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Abstract—In the discipline of project management, the oc-
curence of ambiguity and vagueness are the major hurdles for
its accomplishment. Neutrosophic sets can be a great solution to
overcome such situations leading to improved decision-making,
better communication and enhanced problem-solving in project
management. By incorporating neutrosophic sets into the PERT,
one can handle uncertainty in the project schedule and improve
the accuracy of critical path analysis. This manuscript instigates
an interval-based de-neutrosophication methodology and uti-
lizes PERT problem in a neutrosophic environment. Trapezoidal
neutrosophic forward and backward pass are employed to
determine each activity’s neutrosophic slack time and criticality.
It uses the proposed interval-based ranking technique as a
tool to ease the analysis. To validate the critical path, we
develop a trapezoidal neutrosophic criticality degree for all the
activities and further the efficiency of the proposed technique is
analyzed using illustrations. Additionally, interval-valued trape-
zoidal neutrosophic fuzzy PERT is discussed by constructing the
criticality degree using the interval-based de-neutrosophication
technique and finally deliberated with examples.

Index Terms—Critical path, PERT, Trapezoidal neutrosophic
fuzzy number, Interval-valued trapezoidal neutrosophic fuzzy
number, Interval numbers, Interval arithmetic operations.

I. INTRODUCTION

A structured approach is essential in the competitive
business environment to achieve specific goals and

objectives within a defined time frame. Project management
plays an enormous role in planning, organizing and managing
resources. The basic notion behind PERT is to divide a
project into smaller, manageable tasks and to identify the
dependencies between these tasks. Project managers can then
use this information to build a schedule for the time needed to
accomplish each task by providing the sequence for comple-
tion and the resources required to execute each work. In the
late 1950s and early 1960s, the U.S. Navy’s Special Projects
Office developed project management methodologies such as
PERT (Program Evaluation and Review Technique) and CPM
(Critical Path Method) to manage complex defense projects.
Since then, project management has evolved and expanded to
other industries, including software development, healthcare,
finance and marketing, particularly in the field of construc-
tion and engineering.
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Periodically, the project requirements and objectives may
vary or remain unclear due to real-life situations and market
unpredictability. These circumstances may lead to fuzziness
in project management. Apparently, a proactive approach
can define the objectives, requirements, etc. To address the
incomplete or ambiguous information, Zadeh (1965) intro-
duced the concept of Fuzzy set theory. Many researchers
pay attention to CPM and PERT in a fuzzy environment to
serve the project managers in executing their work efficiently.
Chanas and Kamburowski (1981) [1] introduced PERT in
a fuzzy environment and considered the activity duration
of the project network as the undefined variable. Chanas
and Zielinski (2001) [2] showed relations between fuzzy
and interval criticality. They offered two approaches for
calculating the path degree of criticality. Liang and Han
(2004) [3] presented a paper in which they considered the
parameters as trapezoidal fuzzy numbers to unravel problems
in project networks. Chen and Huang (2007) [4] anticipated
a novel method combining fuzzy triangular numbers with
PERT. Also, they define the possibility index to recognize
the necessary duration for the project network. Samman
and Brahemi (2014) [5] explained fuzzy PERT as a case
study in readymade factories. Yang et al. (2014) [6] apply
time distribution in solving PERT problem in fuzzy envi-
ronment. Mazlum and Guneri (2015) [7] projected a paper
for improving the online internet using fuzzy management
techniques with undefined triangular parameters. Elizabeth
and Sujatha (2016) [8] developed a dynamic programming
recursion formulation for identifying the critical path’s fuzzy
version and the parameters in fuzzy triangular numbers.
Eventhough a fuzzy set can manage uncertain situations,
handling them mathematically in unstabilized real-life ap-
plications is challenging.

Hence, Atanassov (1986) made further extensions, naming
it an intuitionistic set. The fuzzy set can tackle a single
membership grade with each element, whereas, intuitionis-
tic set can handle membership and non-membership with
each component. The concept of PERT in an intuitionistic
environment with trapezoidal fuzzy numbers was proposed
by Jayagowri and Geetharamani (2014) [9]. They defined
the graded mean integration formula to convert trapezoidal
intuitionistic fuzzy numbers to comparable crisp numbers.
Later on, both [10] used the metric distance ranking approach
to compute the total slack time for each path in the triangular
intuitionistic fuzzy environment to analyze the criticality of
the project network. To determine the critical path, Elizabeth
and Sujatha (2015) [11] created two unique algorithms, and
the time of each action is represented by triangular numbers
in fuzzy and intuitionistic environments. Sudha et al. (2017)
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[12] futured an algorithm for obtaining a critical path using
triangular intuitionistic fuzzy numbers. Yogashanthi et al.
(2019) [13] discussed an airfreight ground operating system
application for finding critical paths in a trapezoidal intu-
itionistic environment. They applied a new centroid method
for ranking trapezoidal intuitionistic numbers.

Giving credit to neutral thoughts makes decision-making
even more comfortable and efficient. The concept of neutro-
sophic set which was proposed by Smarandache (1998) [14]
defines that each element can belong to the set, not the set,
or partially belong to the collection, with degrees of truth,
falsity, and indeterminacy. Analyzing any problem using a
neutrosophic environment makes one handle the situation in
every possible way. Using neutrosophic set theory in PERT
can improve project management’s accuracy, flexibility, and
effectiveness, particularly in complex projects with high
levels of uncertainty and variability. Mai et al. (2017) [15]
initiated the concept of PERT in a neutrosophic environment
with three time estimates. Mullai and Surya (2019) [16]
projected the idea of PERT in a neutrosophic field by ana-
lyzing the parameters in all possible ways, particularly truth,
indeterminacy, and falsity. Avishek (2020) [17] focussed on
the pentagonal neutrosophic environment for computing time
in networking problems using the proposed score function.
Vijaya et al. (2022) [19] handled neutrosophic fuzzy numbers
to find the critical path in project management with an
example.

