
 

  

Abstract—A new swarm-based metaheuristic, namely the 

enriched coati osprey algorithm (ECOA), is proposed in this 

paper. As its name suggests, ECOA hybridizes two new 

metaheuristics, the coati optimization algorithm (COA) and the 

osprey optimization algorithm (OOA). ECOA is constructed by 

five searches performed sequentially by the swarm members. 

The first three are directed searches, while the last two are 

neighborhood searches. All three directed searches are adopted 

from COA and OOA. Meanwhile, the four-bordered 

neighborhood search is developed based on a new approach. 

During the assessment, ECOA was challenged to overcome the 

set of 23 functions and contended with five new metaheuristics: 

total interaction algorithm (TIA), golden search optimization 

(GSO), average and subtraction-based optimization (ASBO), 

COA, and OOA. The result shows that ECOA outperforms TIA, 

GSO, ASBO, COA, and OOA in 16, 23, 18, 21, and 21 functions. 

Meanwhile, the individual search test result shows that the 

directed searches perform better than the neighborhood 

searches. Moreover, the directed search toward the best 

member becomes the most dominant search. 

 

Index Terms—metaheuristic, swarm intelligence, multi agent, 

neighborhood search, optimization, coati optimization 

algorithm, osprey optimization algorithm. 

 

I. INTRODUCTION 

ETAHEURISTICS has been employed extensively in 

many optimizations works, especially in various 

engineering problems. Sand cat swarm optimization (SCSO) 

has been employed to find the allocation of the distributed 

generators and shunt capacitors in the distribution system of 

the power transmission grid [1]. Particle swarm optimization 

(PSO) has been implemented in manufacturing systems for 

the production scheduling of remote sensing products [2], in 

data management system for selecting the features of the high 

dimension data [3], in robotic path planning system [4], and 

so on. Artificial bee colony has been employed in the power 

system to determine the location and capacity of the 

distributed generations and capacitor banks [5], motion 

tracking for mobile robots [6], and so on. Meanwhile, a 

genetic algorithm has been employed to solve the shortest 

 
 

path problem in the computer network [7], the feature 

selection problem for Arabic-named entity recognition [8], 

and so on. The sine-cosine algorithm (SCA) has been 

enriched with Levy mutation to optimize the routing protocol 

in wireless sensor networks [9]. 

There are a huge number of new metaheuristics introduced 

in these recent years. Most of them were constructed based 

on swarm intelligence and inspired by the behavior of 

animals, such as Komodo mlipir algorithm (KMA) [10], 

golden jackal optimization (GJO) [11], Siberian tiger 

optimization (STO) [12], northern goshawk optimization 

(NGO) [13], marine predator algorithm (MPA) [14], clouded 

leopard optimization (CLO) [15], cat and mouse-based 

optimization (CMBO) [16], chameleon swarm algorithm 

(CSA) [17], coati optimization algorithm (COA) [18], osprey 

optimization algorithm (OOA) [19], cheetah optimization 

(CO) [20], zebra optimization algorithm (ZOA) [21], white 

shark optimizer (WSO) [22], snake optimizer (SO) [23], 

pelican optimization algorithm (POA) [24], sparrow search 

algorithm (SSA) [25], and so on. Some swarm-based 

metaheuristics imitate human social activities, such as 

modified social forces algorithm (MSFA) [26], election-

based optimization algorithm (EBOA) [27], sewing training-

based optimization (STBO) [28], driving training-based 

optimization (DTBO) [29], and so on. Some metaheuristics 

imitate the mechanics of traditional games, such as darts 

game optimization (DGO) [30], ring toss game-based 

optimization (RTGO) [31], football game-based optimization 

(FBGO) [32], and so on. 

There are several problems or notes regarding the massive 

development of metaheuristics. The first problem is the 

massive use of metaphors to cover the novelty of these 

metaheuristics. Commonly, a new metaheuristic is developed 

based on modifying previous metaheuristics of hybridization 

of some metaheuristics. But covering this proposed 

metaheuristic without crediting the metaheuristic used as the 

foundation is not fair work. The wise approach is adopting 

the metaheuristics used for baseline so that the public can 

trace the root of this proposed metaheuristic easier, such as 

multi-objective stochastic paint optimization (MOPSO), 

which is the future development of stochastic paint 

optimization (SPO) [33], [34], or grey wolf optimizer cuckoo 

(GWOC) which hybridizes the grey wolf optimization 

(GWO) and cuckoo search algorithm (CSA) [34]. Some 

better approach is naming this metaheuristic without using 

the metaphor but promoting its main strategy, such as in the 
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golden search optimization (GSO) [35], total interaction 

algorithm (TIA) [36], average and subtraction-based 

optimization (ASBO) [37], attack-leave optimization (ALO) 

[38], and so on. 

The second issue pertains to the assessment conducted 

during the initial implementation of any metaheuristic 

algorithm. The primary assessment evaluates the algorithm's 

performance in solving theoretical problems, such as a 

comprehensive set of 23 functions. This set of functions is 

widely employed because it can encompass diverse 

considerations, including unimodal and multimodal 

functions, various dimensions, and search spaces. 

Additionally, some studies have extended the assessment to 

practical problems spanning engineering and finance 

domains. Throughout this evaluation, the proposed 

metaheuristic algorithm is compared against existing ones. 

