5,24]

0.7 0.7 [13.6,19] [11,25]

0.8 0.8 [14,18.5] [10.5,26]

0.9 0.9 [14.5,18] [10,27]

1 1 [14.8,17.5] [9.5,28]

Fig. 8 and 9 displays the lower and upper membership
and non-membership optimal values for α and β from 0
to 1 and is compared with the existing value. The graph
demonstrates that the benefit increases with increasing α, β
values; for example, when α and β are between 0 and 1,
the maximum profit is Rs. 14.8 and the rejection rate is 9.5.
Chopra achieves the outcome, which is Rs. 6.8509. As a
result, when compared to the existing value, the RTSM and
interval arithmetic produce the best results.
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Fig. 8. Comparing MF of α and β from 0 to 1 with existing using RTSM
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Fig. 9. Comparing NMF of α and β from 0 to 1 with existing using RTSM

D. Results using RTSM of example 2

By using RTSM, the optimal solution I z̃ is presented in
terms of intervals. Table VIII represents the interval values
for various parameters of α, β.

TABLE VIII
SOLUTION OF I z̃ FOR VARIOUS VALUES OF α & β OF EXAMPLE 2 BY

USING RTSM

Proposed Proposed
α β MF (I z̃m) NMF (I z̃nm)

0 0 [17.4,22.5] [13.5,16.6]
0.1 0.1 [16,22] [15,19.8]
0.2 0.2 [15,20] [16.4,23.5]
0.3 0.3 [13,19] [18.6,28]
0.4 0.4 [12.6,17.5] [21,33]
0.5 0.5 [13,16] [23,39]
0.6 0.6 [13.5,17] [28,46]
0.7 0.7 [13.5,17] [40,59]
0.8 0.8 [13,17.7] [46,64]
0.9 0.9 [12,18] [55,78]
1 1 [11.5,23] [66,94]

The solutions are shown for various values of α, β. The
maximum profit of toy production is Rs. 11.5 to 23 per toy.

E. Results using SOM-2 of example 1

The SOM-2 produces an optimal solution I z̃ in intervals.
Table IX shows the computed values for various α and β
parameters in intervals.

TABLE IX
SOLUTION OF I z̃ FOR VARIOUS VALUES OF α, β USING SOM-2 OF

EXAMPLE 1

Existing Proposed Proposed
α β (Z∗) MF (I z̃m) NMF (I z̃nm)

0 0 [13.2,18.8] [15.2,17]
0.1 0.1 [13.4,18.6] [14.8,17.5]
0.2 0.2 [13.6,18.4] [14.4,17.9]
0.3 0.3 [13.8,18.3] [14.1,18.4]
0.4 0.4 [14,18.1] [14,18.9]
0.5 0.5 6.8509 [14.2,17.9] [13.9,19.4]
0.6 0.6 [14.4,17.7] [13.8,19.9]
0.7 0.7 [14.6,17.5] [13.7,20.5]
0.8 0.8 [14.8,17.3] [13.6,21.1]
0.9 0.9 [15,17.1] [13.6,21.7]
1 1 [15.2,17] [13.5,22.3]

Fig. 10 and 11 displays the lower and upper membership and
non-membership optimal values for α and β from 0 to 1. The
graph demonstrates that the benefit increases with increasing

α, β values; for example, when α and β are between 0 and
1, the maximum profit is Rs. 14.8 and the rejection rate is
9.5. Chopra achieves the outcome, which is Rs. 6.8509. As a
result, when compared to the existing value, the RTSM and
interval arithmetic produce the best results.
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Fig. 10. Comparing MF of α and β from 0 to 1 with existing using SOM-2
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F. Results using SOM-2 of example 2

By using SOM-2, the optimal solution I z̃ is presented in
terms of intervals. Table X represents the interval values for
various parameters of α, β.

TABLE X
SOLUTION OF I z̃ FOR VARIOUS VALUES OF α & β OF EXAMPLE 2 BY

USING RTSM

Proposed Proposed
α β MF (I z̃m) NMF (I z̃nm)

0 0 [15,27] [13.3,20.3]
0.1 0.1 [14.6,24] [13,22.8]
0.2 0.2 [14,21] [12.4,28.5]
0.3 0.3 [13.7,18.5] [11.7,36.3]
0.4 0.4 [13,16] [10.9,45]
0.5 0.5 [12,16] [9.5,52.8]
0.6 0.6 [13.6,16.1] [8,66]
0.7 0.7 [14.3,16.2] [6,83]
0.8 0.8 [15.2,16.3] [3,100]
0.9 0.9 [16.4,18.3] [0,131]
1 1 [17.4,22] [0,174]
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The solutions are shown for various values of α, β. The
maximum profit of toy production is Rs. 17.4 to 22 per toy.

Table XI provides the optimal solutions taken from [20]
in terms of TrIFNs for the value of α and β = 0.5, by
substituting the values of the obtained x1 and x2 in the
given objective function. This is because in the existing
method, Chopra et al. demonstrated the value for α = 0.5
and compared the results to the existing optimal solution.