The current research has focussed more on interval num-
bers than crisp ones because of their complication in real-
life environments. The numbers are more convenient and
flexible when we express them within the interval boundary.
Several researchers have concentrated and dealt with the
PERT problem on interval numbers [20], [21], [22]. We
incorporate the interval concept for resolving the trapezoidal
neutrosophic fuzzy PERT problem. In the literature survey,
we have identified that most of the de-neutrosophication
approaches for solving PERT problem in trapezoidal neutro-
sophic settings are in crisp numbers. In practical situations,
considering problems in terms of intervals rather than precise
values proves to be more cost-effective, especially when
decision-makers require supplementary information. This cir-
cumstance serves as a driving force behind the creation of
this article, aimed at tackling the PERT problem through
the transformation of trapezoidal neutrosophic fuzzy numbers
into intervals.

This paper marks the use of an interval-based de-
neutrosophication technique for solving PERT problem in
trapezoidal neutrosophic and interval-valued trapezoidal neu-
trosophic environment. The effectiveness of this technique
is examined by solving two problems from [17] and [18]
in a neutrosophic PERT environment with trapezoidal pa-
rameters. Additionally, the validity of interval-based de-
neutrosophication techique is inspected by two examples in
an interval-valued trapezoidal neutrosophic PERT environ-
ment and compared with [15] and [29]. This article provides
a well-defined structure that consists of an introduction
in section I, the necessary background of the article in
section II, interval-based de-neutrosophication methodology
of a trapezoidal neutrosophic number highlighted in section
III, detailed explanation of the core concept trapezoidal
neutrosophic fuzzy PERT and interval-valued trapezoidal

neutrosophic PERT in sections IV and V, and demonstrated
illustrations in sections VI and VII, strength and limitations
of the proposed method in section VIII, finally section IX
summarizes the keypoints and offer further exploration of
the article as a conclusion.

II. PRELIMINARIES

A. Neutrosophic number [23]

Trapezoidal neutrosophic fuzzy number (TrpNFN) is de-
fined as T

Ñeu
= ⟨(t11, t12, t13, t14), (i11, i12, i13, i14), (f11,

f12, f13, f14)⟩, where the parameters are from real numbers
R, and it satisfies t11 ≤ t12 ≤ t13 ≤ t14, i11 ≤ i12 ≤ i13 ≤
i14 and f11 ≤ f12 ≤ f13 ≤ f14. The membership degrees of
truth, indeterminacy and falsity are defined as

σT
Ñeu

(r) =


r−t11
t12−t11

, t11 ≤ r ≤ t12,

1, t12 ≤ r ≤ t13,
t14−r
t14−t13

, t13 ≤ r ≤ t14,

0, otherwise

δT
Ñeu

(r) =


i12−r
i12−i11

, i11 ≤ r ≤ i12,

0, i12 ≤ r ≤ i13,
r−i13
i14−i13

, i13 ≤ r ≤ i14,

1, otherwise

ωT
Ñeu

(r) =


f12−r

f12−f11
, f11 ≤ r ≤ f12,

0, f12 ≤ r ≤ f13,
r−f13

f14−f13
, f13 ≤ r ≤ f14,

1, otherwise

B. Interval-valued trapezoidal neutrosophic fuzzy number
[28]

Let a1, a2, a3, a4 ∈ R such that a1 ≤ a2 ≤ a3 ≤ a4. An
interval-valued trapezoidal neutrosophic fuzzy number can
be expressed as T

ĨvNeu
= ⟨(a1, a2, a3, a4); [ρL, ρR], [κL, κR], [νL, νR]⟩,

where ρL : X → [0, 1], ρR : X → [0, 1] are the lower truth
and upper truth degrees whose functions are defined as

ρL(x) =


ρL x−a1

a2−a1
, a1 ≤ x ≤ a2

ρL, a2 ≤ x ≤ a3

ρL a4−x
a4−a3

, a3 ≤ x ≤ a4

0, otherwise

ρR(x) =


ρR x−a1

a2−a1
, a1 ≤ x ≤ a2

ρR, a2 ≤ x ≤ a3

ρR a4−x
a4−a3

, a3 ≤ x ≤ a4

0, otherwise

Also, κL : X → [0, 1], κR : X → [0, 1] are the
lower indeterminacy and upper indeterminacy degrees whose
functions are defined as

κL(x) =


(a2−x)+κL(x−a1)

a2−a1
, a1 ≤ x ≤ a2

κL, a2 ≤ x ≤ a3
(x−a3)+κL(a4−x)

a4−a3
, a3 ≤ x ≤ a4

1, otherwise
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κR(x) =


(a2−x)+κR(x−a1)

a2−a1
, a1 ≤ x ≤ a2

κR, a2 ≤ x ≤ a3
(x−a3)+κR(a4−x)

a4−a3
, a3 ≤ x ≤ a4

1, otherwise

Similarly, νL : X → [0, 1], and νR : X → [0, 1] are the
lower falsity and upper falsity degrees whose functions are
defined as

νL(x) =


(a2−x)+νL(x−a1)

a2−a1
, a1 ≤ x ≤ a2

νL, a2 ≤ x ≤ a3
(x−a3)+νL(a4−x)

a4−a3
, a3 ≤ x ≤ a4

1, otherwise

νR(x) =


(a2−x)+νR(x−a1)

a2−a1
, a1 ≤ x ≤ a2

νR, a2 ≤ x ≤ a3
(x−a3)+νR(a4−x)

a4−a3
, a3 ≤ x ≤ a4

1, otherwise

C. Interval number [20]
An interval number k̃ on R is defined as k̃ =[

kL, kR
]
=

{
k : kL ≤ k ≤ kR, k ∈ R

}
, where kL and kR

are the left and the right limits of k̃ respectively. The mid-
point and width (half-width) of an interval are defined as
C(k̃) = kL+kR

2 and W(k̃) = kR−kL

2 . And it can also be
written in the form of mid-point and width (half-width) as

k̃ =
〈
C(k̃),W(k̃)

〉
=

{
k : C(k̃)−W(k̃) ≤ k ≤ C(k̃) +W(k̃), k ∈ R

}
.

D. Interval arithmetic operations [24]
Below are the interval arithmetic operations.

If k̃ =
[
kL, kR

]
and l̃ =

[
lL, lR

]
and for ∗ ∈ {+,−,×,÷},

then k̃ ∗ l̃ =
〈
C(k̃),W(k̃)

〉
∗
〈
C(l̃),W(l̃)

〉
=

〈
C(k̃) ∗ C(l̃),max

{
W(k̃),W(l̃)

}〉
.