The secondary assessment involves the evaluation of 

hyper-parameters. Since metaheuristic algorithms comprise 

several adjustable parameters, such as maximum iteration and 

population size, it is crucial to assess the sensitivity of these 

parameters to the algorithm's performance. Unfortunately, 

due to the construction of recent metaheuristics involving 

multiple searches, the evaluation of sensitivity for each search 

within the metaheuristic is rarely found. Nevertheless, this 

sensitivity assessment holds great significance for the future 

development of metaheuristics or specific search 

methodologies. Furthermore, it aids in assessing the strengths 

and weaknesses of each search approach. 

This work aims to develop a new swarm-based 

metaheuristic by hybridizing the latest metaheuristics: COA 

and OOA. This constructed metaheuristic is called an 

enriched coati osprey algorithm (ECOA). This name is 

chosen because ECOA is developed based on COA and 

OOA, so it gives credit to these two metaheuristics used for 

the foundation. COA and OOA were chosen because they are 

new, as introduced in 2023. Meanwhile, the term enriched 

comes from a new search embedded into ECOA. This work 

also provides scientific contributions as follows. 

1) A new swarm-based metaheuristic is constructed by 

hybridizing COA and OOA, called ECOA. 

2) A new local search called a bordered neighborhood 

search is introduced and embedded in the constructed 

metaheuristic. 

3) The performance assessment of ECOA is taken by 

challenging it to solve the set of 23 functions. 

4) The superiority of ECOA is assessed by confronting it 

with five new metaheuristics: TIA, GSO, ASBO, COA, 

and OOA.  

This paper is arranged as follows. Section one presents 

this work's background, problem statement, research 

objective, and scientific contribution. Section two reviews 

the strategy of some latest metaheuristics, especially COA 

and OOA, which become the foundation of the designed 

metaheuristic in this work. Section three describes the 

proposed model. Section four consists of the assessment 

scenario and result. Section five conducts the discussion 

taken regarding the result, findings, algorithm complexity, 

and the limitations. Section six contains the conclusion and 

the proposal for future development. 

II. RELATED WORKS 

Many new metaheuristics are swarm-based metaheuristics. 

Swarm-based metaheuristics are the subset of population-

based metaheuristics where the system consists of a swarm. 

This swarm can be seen as a collection of autonomous 

solutions or members. Due to this autonomy, each member 

searches for a better solution without centralized command 

[39]. There is interaction among members to boost search 

performance [39]. 

In swarm-based metaheuristics, the directed search 

becomes the primary search. The directed search seeks a 

better solution by walking toward or away from a reference. 

This reference can be the best member (local best or global 

best), the resultant of better members, a randomly selected 

better member, a randomly generated better member, another 

member within the swarm, and so on. Meanwhile, 

neighborhood search becomes a secondary or complementary 

search. Some swarm-based metaheuristics perform the 

neighborhood search, while others do not. Some swarm-

based metaheuristics perform multiple searches to overcome 

the weakness of a single search, while others still perform a 

single search. 

COA and OOA are two novel swarm-based metaheuristics 

that were introduced in 2023. COA mimics the behavior of 

coatis [18], while OOA imitates the behavior of ospreys [19]. 

During each iteration, both metaheuristics undergo two steps. 

Initially, a directed-based search is performed, followed by a 

neighborhood search. In COA, the swarm is divided into two 

equal-sized sub-swarms in the first step [18]. The first one 

conducts a directed search toward the best member, while the 

second one carries out a directed search toward a randomly 

member within the search space [18]. On the other hand, in 

OOA, all members of the swarm perform a directed search 

toward a randomly selected superior member [19]. 

Furthermore, both metaheuristics incorporate an iteration-

controlled neighborhood search, wherein the local search 

space is reduced as the iteration count increases. 

Additionally, Table 1 presents a comprehensive overview of 

the strategies implemented in several recent metaheuristics. 

This presentation is crucial for clearly understanding the 

strategies and assessments employed in different 

metaheuristics and the position of the proposed metaheuristic 

within this context. 

III. PROPOSED MODEL 

ECOA is a metaheuristic that is constructed from COA and 

OOA. ECOA consists of several autonomous members that 

search independently without any central command. 

Meanwhile, interaction among members is performed to 

boost its performance. There are five searches performed by 

each member sequentially in every iteration. The first three 

are directed searches, while the last two are neighborhood 

searches. The 1st search is the walk toward the best member, 

while the second is the walk relative to a randomly generated 

member. These two searches are adopted from COA. The 

third search is the walk toward a randomly selected member. 

This search is adopted from OOA. The fourth search is a 

bordered neighborhood search, a novel approach. The fifth 

search is a neighborhood search. It is adopted from COA. The 

illustration of these five searches is depicted in Fig. 1. 
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TABLE I 
REVIEW OF SOME NEW MATEHEURISTICS INCLUDING THEIR STRATEGY AND ASSESSMENT 

No Metaheuristics Directed search Neighborhood search Assessment 

1 TIA [36] walking relative to all other members - 23 functions, hyperparameter 
assessment, dimension assessment 

2 GSO [35] walking toward the mixture between the 

global best member and local best member 

- 23 functions, convergence 

assessment 
3 ASBO [37] walking relative to the middle between the 

best and worst members, walking relative to 

the difference between the best and worst 
members, walking away from the best 

member. 