TABLE XI
OPTIMAL SOLUTION IN TERMS OF TRIFNS FOR EXAMPLE 1

Computational methods Costs in terms of TrIFNs

Existing method for α = 0.5 (13.036, 16.475, 18.1225, 19.77);
(13.036, 16.475, 18.1225, 20.0995)

Proposed method using SM for (14.8, 18.5, 20.35, 22.2);
α, β = 0.5 (15.6, 19.5, 21.45, 23.79)

Proposed method using RTSM (13.6, 17, 18.7, 20.4);
for α, β = 0.5 (15.2, 19, 20.9, 23.2)

Proposed method using SOM-2 (14.5, 18, 19.6, 21.2);
for α, β = 0.5 (17, 21.2, 23, 25)

The optimal solution acquired in the original problem taken
from [20] for α = 0.5 is obtained as: (13.036, 16.475,
18.1225, 19.77);(13.036, 16.475, 18.1225, 20.0995). Since
the result of the existing technique is acquired for α = 0.5,
we compare the value for α = 0.5 among all of the possible
values. Fig. 12 displays an analysis graph of the MF with
already existing and proposed techniques.
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Fig. 12. Comparing Optimal membership solution of proposed approaches
in terms of TrIFNs with exising value for example 1

• The maximum profit of MF obtained by using SM,
RTSM and SOM-2 in terms of interval are Rs. 15.8,
Rs. 14.8 and Rs. 15.2 respectively.

• In terms of TrIFNs, the highest profits for MF using
SM, RTSM and SOM-2 are (14.8, 18.5, 20.35, 22.2),
(13.6, 17, 18.7, 20.4) and (14.5, 18, 19.6, 21.2),
respectively.

• The profit generated by the proposed approaches is
significantly higher than that of the current approach.

Table XII shows the optimal result of the proposed method
which is taken from [21] in terms of TrIFNs for the value

α = 0.3, by substituting the values of the obtained x1 and
x2 values in the given objective function. This is because, in
the existing method, the degree of the membership value in
the objective function is 0.3.

TABLE XII
OPTIMAL SOLUTION IN TERMS OF TRIFNS FOR EXAMPLE 2

Computational methods Costs in terms of TrIFNs

Existing method for MF of 0.3 (9.9, 24.4, 32.5, 82.5);
For NMF of 0.6 (4.5, 24.4, 32.5, 204)

Proposed method using SM for α = 0.3 (14.4 19 24 26);
For β = 0.6 (38.5, 44, 49.5, 66)

Proposed method using RTSM for α = 0.3 (22 27 33 39);
For β = 0.6 (38, 48, 58, 68)

Proposed method using SOM-2 for α = 0.3 (33, 39, 45, 57);
For β = 0.6 (31.5, 36, 40.5, 54)

The optimal solution obtained in the original problem re-
trieved from [21] is as follows: (9.9, 24.4, 32.5, 82.5);(4.5,
24.4, 32.5, 204). Because the existing technique yields the
membership degree of 0.3, we compare the value for α =
0.3 to all other potential values. Fig. 13 depicts a comparison
graph of the MF using existing and proposed methodologies.
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Fig. 13. Comparing Optimal membership solution of proposed approaches
in terms of TrIFNs with exising value for example 2

• The graph clearly shows that the lower bound of the
proposed methods’ results is most significant when
compared to the existing result.

• The existing result has a lower value of 9.9, however
employing SM, RTSM and SOM-2, the values are 14.4,
22 and 33, respectively.

• So, we can conclude that our suggested approaches are
practical means of dealing with uncertainty in real-life
circumstances, such as administration and all kinds of
production problems.

G. Advantages and Limitation of suggested Approach

• It is important to appropriately design ambiguous
variables in decision-making situations because they
vary depending on the problem. This paper makes the
process easier to do.
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• The intuitionistic fuzzy SM, RTSM and SOM-2 are
used to handle uncertain parameters and are both easy
to understand and apply.

• Like the special case, TrIFLPP is not turned into a crisp
problem throughout this research, the optimal solution
to the given LPP is achieved as Intervals and TrIFNs.

• Some of the outcomes developed by the RTSM ap-
proach may be non-optimal.

• The SOM-2 method’s solution space is not absolutely
optimal for some cases.

VII. CONCLUSION

In this paper, the parameters of the LPP is regarded
as STrIFNs and GTrIFNs to deal with the unpredictable
situations in which the decision makers experience when
attempting to anticipate costs in LPP. The three methods SM,
RTSM and SOM-2 are used to get the optimal solution, the
results of these methods are contrasted with other approaches
and it is shown by using two illustrations. The efficient
optimal solution using intervals are shown in tables 5-10
and in figures 6-11 and it is achieved by using the arithmetic
operations of interval values. For the specified value of α, β,
the results using TrIFNs also provided in tables 11 and 12,
also figures in 12 and 13. LPP is developed in this work and
it may be applied to any actual problem when the parameters
are ambiguous and uncertain. As a conclusion, TrIFLPP is
evaluated using SM, RTSM and SOM-2, and the optimum
values that maximizes the provided objective function is
achieved.
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