In particular, we have
k̃ + l̃ =

〈
C(k̃) + C(l̃), max

{
W(k̃),W(l̃)

}〉
.

k̃ − l̃ =
〈
C(k̃)− C(l̃), max

{
W(k̃),W(l̃)

}〉
k̃ × l̃ =

〈
C(k̃)× C(l̃), max

{
W(k̃),W(l̃)

}〉
.

k̃ ÷ l̃ =
〈
C(k̃)÷ C(l̃), max

{
W(k̃),W(l̃)

}〉
,

provided that C(l̃) ̸= 0.
For scalar multiplication,
α̃k̃ =

〈
C(α̃)× C(k̃), max

{
W(α̃),W(k̃)

}〉
E. Power properties of interval numbers

Based on the definition for exponential of intervals
provided by Hema Surya et al. [25], we define the power
properties of interval numbers.

Property 1: For any three interval numbers k̃, m̃ & ñ,
then

(
k̃m̃

)ñ
= k̃m̃ñ.

Proof: We have k̃ =
〈
C(k̃),W(k̃)

〉
,

m̃ =
〈
C(m̃),W(m̃)

〉
& ñ =

〈
C(ñ),W(ñ)

〉
,

Now,
(
k̃m̃)ñ
=

(〈
C(k̃),W(k̃)

〉〈C(m̃),W(m̃)
〉)〈C(ñ),W(ñ)

〉

=
〈
C(k̃)C(m̃), max

{
W(k̃),W(m̃)

}〉〈C(ñ),W(ñ)
〉

=
〈(

C
(
k̃)C(m̃))C(ñ)

, max
{
W(k̃),W(m̃),W(ñ)

}〉
=

〈
C
(
k̃)C(m̃)C(ñ), max

{
W(k̃),W(m̃),W(ñ)

}〉
(1)

Also, k̃m̃ñ =
〈
C(k̃),W(k̃)

〉〈C(m̃),W(m̃)
〉〈

C(ñ),W(ñ)
〉

=
〈
C(k̃),W(k̃)

〉〈C(m̃)C(ñ), max
{
W(m̃)W(ñ)

}〉
=

〈
C
(
k̃)C(m̃)C(ñ), max

{
W(k̃),W(m̃),W(ñ)

}〉
(2)

From equations (1) & (2), the property (1) holds.

Property 2: For any three interval numbers k̃, l̃ & m̃,
then k̃m̃ × l̃m̃ = (k̃ × l̃)m̃.

Proof: We have k̃ =
〈
C(k̃),W(k̃)

〉
,

l̃ =
〈
C(l̃),W(l̃)

〉
& m̃ =

〈
C(m̃),W(m̃)

〉
Now, k̃m̃ × l̃m̃

=
〈
C(k̃),W(k̃)

〉〈C(m̃),W(m̃)
〉
×

〈
C(l̃),W(l̃)

〉〈C(m̃),W(m̃)
〉

=
〈
C(k̃)C(m̃), max{W(k̃),W(m̃)}

〉
×

〈
C(l̃)C(m̃),

max{W(l̃),W(m̃)}
〉

=
〈
C(k̃)C(m̃) × C(l̃)C(m̃), max{W(k̃),W(l̃),W(m̃)}

〉
=

〈(
C(k̃)× C(l̃)

)C(m̃)

, max
{
W(k̃),W(l̃),W(m̃)

}〉
(3)

Also, (k̃ × l̃)m̃ =
(〈

C(k̃),W(k̃)
〉
×

〈
C(l̃),W(l̃)

〉)〈C(m̃),W(m̃)
〉

=
〈
C(k̃)× C(l̃), max

{
W(k̃),W(l̃)

}〉〈C(m̃),W(m̃)
〉

=
〈(

C(k̃)× C(l̃)
)C(m̃)

, max
{
W(k̃),W(l̃),W(m̃)

}〉
(4)

From equations (3) & (4), the property (2) holds.

Property 3: For any three interval numbers k̃, l̃ & m̃,
then k̃m̃

l̃m̃
=

(
k̃

l̃

)m̃
.

Proof: We have k̃ =
〈
C(k̃),W(k̃)

〉
,

l̃ =
〈
C(l̃),W(l̃)

〉
& m̃ =

〈
C(m̃),W(m̃)

〉
Now,

k̃m̃

l̃m̃
=

〈
C(k̃),W(k̃)

〉〈C(m̃),W(m̃)
〉

〈
C(l̃),W(l̃)

〉〈C(m̃),W(m̃)
〉

=

〈
C(k̃)C(m̃), max

{
W(k̃),W(m̃)

}〉〈
C(l̃)C(m̃), max

{
W(l̃),W(m̃)

}〉
=

〈(C(k̃)
C(l̃)

)C(m̃)

, max
{
W(k̃),W(l̃),W(m̃)

}〉
(5)

Also,
( k̃
l̃

)m̃

=

(〈
C(k̃),W(k̃)

〉〈
C(l̃),W(l̃)

〉 )〈
C(m̃),W(m̃)

〉

=

〈
C(k̃)
C(l̃)

, max{W(k̃),W(l̃)}
〉〈

C(m̃),W(m̃)
〉

=
〈(C(k̃)

C(l̃)

)C(m̃)

, max
{
W(k̃),W(l̃),W(m̃)

}〉
(6)

From equations (5) & (6), the property (3) holds.

Property 4: For any interval number k̃, then〈
M(k̃),W(k̃)

〉0
= 1.
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Proof:
〈
C(k̃),W(k̃)

〉⟨0,0⟩
=

〈
C(k̃)0, max{W(k̃), 0}

〉
=

〈
1, max{W(k̃), 0}

〉
= 1.

III. INTERVAL-BASED DE-NEUTROSOPHICATION
TECHNIQUE

This section explains a grading methodology based on
the interval number using (α, β, γ) - cut of a trapezoidal
neutrosophic fuzzy number (TrpNFN). According to the
literature study, most of the de-neutrosophication technique
occurs in a neutrosophic environment are mainly in crisp
numbers. Based on the reference [26], we derive the interval-
based de-neutrosophication approach for the trapezoidal
neutrosophic fuzzy number (TrpNFN) of the form T

Ñeu
=〈(

t11, t12, t13, t14
)
,
(
i11, i12, i13, i14

)
,
(
f11, f12, f13, f14

)〉
.