- 23 functions, hyperparameter 

assessment 

4 COA [18] walking toward the best member, walking 
relative to a randomly generated member 

iteration-controlled 
neighborhood search 

CEC 2011, CEC 2017, mechanical 
engineering design, dimension 

assessment, convergence 

assessment 
5 OOA [19] walking toward a better member iteration-controlled 

neighborhood search 

CEC 2011, CEC 2017, dimension 

assessment 

6 GJO [11] walking of two best members toward or 
away from the corresponding member 

- 23 functions, mechanical 
engineering design, hyperparameter 

assessment 

7 MPA [14] walking toward the local best member, 

walking of local best member away from the 

corresponding member, walking toward the 

difference between two randomly selected 
members 

iteration-controlled 

neighborhood search 

29 functions, convergence 

assessment, CEC 2017, mechanical 

engineering design 

8 NGO [13] walking relative to a randomly selected 

member 

iteration-controlled 

neighborhood search 

23 functions, CEC 2015, 

Mechanical engineering design, 
hyperparameter assessment 

9 MSFA [26] walking toward a randomly generated 

member 

fixed-size neighborhood 

search 

Ten functions, hyperparameter 

assessment 
10 STO [12] walking toward a better member, walking 

relative to a randomly selected member 

iteration-controlled 

neighborhood search 

CEC 2011, CEC 2017, mechanical 

engineering design, dimension 

assessment 
11 this work walking toward the best member, walking 

toward a better member, walking relative to 

a randomly selected member 

bordered neighborhood 

search, iteration-

controlled neighborhood 
search 

23 functions, individual search 

assessment 

 

   

(a) (b) (c) 

  

 

(d) (e)  

Fig. 1. Illustration of five searches in ECOA: (a) first search, (b) second search, (c) third search, (d) fourth search, (e) fifth search. 

 

The directed search is identical to the motion guided with 

one or more references. The first search is designed mostly 

for improvement by approaching closer to the best member. 

As it is assumed that the best member is in a better location 

than the corresponding member, walking closer to the best 

member may produce improvement for the corresponding 

member. Meanwhile, this search does not guarantee 

improvement, especially in multimodal problems which are 

identical with multiple optimal solutions. Leading toward the 

best member still provides two possibilities: improvement or 

stagnation in the local optimal solution. This circumstance 

leads to the two other directed searches. The second search is 

designed for exploration. In the second search, the reference 

is generated randomly along the space. It keeps the 

exploration capability during the iteration. In this second 

search, the direction depends on the comparative quality 

between the corresponding member and the corresponding 

member. If the reference is better, the corresponding member 
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walks toward the reference. Otherwise, this member walks 

away. The third search is designed for improvement with 

multiple possible directions. The reference of the third search 

is a randomly selected member. It means all members better 

than the corresponding member are collected into a pool. The 

best member is also included in this pool. Then, a member is 

chosen randomly from this pool as a reference. Then, the 

corresponding member walks toward this chosen member. 

The ECOA incorporates two distinct neighborhood 

searches. The first neighborhood search is aimed at achieving 

convergence. In this initial search, the boundaries of the local 

search space are determined based on the positions of specific 

members: the relevant members and two randomly selected 

members from the swarm. For each dimension, the lowest 

value among these members is the lower boundary, while the 

highest is the upper boundary. A candidate is randomly 

generated within these determined boundaries to generate a 

new solution. 

The second neighborhood search follows a different 

approach and is commonly employed in various 

metaheuristics, including MPA. This second search is known 

as an iteration-controlled neighborhood search. In this case, 

the corresponding member acts as the central point, and the 

candidate solutions can be generated in any direction within 

the search space. The iteration count controls the search space 

size, where the radius gradually decreases as the iteration 

progresses. This adaptive behavior represents the shift from 

exploration to exploitation as the iteration number increases. 

This concept is then transformed into the formal model. 

This formalization consists of two parts: the algorithm and 

the mathematical model. The algorithm of ECOA is 

formalized using pseudocode, as depicted in Fig. 1. 

Meanwhile, the mathematical model presents each process’s 

clear and detailed form. The annotations used in this paper 

are as follows. 

f objective function 

m corresponding member 

M swarm 

ml lower bound 

mu upper bound 

mc member’s candidate 

mbest best member 

mt member’s target 

mp selected better member 

Mp the pool of better members 

ms randomly selected member 

mb member’s border 

r1 uniform random with the interval [0,1] 

r2 uniform random, whether 1 or 2 

t iteration 

tmax maximum iteration 

U uniform random 

 

As common in metaheuristics, ECOA begins with 

initialization. The first stage is initialization, while the second 

stage is iteration. During the initialization, all members are 

distributed uniformly inside the search space. This process is 

formalized using (1). Meanwhile, each time a member is 

initialized, the best member is updated using (2). This 

updating process is important to keep the superiority of the 

best member up to date. 