The graphical representation of trapezoidal neutrosophic
fuzzy number is displayed in Fig. 1.

Let C
(
α

T
Ñeu

)
, C

(
β

T
Ñeu

)
and C

(
γ

T
Ñeu

)
are the mid-

point & W
(
α

T
Ñeu

)
, W

(
β

T
Ñeu

)
and W

(
γ

T
Ñeu

)
are the

width (half-width) of the (α, β, γ) - cut of a TrpNFN
referring to truth, indeterminacy and falsity respectively.
Then,

1. For α ∈
[
0, 1

]
, any α- cut of a TrpNFN

(
T
Ñeu

)
can be expressed by a closed interval and is defined as

αT
Ñeu

=
[
αL

T
Ñeu

, αR
T
Ñeu

]
=

[
t11 + α

(
t12 − t11

)
, t14 − α

(
t14 − t13

)]
(7)

Based on equation (7), the interval form (mid-point and width
(half-width)) of the α-cut of a TrpNFN is defined as〈
C
(
αT

Ñeu

)
,W

(
αT

Ñeu

)〉
=

〈αL
T
Ñeu

+ αR
T
Ñeu

2
,
αR

T
Ñeu

− αL
T
Ñeu

2

〉
=

〈(
t14 + t11

)(
1− α

)
+ α

(
t13 + t12

)
2

,(
t14 − t11

)(
1− α

)
+ α

(
t13 − t12

)
2

〉
(8)

2. For β ∈
[
0, 1

]
, any β- cut of a TrpNFN (T

Ñeu
) can be

expressed by a closed interval and is denoted by β
T
Ñeu

and
expressed as

βT
Ñeu

=
[
βL

T
Ñeu

, βR
T
Ñeu

]
=

[
i12 + β

(
i12 − i11

)
, i13 + β

(
i14 − i13

)]
(9)

Based on equation (9), the interval form (mid-point and width
(half-width)) of the β-cut of a TrpNFN is expressed as〈
C
(
βT

Ñeu

)
,W

(
βT

Ñeu

)〉
=

〈βL
T
Ñeu

+ βR
T
Ñeu

2
,
βR

T
Ñeu

− βL
T
Ñeu

2

〉
=

〈β
((
i14 − i13

)
+

(
i12 − i11

))
+

(
i13 + i12

)
2

,

β
((
i14 − i13

)
−

(
i12 − i11

))
+

(
i13 − i12

)
2

〉
(10)

3. For γ ∈
[
0, 1

]
, any γ- cut of a TrpNFN (T

Ñeu
) can be

expressed by a closed interval and is denoted by γ
T
Ñeu

and
given as

γT
Ñeu

=
[
γL
T
Ñeu

, γR
T
Ñeu

]
=

[
f12 + γ

(
f12 − f11

)
, f13 + γ

(
f14 − f13

)]
(11)

t 11
 , i 11

i 12
, f 11

, t 12 f 12 i 13

t 13
, i 14

, f 13

t 14
, f 14

0

0.2

0.4

0.6

0.8

1

Truth

Indeter-

minacy

Falsity

Falsity

Truth

Indeterminacy

Fig. 1. Trapezoidal Neutrosophic Fuzzy Number

Based on equation (11), the interval form (mid-point and
width (half-width)) of the γ-cut of a TrpNFN is given as

〈
C
(
γT

Ñeu

)
,W

(
γT

Ñeu

)〉
=

〈γL
T
Ñeu

+ γR
T
Ñeu

2
,
γR
T
Ñeu

− γL
T
Ñeu

2

〉
=

〈γ
((
f14 − f13

)
+

(
f12 − f11

))
+

(
f13 + f12

)
2

,

γ
((
f14 − f13

)
−

(
f12 − f11

))
+

(
f13 − f12

)
2

〉
(12)

A. Ranking function of TrpNFN using interval number

Define a ranking function that assigns each TrpNFN to
an interval number. Based on the equations (8), (10) and
(12) the ranking is expressed as

R
(
TÑeu

)
= s.

〈
C
(
αT

Ñeu

)
,W

(
αT

Ñeu

)〉
+ (1− s).{〈

C
(
βT

Ñeu

)
,W

(
βT

Ñeu

)〉
+

〈
C
(
γT

Ñeu

)
,W

(
γT

Ñeu

)〉}
,

= s.
〈
C
(
αT

Ñeu

)
,W

(
αT

Ñeu

)〉
+ (1− s).

{〈
C
(
βT

Ñeu

)
+ C

(
γT

Ñeu

)
, max

{
W

(
βT

Ñeu

)
,W

(
γT

Ñeu

)}}
=

〈
s.C

(
αT

Ñeu

)
+ (1− s).C

(
βT

Ñeu

)
+ (1− s).C

(
γT

Ñeu

)
,

max
{
W

(
αT

Ñeu

)
,W

(
βT

Ñeu

)
,W

(
γT

Ñeu

)}〉
=

〈
C
(
TÑeu

)
,W

(
TÑeu

)〉
(13)

where,
C
(
T
Ñeu

)
= s.C

(
α

T
Ñeu

)
+ (1 − s).M

(
β

T
Ñeu

)
+ (1 −

s).C
(
γ

T
Ñeu

)
and W

(
T
Ñeu

)
= max

{
W

(
α

T
Ñeu

)
,W

(
β

T
Ñeu

)
,W

(
γ

T
Ñeu

)}
.

Here s ∈
[
0, 1

]
and it denotes the various choices for

the mid-point and the width (half-width) version of (α, β, γ)
- cuts of the truth, indeterminacy and falsity membership
degrees. And the choices are preferably chosen by the
decision maker that may be uncertainty, neutral or certainty.
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B. Relation between trapezoidal neutrosophic fuzzy number

Sengupta and Pal [27] introduced ranking of interval
numbers and our aim is to rank two trapezoidal neutrosophic
fuzzy number. We introduce the following ranking
methodology for trapezoidal neutrosophic fuzzy numbers.
We apply it to relate two trapezoidal neutrosophic fuzzy
numbers based on interval numbers.

Let T
Ñeu

1 =
〈(
t11, t12, t13, t14

)
,
(
i11, i12, i13, i14

)
,
(
f11, f12,

f13, f14
)〉

& T
Ñeu

2 =
〈(
t21, t22, t23, t24

)
,
(
i21, i22, i23, i24

)
,(

f21, f22, f23, f24
)〉

be any two trapezoidal neutrosophic
fuzzy numbers.

We create an interval number from the trapezoidal
neutrosophic fuzzy numbers using the sections III & III-A.
Then the connection between trapezoidal neutrosophic fuzzy
numbers corresponds to interval numbers are outlined as
follows:

The interval form of the given two trapezoidal
neutrosophic fuzzy numbers are represented as

R
(
T
Ñeu

1
)
=

〈
C
(
T
Ñeu

1
)
,W

(
T
Ñeu

1
)〉

and R
(
T
Ñeu

2
)
=

〈
C
(
T
Ñeu

2
)
,W

(
T
Ñeu

2
)〉

.

Now, we can determine A(T
Ñeu

1 ⃝< T
Ñeu

2) by
interpreting it as the first interval’s acceptability grade being
inferior than that of the second interval and is given as

A(TÑeu1⃝< TÑeu2) =
C
(
TÑeu2

)
− C

(
TÑeu1

)
W

(
TÑeu2

)
+W

(
TÑeu1

) , (14)

where W
(
TÑeu2

)
+W

(
TÑeu1

)
̸= 0

And it is observed in the subsequent steps:

(i) If A(T
Ñeu

1 ⃝< T
Ñeu

2) = 0, then T
Ñeu

1 inferior
to T

Ñeu
2 is not accepted.

(ii) If 0 < A(T
Ñeu

1⃝< T
Ñeu

2) < 1 &
A(T

Ñeu
1 ⃝< T

Ñeu
2) ≥ 1, then T

Ñeu
1 inferior to T

Ñeu
2 is

accepted.

1) Remark: Transforming trapezoidal neutrosophic fuzzy
number as an interval number.
Let T

Ñeu
1 =

(
1, 1.5, 2.5, 3; 0.5, 1.25, 1.75, 2.5; 1.2, 2.25,

3.15, 3.5
)
.

Assume α, β, γ and s as the highest membership
grade “1”. Using equations (8), (10), (12),〈
C
(
α

T
Ñeu

1

)
,W

(
α

T
Ñeu

1

)〉
=

〈
2, 0.5

〉
,〈

C
(
β

T
Ñeu

1

)
,W

(
β

T
Ñeu

1

)〉
=

〈
2.25, 0.25

〉
,〈

C
(
γ

T
Ñeu

1

)
,W

(
γ

T
Ñeu

1

)〉
=

〈
3.4, 0.10

〉
.

Using section III-A,
R
(
T
Ñeu

1
)
= s

〈
2, 0.5

〉
+(1−s)

{〈
2.25, 0.25

〉
+
〈
3.4, 0.10

〉}
=

〈
2, 0.5

〉
2) Remark: Grading two trapezoidal neutrosophic fuzzy

numbers utilizing interval numbers
Let T

Ñeu
1 =

(
1, 1.5, 2.5, 3; 0.5, 1.25, 1.75, 2.5; 1.2, 2.25,

3.15, 3.5
)
, then R

(
T
Ñeu

1
)
=

〈
2, 0.5

〉
.

& T
Ñeu

2 =
(
1, 2, 8, 9; 1.5, 4, 5, 6; 4, 4.5, 9.5, 10

)
, then

R
(
T
Ñeu

2
)
=

〈
5, 3

〉
.

Using equation (14),

A(T
Ñeu

1⃝< T
Ñeu

2) =
C
(
T
Ñeu

2
)
−C

(
T
Ñeu

1
)

W
(
T
Ñeu

2
)
+W

(
T
Ñeu

1
) ,

= 5−2
3+0.5 = 3

3.5 = 0.86 < 1
Hence by III-B, T

Ñeu
1 is inferior to T

Ñeu
2.

Therefore, R
(
T
Ñeu

1
)
< R

(
T
Ñeu

2
)
.

IV. TRAPEZOIDAL NEUTROSOPHIC FUZZY PERT

PERT, a statistical approach, plays a phenomenal role
in project management that helps the project managers to
schedule, coordinate and track the various tasks and activities
involved in a project. This method usually consolidates
expected time calculation, backward pass, forward pass, and
slack time. The main focus of this study is to solve the
trapezoidal neutrosophic fuzzy PERT problem by utilizing
the proposed de-neutrosophication technique in the form of
an interval number. Using neutrosophic set theory in PERT
can help to improve project management’s accuracy, flexibil-
ity, and effectiveness, particularly in complex projects with
high uncertainty and variability. This section presents the
definitions for Expected Duration, Forward Pass, Backward
Pass, Slack Time, Critical Path and Critical Degree in terms
of trapezoidal neutrosophic fuzzy numbers and its interval
version.

A. Trapezoidal Neutrosophic Fuzzy Expected Duration

Let T
Ñeu

ED
i

be the trapezoidal neutrosophic fuzzy ex-
pected duration (TrpNFED). The trapezoidal neutrosophic
fuzzy PERT activity duration is expressed in three es-
timates: Trapezoidal neutrosophic fuzzy optimistic time
(T

Ñeu
OT

i
), Trapezoidal neutrosophic fuzzy pessimistic time

(T
Ñeu

PT
i
) and Trapezoidal neutrosophic fuzzy most likley

time (T
Ñeu

MT
i
). Then the formula to obtain the TrpNFED

is

TÑeuEDi =
TÑeuOT

i
+ 4TÑeuMT

i
+ TÑeuPT

i

6
(15)

Now, using the proposed interval-based de-neutrosophication
technique (section III-A), the TrpNFED in interval number
is calculated using the following:

R(TÑeuEDi)

=
R(TÑeuOT

i
) + 4R(TÑeuMT

i
) +R(TÑeuPT

i
)

6
(16)

B. Trapezoidal Neutrosophic Fuzzy Forward Pass Calcula-
tions

Let T
Ñeu

A
i

be the trapezoidal neutrosophic fuzzy duration
of the ith activity, T

Ñeu
A

j
be the trapezoidal neutrosophic

fuzzy duration of jth activity, Pi be the predecessor of jth

activity and Si be the successor of jth activity. Trapezoidal
neutrosophic fuzzy forward pass calculations (TrpNFFPC)
is a technique that is used to move forward throughout a
network diagram in order to estimate project duration and
identify the critical path. It is performed by the trapezoidal
neutrosophic fuzzy early Start (TrpNFES) and trapezoidal
neutrosophic fuzzy early finish (TrpNFEF) and is defined as