 

 

 

algorithm 1: enriched coati osprey algorithm 

1 begin 

2   for m=1 to n(M) 

3     generate initial m using (1) 

4     update mbest using (2) 

5   end for 

6   for t = 1 to tmax 

7     for m=1 to n(M) 

8       first search using (3) 

9       update m using (4) 

10       A second search using (5) and (6) 

11       update m using (4) 

12       third search using (7) to (9) 

13       update m using (4) 

14       fourth search using (10) to (13) 

15       update m using (4) 

16       fifth search using (14) 

17       update m using (4) 

18       update mbest using (2) 

19     end for 

20   end for 

21 end 

 

𝑚𝑖,𝑗 = 𝑚𝑙𝑗 + 𝑟1(𝑚𝑢𝑗 −𝑚𝑙𝑗)            (1) 

 

𝑚𝑏𝑒𝑠𝑡
′ = {

𝑚𝑖 , 𝑓(𝑚𝑖) < 𝑓(𝑚𝑏𝑒𝑠𝑡)
𝑚𝑏𝑒𝑠𝑡 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

          (2) 

 

The iteration stage starts after the initialization ends. Each 

member performs five searches sequentially. In algorithm 1, 

the iteration is presented from lines 6 to 20. Each time a 

member completes these five searches. The best member is 

updated again using (2). Each search generates a solution 

candidate, which is then compared with the current value of 

the corresponding member. If the candidate is better than this 

candidate, replace the corresponding member's current value 

as presented in (4). 

 

𝑚𝑐1,𝑗 = 𝑚𝑖,𝑗 + 𝑟1(𝑚𝑏𝑒𝑠𝑡,𝑗 − 𝑟2. 𝑚𝑖,𝑗)         (3) 

 

𝑚𝑖
′ = {

𝑚𝑐, 𝑓(𝑚𝑐) < 𝑓(𝑚𝑖)
𝑚𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

            (4) 

 

As presented in algorithm 1, there are three directed 

searches. The procedure of walking toward the best member 

as the first directed search is formalized using (3). 

Meanwhile, walking relatively to a randomly generated 

member is formalized using (5) and (6). Equation (5) 

formalizes the generation of the target, while (6) formalizes 

the walking procedure where the direction can be toward or 

away. Equation (7) to (9) formalizes the third directed search. 

Equation (7) formalizes that the pool consists of a set of better 

members and the best member. Equation (8) formalizes that 

the selected better member is uniformly picked up from the 

pool. Equation (9) formalizes walking toward this selected 

better member. 

 

𝑚𝑡𝑗 = 𝑚𝑙𝑗 + 𝑟1(𝑚𝑢𝑗 −𝑚𝑙𝑗)            (5) 

 

𝑚𝑐2,𝑗 = {
𝑚𝑖,𝑗 + 𝑟1(𝑚𝑡𝑗 − 𝑟2. 𝑚𝑖,𝑗), 𝑓(𝑚𝑡) < 𝑓(𝑚𝑖)

𝑚𝑖,𝑗 + 𝑟1(𝑚𝑖,𝑗 − 𝑟2.𝑚𝑡𝑗), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (6) 

 

𝑀𝑝𝑖 = {𝑚 ∈ 𝑀|𝑓(𝑚) < 𝑓(𝑚𝑖) ∪ 𝑚𝑏𝑒𝑠𝑡}       (7) 
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𝑚𝑝𝑖 = 𝑈(𝑀𝑝𝑖)                 (8) 

 

𝑚𝑐3,𝑗 = 𝑚𝑖,𝑗 + 𝑟1(𝑚𝑝𝑖,𝑗 − 𝑟2. 𝑚𝑖,𝑗)         (9) 

 

The two neighborhood searches are performed after the 

member performs the directed searches. The bordered 

neighborhood search is formalized using (10) to (14). 

Meanwhile, the iteration-controlled neighborhood search is 

formalized using (14). Equation (10) formalizes the uniform 

random selection of a member from the swarm. Equation (11) 

formalizes the lower border based on the lowest value among 

the corresponding member, first selected member, and second 

selected member. On the other hand, (13) formalizes the 

upper border based on the highest value among the 

corresponding member, first selected member, and second 

selected member. Equation (14) shows that the corresponding 

member becomes the central point in the second 

neighborhood search, and its local space declines as the 

iteration increases. 

 

𝑚𝑠 = 𝑈(𝑀)                  (10) 

 

𝑚𝑏𝑚𝑖𝑛,𝑖,𝑗 = min(𝑚𝑖,𝑗 , 𝑚𝑠1,𝑗 , 𝑚𝑠2,𝑗)         (11) 

 

𝑚𝑏𝑚𝑎𝑥,𝑖,𝑗 = max(𝑚𝑖,𝑗 , 𝑚𝑠1,𝑗 , 𝑚𝑠2,𝑗)         (12) 

 

𝑚𝑐4,𝑗 = 𝑚𝑏𝑚𝑖𝑛,𝑖,𝑗 + 𝑟1(𝑚𝑏𝑚𝑎𝑥,𝑖,𝑗 −𝑚𝑏𝑚𝑖𝑛,𝑖,𝑗)      

 (13) 

 

𝑚𝑐5,𝑗 = 𝑚𝑖,𝑗 +
(1−2𝑟1)(𝑚𝑙𝑗+𝑟1(𝑚𝑢𝑗−𝑚𝑙𝑗))

𝑡
        (14) 

 

IV. SIMULATION 

Three assessments are performed in this work to evaluate 

the performance of the constructed ECOA. The first 

assessment is performed to evaluate the performance of 

ECOA in solving the theoretical problems. The second 

assessment is performed to evaluate the contribution or 

performance of each search individually. The third 

assessment is the hyperparameter assessment designed to 

investigate the relation between the adjusted parameters and 

the performance of the algorithm. 