TÑeuES
j
= max

Pi

[
TÑeuES

i
+ TÑeuAi

]
, (17)

TÑeuEF
i
= TÑeuES

i
+ TÑeuAi

(18)
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where T
Ñeu

ES
i

represents the earliest possible start time
for the ith activity while maintaining the project’s scheduling
constraints. T

Ñeu
EF

i
represents the earliest time when the

ith activity can be finished.
By applying the proposed interval-based de-

neutrosophication technique (section III-A), the TrpNFES
& TrpNFEF based on interval number is calculated using
the following:

R(TÑeuES
i
) = max

Pi

[
R(TÑeuES

j
) +R(TÑeuAj

)
]
, (19)

R(TÑeuEF
i
) = R(TÑeuES

i
) +R(TÑeuAi

) (20)

C. Trapezoidal Neutrosophic Fuzzy Backward Pass Calcula-
tions

The trapezoidal neutrosophic fuzzy backward pass cal-
culation (TrpNFBPC) is used to determine a late start or
determine whether there is any slack in the action. It is
performed by the trapezoidal neutrosophic fuzzy late start
(TrpNFLS) and trapezoidal neutrosophic fuzzy late finish
(TrpNFLF) and is defined as

TÑeuLF i
= min

Si

[
TÑeuLF j

− TÑeuAj

]
, (21)

TÑeuLSi
= TÑeuLF i

− TÑeuAi
(22)

where T
Ñeu

LS
i

is the latest dates for an activity’s start in
order to prevent project delays and it is the ith latest start
for computing backward pass. T

Ñeu
LF

i
is the latest dates

that have been calculated for an activity to end, which is
the ith latest finish for the project network’s backward pass
computation.

The TrpNFLS and TrpNFLF based on interval number
is calculated using the proposed interval-based de-
neutrosophication technique (section III-A) and is defined
as below.

R(TÑeuLF i
) = min

Si

[
R(TÑeuLF j

)−R(TÑeuAj
)
]
, (23)

R(TÑeuLSi
) = R(TÑeuLF i

)−R(TÑeuAi
) (24)

D. Trapezoidal Neutrosophic Fuzzy Slack Time

Trapezoidal neutrosophic fuzzy slack time (TrpNFST) is
the duration of time that a project’s task or activity can
be delayed without having an impact on the entire project
schedule. The formula for calculating TrpNFST is provided
in equation (25).

TÑeuST i
= TÑeuLSi

− TÑeuES
i

= TÑeuLF i
− TÑeuEF

i
(25)

Now the TrpNFST based on the proposed interval-based de-
neutrosophic technique (section III-A) is obtained by the
following formula.

R(TÑeuST i
) = R(TÑeuLSi

)−R(TÑeuES
i
)

= R(TÑeuLF i
)−R(TÑeuEF

i
) (26)

If the TrpNFST is 0 for each ith activity, then it is called
as critical activity. Otherwise, called as non-critical activity.
The path formed by the critical activity is called as critical
path.

E. Trapezoidal Neutrosophic Critical Degree of the Activity

Based on the definition given by Mukherjee and Basu
[21], we define trapezoidal neutrosophic critical degree (Trp-
NFCD) of the activity using our proposed interval-based
de-neutrosophication technique (section III-A) and it is de-
scribed as follows.
If the interval slack time of the activity i−j is

〈
C(k̃),W(k̃)

〉
,

then the critical degree (CD) of this activity is defined as
R(T

Ñeu
CD

i
) =

1, if C(k̃) +W(k̃) < 0
W(k̃)−C(k̃)
C(k̃)+W(k̃)

if C(k̃)−W(k̃) < 0 < C(k̃) +W(k̃)

0, if C(k̃)−W(k̃) ≥ 0

(27)

Equation (27) gives more validity for the proposed interval-
based de-neutrosophication technique. i.e., If the critical
degree takes the value 1 for all the critical activities, then
we can say that the proposed method is more valid.

V. INTERVAL-VALUED TRAPEZOIDAL NEUTROSOPHIC
FUZZY PERT

Let the interval-valued trapezoidal neutrosophic
fuzzy number is in the form of T

ĨvNeu
=

⟨(a1, a2, a3, a4); [ρL, ρR], [κL, κR], [νL, νR]⟩. The graphical
representation of interval-valued trapezoidal neutrosophic
fuzzy number is displayed in Fig. 2. Based on the reference
[28], we convert the interval-valued trapezoidal neutrosophic
fuzzy number into an interval number (as same as section
III). We consider this interval based de-neutrosophication
technique to solve interval-valued trapezoidal neutrosophic
fuzzy PERT problem. Using interval-valued trapezoidal
neutrosophic set theory in PERT can help the project
manager’s to analyze the situations in interval truth,
interval indeterminacy and interval falsity respectively.
This section presents the definitions for Expected Duration,
Forward Pass, Backward Pass, Slack Time, Critical Path and
Critical Degree in the form of interval-valued trapezoidal
neutrosophic fuzzy numbers and its interval version. It is
similar as explained in section IV.
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Fig. 2. Interval-valued Trapezoidal Neutrosophic Fuzzy Number
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A. Interval-valued Trapezoidal Neutrosophic Fuzzy Expected
Duration

Let T
ĨvNeu

ED
i

be the interval-valued trapezoidal neutro-
sophic fuzzy expected duration (IVTrpNFED). The interval-
valued trapezoidal neutrosophic fuzzy PERT activity dura-
tion is expressed in three estimates: Interval-valued trape-
zoidal neutrosophic fuzzy optimistic time (T

ĨvNeu
OT

i
),

Interval-valued trapezoidal neutrosophic fuzzy pessimistic
time (T

ĨvNeu
PT

i
) and Interval-valued trapezoidal neutro-

sophic fuzzy most likley time (T
ĨvNeu

MT
i
). Then the

formula to obtain the IVTrpNFED is

T ˜IvNeu
EDi =

T ˜IvNeu
OT

i
+ 4T ˜IvNeu

MT
i
+ T ˜IvNeu

PT
i

6
(28)