The set of 23 functions is chosen as the theoretical 

problem. It is selected due to its popularity in assessing many 

metaheuristics. It consists of three groups of functions: seven 

high-dimension unimodal functions, six high-dimension 

multimodal functions, and ten fixed-dimension multimodal 

functions. A detailed description of these functions can be 

seen in [35]. These functions are used in both assessments. In 

this assessment, the swarm size is five, while the maximum 

iteration is 25. The dimension is set to 40 for the high-

dimension functions. 

The initial assessment compares ECOA against five 

newly developed metaheuristics: TIA, GSO, ASBO, COA, 

and OOA. Among these metaheuristics, TIA [36] and GSO 

[35] utilize a single search approach, while ASBO [37], COA 

[18], and OOA [19] employ multiple search methodologies. 

TIA [36], GSO [35], and ASBO [37] exclusively utilize 

directed search, whereas COA [18] and OOA [19] 

incorporate directed search and neighborhood search 

strategies. The selection of COA and OOA for comparison is 

particularly significant as ECOA is developed by hybridizing 

these two metaheuristics. This choice allows a meaningful 

evaluation of the proposed metaheuristic concerning its 

foundational components. Notably, GSO is the only 

metaheuristic that does not employ a strict acceptance 

criterion [35]. In the subsequent assessment, each search 

within ECOA is individually evaluated, with the inactive 

searches temporarily disabled during the assessment of a 

specific search. This approach ensures a focused analysis of 

each search's performance within ECOA. In this second 

assessment, ECOA is not compared against other 

metaheuristics but is evaluated on its merits and the 

effectiveness of its constituent searches. 

The assessment result is depicted in Table 2 to Table 6. 

Table 2 to Table 5 depict the first assessment result, while 

Table 6 depicts the second. There are three pieces of data in 

Table 2 to Table 4: the mean of the average fitness score, the 

standard deviation of the average fitness score, and the mean 

rank. 

 
TABLE II 

PERFORMANCE ASSESSMENT ON SOLVING HIGH-DIMENSION UNIMODAL FUNCTIONS 

F Parameter TIA [36] GSO [35] ASBO [37] COA [18] OOA [19] ECOA 

1 

mean 0.0000 4.8593x104 0.0575 0.0716 0.0051 0.0000 

std deviation 0.0000 1.2112x104 0.0401 0.0567 0.0059 0.0000 

mean rank 1 6 4 5 3 1 

2 

mean 0.0000 1.1764x1053 0.0000 0.0000 0.0000 0.0000 

std deviation 0.0000 3.2516x1053 0.0000 0.0000 0.0000 0.0000 

mean rank 1 6 1 1 1 1 

3 

mean 6.4554 1.3546x105 1.3556x103 2.0058x103 1.5562x103 1.4953x101 

std deviation 1.0891x101 8.5764x104 1.1465x103 2.7571x103 2.6782x103 4.7989x101 

mean rank 1 6 3 5 4 2 

4 

mean 0.0126 6.1203x101 0.3525 1.1140 0.1558 0.0000 

std deviation 0.0052 7.0465 0.1308 0.4719 0.0972 0.0000 

mean rank 2 6 4 5 3 1 

5 

mean 3.8883x101 9.5107x107 3.9545x101 4.0694x101 3.9046x101 3.8934x101 

std deviation 0.0453 4.8982x107 0.4933 1.4729 0.1355 0.0389 

mean rank 1 6 4 5 3 2 

6 

mean 7.1509 4.9907x104 7.5779 8.9644 8.3829 8.2469 

std deviation 0.5242 9.9001x103 0.5798 0.6032 0.5284 0.5573 

mean rank 1 6 2 5 4 3 

7 

mean 0.0251 6.2590x101 0.0605 0.0578 0.0219 0.0091 

std deviation 0.0162 3.2591x101 0.0336 0.0262 0.0136 0.0053 

mean rank 3 6 5 4 2 1 
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TABLE III 