Now, using the interval-based de-neutrosophication tech-
nique (provided by [28]), the IVTrpNFED in interval number
is calculated using the following:
R(T ˜IvNeu

EDi)

=
R(T ˜IvNeu

OT
i
) + 4R(T ˜IvNeu

MT
i
) + R(T ˜IvNeu

PT
i
)

6
(29)

B. Interval-valued Trapezoidal Neutrosophic Fuzzy Forward
Pass Calculations

Let T
ĨvNeu

A
i

be the ith activity of the interval-valued
trapezoidal neutrosophic fuzzy duration, T

ĨvNeu
A

j
be the

interval-valued trapezoidal neutrosophic fuzzy duration of
jth activity, Pi be the predecessor and Si be the successor of
jth activity. Interval-valued Trapezoidal neutrosophic fuzzy
forward pass calculations (IVTrpNFFPC) is performed by
the interval-valued trapezoidal neutrosophic fuzzy early start
(IVTrpNFES) and interval-valued trapezoidal neutrosophic
fuzzy early finish (IVTrpNFEF) and is defined as

T
ĨvNeu

ES
j
= max

Pi

[
T
ĨvNeu

ES
i
+ T

ĨvNeu
A

i

]
, (30)

T
ĨvNeu

EF
i
= T

ĨvNeu
ES

i
+ T

ĨvNeu
A

i
(31)

where T
ĨvNeu

ES
i

ensures that the ith activity doesnot start
until all its predecessors are completed. T

ĨvNeu
EF

i
ensures

that the ith activity is completed as early as possible without
violating any project constraints.

By applying the interval-based de-neutrosophication tech-
nique provided by [28], the IVTrpNFES & IVTrpNFEF
based on interval number is calculated using the following:

R(T ˜IvNeu
ES

i
) = max

Pi

[
R(T ˜IvNeu

ES
j
) +R(T ˜IvNeu

A
j
)
]
,

(32)
R(T ˜IvNeu

EF
i
) = R(T ˜IvNeu

ES
i
) +R(T ˜IvNeu

A
i
) (33)

C. Interval-valued Trapezoidal Neutrosophic Fuzzy Back-
ward Pass Calculations

The interval-valued trapezoidal neutrosophic fuzzy back-
ward pass calculation (IVTrpNFBPC) is used to determine
the interval-valued trapezoidal neutrosophic fuzzy late start
(IVTrpNFLS) and interval-valued trapezoidal neutrosophic
fuzzy late finish (IVTrpNFLF) for each activity in a project
schedule and is defined as

T ˜IvNeu
LF

i
= min

Si

[
T ˜IvNeu

LF
j
− T ˜IvNeu

A
j

]
, (34)

T ˜IvNeu
LS

i
= T ˜IvNeu

LF
i
− T ˜IvNeu

A
i

(35)

where T
ĨvNeu

LS
i

indicates the latest possible start time for
the ith activity. T

ĨvNeu
LF

i
represents the latest possible

point in time when the ith activity can be calculated without
delaying the project completion.

The IVTrpNFLS & IVTrpNFLF based on interval number
is calculated by using the interval-based de-neutrosophication
technique (provided by [28]) and is defined below.

R(T ˜IvNeu
LF

i
) = min

Si

[
R(T ˜IvNeu

LF
j
)−R(T ˜IvNeu

A
j
)
]
,

(36)
R(T ˜IvNeu

LS
i
) = R(T ˜IvNeu

LF
i
)−R(T ˜IvNeu

A
i
) (37)

D. Interval-valued Trapezoidal Neutrosophic Fuzzy Slack
Time

The formula for calculating interval-valued trapezoidal
neutrosophic fuzzy slack time (IVTrpNFST) is provided in
equation (38).

T ˜IvNeu
ST

i
= T ˜IvNeu

LS
i
− T ˜IvNeu

ES
i

= T ˜IvNeu
LF

i
− T ˜IvNeu

EF
i

(38)

Now the IVTrpNFST based on the interval-based de-
neutrosophic technique (provided by [28]) is obtained by the
following formula.

R(T ˜IvNeu
ST

i
) = R(T ˜IvNeu

LS
i
)−R(T ˜IvNeu

ES
i
)

= R(T ˜IvNeu
LF

i
)−R(T ˜IvNeu

EF
i
) (39)

If the IVTrpNFST is 0 for each ith activity, then it is called
as critical activity. Otherwise, called as non-critical activity.
The path formed by the critical activity is called as critical
path.

E. Interval-valued Trapezoidal Neutrosophic Critical degree
of the Activity

The interval-valued trapezoidal neutrosophic critical de-
gree (IVTrpNFCD) of the activity based on the interval-based
de-neutrosophication technique (provided by [28]) is as same
as described in section IV-E, equation (27).

VI. ILLUSTRATION – TRAPEZOIDAL NEUTROSOPHIC
FUZZY PERT

To show the efficiency of the proposed interval-based de-
neutrosophication technique (section III) in the proposed Trp-
NFPERT method (section IV), we solve two examples (VI-A
& VI-B) based on trapezoidal neutrosophic fuzzy numbers.
Here, we choose the choices of values for α, β, γ and s as
the highest membership grade 1.

A. Example 1

1) Description of the Problem and the Data: Consider a
project management in farming Oyster mushroom and we
choose the parameters as trapezoidal neutrosophic fuzzy
numbers (TrpNFN). We design a production process for
farming Oyster mushroom by the proposed trapezoidal
neutrosophic fuzzy pert method (TrpNFPERT). In this
example, triangular neutrosophic fuzzy values are adapted
from [17] and we consider it as TrpNFN based on decision
maker’s perception. Considering TrpNFN makes one to
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TABLE I
DURATIONS IN THE FORM OF TRAPEZOIDAL NEUTROSOPHIC FUZZY NUMBERS (EXAMPLE 1)

Durations (day)
Nr Optimistic time (T

Ñeu
OT

i
) Pessimistic time (T

Ñeu
PT

i
) Most likely time (T

Ñeu
MT

i
)

1
(
1, 1.5, 2.5, 3; 0.5, 1.25, 1.75, 2.5;

(
1, 2, 8, 9; 1.5, 4, 5, 6;