PERFORMANCE ASSESSMENT ON SOLVING HIGH-DIMENSION MULTIMODAL FUNCTIONS 

F Parameter TIA [36] GSO [35] ASBO [37] COA [18] OOA [19] ECOA 

8 

mean -1.9781x103 -3.3635x103 -3.7795x103 -4.4685x103 -3.8588x103 -4.7311x103 

std deviation 3.9901x102 9.0826x102 5.4571x102 5.5682x102 5.1586x102 8.2378x102 

mean rank 6 5 4 2 3 1 

9 

mean 0.0002 3.9887x102 1.4731x101 1.7623 0.0916 0.0000 

std deviation 0.0002 5.3494x101 3.1314 4.4273 0.2521 0.0000 

mean rank 2 6 5 4 3 1 

10 

mean 0.0011 1.9196x101 2.5895 0.0574 0.0129 0.0000 

std deviation 0.0004 0.7100 0.3384 0.0326 0.0051 0.0000 

mean rank 2 6 5 4 3 1 

11 

mean 0.0010 4.4872x102 0.3703 0.1347 0.0096 0.0025 

std deviation 0.0032 9.1480x101 0.1787 0.2273 0.0319 0.0098 

mean rank 1 6 5 4 3 2 

12 

mean 0.8091 1.6920x108 0.1302 0.8591 1.0994 0.6968 

std deviation 0.1380 1.1919x108 0.1413 0.1956 0.2061 0.1948 

mean rank 3 6 1 4 5 2 

13 

mean 3.0974 3.6655x108 9.0205 3.3365 3.1676 3.0254 

std deviation 0.0935 2.2205x108 0.9045 0.1303 0.0618 0.0897 

mean rank 2 6 5 4 3 1 

 
TABLE IV 

PERFORMANCE ASSESSMENT ON SOLVING FIXED-DIMENSION MULTIMODAL FUNCTIONS 

F Parameter TIA [36] GSO [35] ASBO [37] COA [18] OOA [19] ECOA 

14 
mean 9.2838 1.1623x101 5.1110 5.5668 6.4955 3.8626 
std deviation 3.1887 5.7309 3.7357 4.6510 3.2340 2.6207 

mean rank 5 6 2 3 4 1 

15 
mean 0.0038 0.0920 0.1232 0.0053 0.0036 0.0032 
std deviation 0.0114 0.2933 0.0361 0.0103 0.0066 0.0058 

mean rank 3 5 6 4 2 1 

16 
mean -0.9973 -0.9345 -0.0373 -1.0307 -1.0304 -1.0315 
std deviation 0.0570 0.2343 0.1752 0.0014 0.0018 0.0003 

mean rank 4 5 6 2 3 1 

17 
mean 3.0893 2.1793 1.2252 0.3988 0.3988 0.3982 
std deviation 4.2417 4.0203 1.6390 0.0010 0.0008 0.0003 

mean rank 6 5 4 2 2 1 

18 

mean 1.4979x101 1.8156x101 3.0000 6.4216 4.3038 3.0011 

std deviation 1.9261x101 2.6659x101 0.0000 9.1134 5.8891 0.0021 

mean rank 5 6 1 4 3 2 

19 

mean -0.0495 -0.0148 -0.0495 -0.0495 -0.0495 -0.0495 

std deviation 0.0000 0.0175 0.0000 0.0000 0.0000 0.0000 

mean rank 1 6 1 1 1 1 

20 

mean -2.3154 -2.2219 -0.9751 -3.0632 -3.0770 -3.2804 

std deviation 0.7154 0.6296 0.7305 0.1847 0.1196 0.0791 

mean rank 4 5 6 3 2 1 

21 

mean -2.7876 -2.2786 -3.0005 -5.8289 -3.2824 -7.5231 

std deviation 1.4439 2.2894 3.2542 2.2278 1.7509 2.3328 

mean rank 5 6 4 2 3 1 

22 

mean -2.5620 -1.9601 -3.7365 -5.9375 -3.3221 -7.4799 

std deviation 1.2146 1.2709 3.5917 2.5457 1.9400 2.6759 

mean rank 5 6 3 2 4 1 

23 

mean -2.5619 -2.8784 -4.0350 -4.7437 -2.8749 -5.9493 

std deviation 1.4250 2.3311 2.7824 2.1196 0.9101 3.3693 

mean rank 6 4 3 2 5 1 

 

Table 4 indicates that ECOA is also powerful in solving 

fixed-dimension multimodal functions. ECOA is in the 

second rank in solving one function (Goldstein Price), while 

ECOA is always in the first rank in solving the rest functions 

in this group. In Goldstein-Price, ASBO is in the first rank. 

Like in the first and the second groups, ECOA is always better 

than COA and OOA in solving all functions in the third group 

except in Hartman 3.  

Table 5 depicts the summarized superiority of ECOA with 

the five other metaheuristics. The data presented in Table 5 is 

the number of functions where ECOA outperforms the related 

functions in every group of functions. The performance 

comparison is based on the average fitness score between 

ECOA and its confronter. Table 5 indicates that overall, 

ECOA outperforms its confronters. ECOA is better than TIA, 

GSO, ASBO, COA, and OOA in solving 16, 23, 18, 21, and 

21 functions consecutively. This result shows that TIA 

becomes the most difficult-to-beat metaheuristic while GSO 

becomes the one that is the easiest to outperform. 

 
TABLE V 

CLUSTER BASED COMPARISON RESULT OF ECOA 

Cluster 

Number of Functions Beaten by ECOA 

TIA 

[36] 

GSO 

[35] 

ASBO 

[37] 

COA 

[18] 

OOA 

[19] 

1 2 7 5 6 6 
2 5 6 5 6 6 

3 9 10 8 9 9 

Total 16 23 18 21 21 
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TABLE VI 
SINGLE SEARCH ASSESSMENT RESULT 

F 
Average Fitness Score 

1st search 2nd search 3rd search 4th search 5th search 

1 0.0014 6.0087x104 0.0047 3.9921x104 9.4785x104 
2 0.0000 2.1141x1046 0.0000 1.4211x1046 2.6164x1053 

3 1.1393x102 1.4399x105 1.1832x102 8.1885x104 2.0040x105 

4 0.0636 7.7867x101 0.0937 7.0222x101 8.6315x101 
5 3.8954x101 1.8354x108 3.8985x101 9.7643x107 3.5158x108 

6 8.2699 5.9663x104 8.4839 3.9279x104 9.6258x104 

7 0.0192 1.1040x102 0.0189 6.3638x101 2.2021x102 
8 -2.5053x103 -2.8578x103 -2.3983x103 -2.6642x103 -4.2447x103 

9 0.0296 5.1489x102 0.0557 3.8214x102 5.5374x102 

10 0.0054 1.9742x101 0.0122 1.8797x101 2.0701x101 
11 0.0117 5.1110x102 0.0426 3.7461x102 8.4491x102 

12 1.0649 3.4944x108 1.1138 1.2199x108 8.2702x108 

13 3.1349 7.2386x108 3.1533 3.3800x108 1.5263x109 
14 9.3335 1.0663x101 9.7483 7.2885x101 6.2246 

15 0.0225 0.0234 0.0098 0.1823 0.0979 

16 -0.8885 -0.8829 -0.8892 2.6722x101 -0.1733 
17 4.2234 0.6256 4.9839 7.9764 3.6633 

18 6.9090x101 9.4627 3.7450x101 1.4849x102 8.6549x101 

19 -0.0495 -0.0495 -0.0495 -0.0002 -0.0308 

20 -2.0990 -2.4069 -2.2345 -1.6599 -2.3557 

21 -1.8578 -1.0538 -2.5080 -0.9038 -2.1584 
22 -2.0676 -1.2289 -1.9679 -1.3615 -1.8514 

23 -1.8064 -1.5891 -2.2841 -1.3458 -2.4525 

 

Table 6 depicts the assessment result regarding the strength 

of each search in ECOA. The strength of each search can be 

measured based on the number of functions where the 

corresponding member is in the first rank. The first rank is 

written in bold font. Based on this category, the first, second, 

third, fourth, and fifth search is consecutively ranked first in 

solving 13, 4, 6, 0, and 3 functions. This result shows the 

dominance of the first search. On the other hand, the second, 

third, and fifth searches are less dominant. Ironically, the 

fourth search is the least contributor among these searches. 

The first search is crucial in solving the high-dimension 

functions, while the second and third searches perform 

superior in solving fixed-dimension functions. Compared 

between the bordered neighborhood search and the iteration-

controlled neighborhood search, the bordered neighborhood 

search is superior to the iteration-controlled neighborhood 

search in 12 functions where most of these functions are high 

dimension functions. 
 

TABLE VII 

RELATION BETWEEN SWARM SIZE AND FTNESS SCORE 
F Average Fitness Score 

n(M)=10 n(M)=20 

1 0.0000 0.0000 

2 0.0000 0.0000 

3 0.5811 0.0285 
4 0.0000 0.0000 

5 3.8905x101 3.886x101 

6 7.1472 6.3034 
7 0.0056 0.0033 

8 -4.9610x103 -5.4395x103 

9 0.0000 0.0000 
10 0.0000 0.0000 

11 0.0014 0.0000 

12 0.5180 0.4716 
13 2.8644 2.6486 

14 3.4457 1.9963 
15 0.0026 0.0006 

16 -1.0316 -1.0316 

17 0.3981 0.3981 
18 3.0004 3.0001 

19 -0.0495 -0.0495 

20 -3.2806 -3.3013 
21 -8.1950 -9.3818 

22 -9.5038 -1.0344x101 

23 -7.2238 -7.8538 

There are two adjusted parameters investigated in the third 

assessment. The first parameter is the swarm size while the 

second parameter is the maximum iteration. There are two 

values for the swarm size: 10 and 20. On the other hand, there 

are two values for the maximum iteration: 20 and 40. When 

the swarm size is investigated, the maximum iteration is set 

to 25. On the other hand, when the maximum iteration is 

investigated, the swarm size is set to 5. The relation between 

the swarm size and the performance of ECOA is presented in 

Table 7. The relation between the maximum iteration and the 

performance of ECOA is presented in Table 8. 

 
TABLE VIII 

RELATION BETWEEN MAXIMUM ITERATION AND FTNESS 

SCORE 
F Average Fitness Score 

tm=20 tm=40 

1 0.0000 0.0000 

2 0.0000 0.0000 

3 1.6891x102 0.4410 
4 0.0008 0.0000 

5 3.8936x101 3.8936x101 

6 7.9929 7.9935 
7 0.0131 0.0046 

8 -4.2198x103 -5.0773x103 

9 0.0000 0.0000 
10 0.0000 0.0000 

11 0.0005 0.0000 

12 0.8888 0.3583 
13 3.0384 2.9795 

14 5.5386 4.2508 

15 0.0010 0.0062 
16 -1.0314 -1.0316 

17 0.3983 0.3981 

18 1.0056x101 3.0002 
19 -0.0495 -0.0495 

20 -3.2287 -3.2689 

21 -6.9950 -8.2174 
22 -6.8719 -8.1311 

23 -6.6109 -7.1488 

 

Table 7 exposes that the increase of swarm size from 10 

to 20 improves the average fitness score significantly in only 

four functions. Two functions are high dimension unimodal 

functions (Schwefel 1.2 and Quartic), one function is high 

dimension multimodal functions (Griewank), and one 

function is fixed dimension multimodal functions (Kowalik). 
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Many stagnations occur because the final solution is the 

global optimal solution or near the global optimal solution in 

13 functions. 

Similar circumstances also can be found in Table 8. Table 

8 exposes that the increase of maximum iteration improves 

the quality of solution significantly in only six functions. 

Three functions are high dimension unimodal functions 

(Schwefel 1.2, Schwefel 2.21, and Quartic), two functions are 

high dimension multi dimension multimodal functions 

(Griewank and Penalized), and one function is fixed 

dimension multimodal function (Goldstein-Price) Many 

stagnations occurs because the final solution is the global 

optimal solution or near the global optimal solution in 11 

functions. 

V. DISCUSSION 

The first assessment indicates that the ECOA performs well 

and competently solves the set of 23 functions. This 

acceptable performance can be traced from two aspects: the 

absolute result and the comparative result. In the first aspect, 

ECOA can find quasi-optimal solutions in all functions. 

Moreover, ECOA can find the global optimal solution of five 

high-dimension functions. Fortunately, ECOA is also ranked 

first in solving 17 functions split into eight high-dimension 

functions and nine fixed-dimension functions. 

The comparative results demonstrate the superiority of 

ECOA over its competitors. ECOA consistently outperforms 

its foundational metaheuristics, COA and OOA, as it achieves 

better results in 21 functions and performs on par in 2. 

Additionally, ECOA surpasses GSO in all 23 functions, 

establishing its complete superiority over GSO. On the other 

hand, TIA proves to be a strong contender, with ECOA 

outperforming it in only two functions within the first group. 

Through the analysis of strategies, it is evident that 

implementing multiple strategies in a metaheuristic enhances 

its effectiveness, although the magnitude of improvement 

may vary. Notably, the strict acceptance strategy emerges as 

a new standard, with GSO being the only metaheuristic not 

incorporating this approach. 

The individual search indicates that the directed searches 

are more powerful than the neighborhood searches, although 

neighborhood searches are still competitive in a few 

functions. This circumstance strengthens the strategy that 

directed searches should be the primary searches while 

neighborhood searches are the secondary ones. Compared 

between the neighborhood searches, the proposed bordered 

neighborhood search is better in the high-dimension 

functions, while the iteration-controlled neighborhood search 

is better in the fixed-dimension functions. 

The result of hyper-parameter assessment shows that 

ECOA performs well in the circumstance where the swarm 

size and maximum iteration are low. This finding comes from 

the fact that stagnation is found in many functions when the 

swarm size or maximum iteration increases. In many 

functions, the global optimal solution has been found or the 

final solution is close to the global optimal solution. 

The computational complexity of ECOA can be drawn back 

by evaluating its loops. As ECOA contains two stages 

(initialization and iteration), the computational complexity 

between these stages differs, so the evaluation is taken 

separately. There are two loops during the initialization. The 

first and outer loop is a loop for all members. Meanwhile, the 

second and inner loop is a loop for whole dimensions. Based 

on this explanation, the complexity in the initial stages is 

presented as O(n(X).d). On the other hand, there are four 

loops. The outer loop relates to the iteration. Then, in every 

iteration, there is a loop for all members. There are two loops 

performed by each member sequentially. The first loop is 

used to trace all the best members. Meanwhile, a loop is 

needed in every search. Based on this explanation, the 

complexity of ECOA can be presented as 

O(tmax.n(X).(n(X)+5d)). 

The superiority of ECOA comes with several notes. First, 

although overall, ECOA is superior to all its confronters, 

ECOA is inferior to TIA in solving the high-dimension 

unimodal functions. Meanwhile, TIA performs only a single 

strategy which is performed more extensively. Second, the 

bordered neighborhood search's performance still needs 

much improvement to compete with other neighborhood 

searches, especially the iteration-controlled neighborhood 

search. Fourth, ECOA has not been tested to solve the 

practical optimization problem yet due to the wide variety of 

this problem. It means that evaluation of ECOA by 

challenging it to solve various practical optimization 

problems is needed to evaluate the performance of ECOA, 

including its strengths and weaknesses, more 

comprehensively. 

VI. CONCLUSION 

This work presents ECOA, a novel swarm-based 

metaheuristic combining COA and OOA features. The 

performance of ECOA has been evaluated, and the results 

demonstrate its superiority over the compared metaheuristics. 

ECOA outperforms TIA, GSO, ASBO, COA, and OOA in 

16, 23, 18, 21, and 21 functions across the entire set of 23 

functions. TIA is the most challenging to surpass among the 

evaluated metaheuristics, particularly in high-dimensional 

unimodal functions. Through the assessment of individual 

searches, it is observed that the directed search holds more 

dominance than the neighborhood search. Specifically, the 

directed search toward members emerges as the most 

influential search ally in high-dimensional multimodal 

functions. Meanwhile, the directed search towards a better 

member and the directed search relative to other members 

complement each other due to their strengths in fixed-

dimensional multimodal functions. 

Future studies can be carried out in several tracks. The first 

one is performing exploration to improve the bordered 

neighborhood search performance. The second is exploring 

other directed search methods to contend the directed search 

toward the best member. The third one is implementing 

ECOA to solve various practical optimization problems. 
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