(
1.5, 3, 4, 5.5; 1, 1.5, 2.5, 3;

1.2, 2.25, 3.15, 3.5
)

4, 4.5, 9.5, 10
)

3, 4, 5, 6
)

2
(
1, 3, 7, 8; 1, 2, 4, 6; 4, 6, 8, 9

) (
1, 1.5, 2.5, 3; 0.5, 1, 2, 2.5; 1.5, 2, 3, 3.5

) (
1, 3, 7, 8; 1.5, 2.5, 3.5, 6.5; 4, 6.5, 7.5, 9

)
3

(
1, 2, 6, 7; 1, 2, 4, 5;

(
1, 1.25, 1.75, 4; 0.5, 0.75, 1.25, 2.5;

(
1, 3, 7, 9; 1.5, 3.5, 5.5, 6.5;

3.5, 5.5, 6.5, 7.5
)

1.25, 2.25, 3.75, 4.25
)

4, 6, 8, 10
)

4
(
1, 2, 4, 5; 0.5, 2, 3, 3.5; 2.5, 3, 5, 6

) (
1.5, 2.5, 4.5, 5.5; 1, 1.5, 2.5, 3; 3, 3.5, 5.5, 6

) (
0.5, 2, 3, 4.5; 1, 1.5, 2.5, 3; 1.5, 2.5, 4.5, 5.5

)
5

(
0.5, 2, 3, 4.5; 0.5, 1, 2, 3.5; 2, 3, 5, 6

) (
1, 3, 7, 9; 1.5, 3.5, 5.5, 6.5; 4, 5.5, 8.5, 10.5

) (
1.5, 2, 3, 3.5; 1, 1.25, 1.75, 3; 2, 2.75, 3.25, 4

)
6

(
2, 3, 5, 6; 1.5, 2, 3, 3.5; 3, 4, 6, 7

) (
1, 1.5, 2.5, 3; 0.5, 1, 2, 2.5; 1.2, 2.4, 3, 3.5

) (
1, 3, 5, 7; 1, 2, 4, 5; 3.5, 5.5, 6.5, 7.5

)
7

(
0.5, 2, 3, 4.5; 1, 1.5, 2.5, 3; 2, 3, 5, 6

) (
1, 4, 6, 8; 1.5, 2.5, 3.5, 6.5; 4, 6, 8, 9

) (
1, 2, 8, 9; 1.5, 3, 6, 6.5; 4, 4.5, 9.5, 10

)
8

(
1.5, 2.5, 4.5, 5.5; 1, 1.5, 2.5, 3; 3, 4, 5, 6

) (
0.5, 2.5, 4.5, 6.5; 0.5, 1.5, 3.5, 4.5; 3, 4, 6, 7

) (
1, 1.5, 2.5, 3; 0.5, 1, 2, 2.5; 1.5, 2, 3, 3.5

)
9

(
1, 4, 6, 9; 1.5, 3.5, 5.5, 6.5; 4, 6, 9, 10

) (
0.5, 2, 3, 4.5; 1, 1.5, 2.5, 3; 1.5, 2.5, 4.5, 5.5

) (
1, 4, 6, 8; 1, 2, 4, 6; 4, 6, 8, 9

)
10

(
0.5, 2.5, 4.5, 6.5; 0.5, 2, 3, 4.5; 3, 4, 6, 7

) (
1.5, 2, 3, 3.5; 1, 1.25, 1.75, 3; 2, 2.5, 3.5, 4

) (
1, 1.75, 2.25, 3; 0.5, 1, 2, 2.5; 1.2, 2.4, 3, 3.5

)
11

(
1, 4, 6, 8; 1.5, 2.5, 4.5, 6.5;

(
1, 3, 5, 7; 1, 2.5, 3.5, 5;

(
1, 1.25, 1.75, 4; 0.5, 0.75, 1.25, 2.5;

4, 5, 7, 8.5
)

3.5, 5.5, 6.5, 7.5
)

1.25, 2.25, 3.75, 4.25
)

analyze the problem in all the ways of possibility namely
positive, negative and neutral. The activities of the problem
with the description and the corresponding predecessor are
given in Table II. Flow of the activities are represented in
Fig. 3

TABLE II
DESCRIPTION OF THE ACTIVITY IN FARMING MUSHROOM (EXAMPLE 1)

Nr Activity Description Predecessor
1 A Choosing Mushroom type -
2 B Landscape Management -
3 C Preparing Compost A
4 D Natural Compost B
5 E Synthetic Compost B
6 F Filling the compost in the tray A
7 G Spawning C
8 H Casing D
9 I Harvesting A
10 J Storage E,G,H
11 K Selling F,I,J

Fig. 3. Network diagram (Example 1)

2) Calculation for TrpNFED: The process of TrpNFED
are defined based on proposed de-neutrosophication tech-
nique in interval form. The data given in Table I is in
the form of TrpNFN. The interval version of trapezoidal
neutrosophic fuzzy optimistic time, trapezoidal neutrosophic
fuzzy pessimistic time and trapezoidal neutrosophic fuzzy
most likely time are converted based on sections III, III-A.
The interval form of trapezoidal neutrosophic fuzzy expected
duration are now calculated using section IV-A and the
equation (16) is used for computation. The ith activity of
the TrpNFED in the form of interval number is calculated as
follows. For example, let us calculate for i=7.
TÑeuOT

7
=

(
0.5, 2, 3, 4.5; 1, 1.5, 2.5, 3; 2, 3, 5, 6

)
TÑeuPT

7
=

(
1, 4, 6, 8; 1.5, 2.5, 3.5, 6.5; 4, 6, 8, 9

)
TÑeuMT

7
=

(
1, 2, 8, 9; 1.5, 3, 6, 6.5; 4, 4.5, 9.5, 10

)
Then by applying equations (7) - (13), we get,
R(TÑeuOT

7
) = ⟨2.5, 1⟩, R(TÑeuOT

7
) = ⟨5, 1.5⟩,

R(TÑeuOT
7
) = ⟨4.58, 3⟩.

Using equation (16), we obtain the expected duration of the
trapezoidal neutrosophic number for i=7 as ⟨4.58, 3⟩.
The detailed expected duration for all activities in interval
form are provided in Table III.

3) Calculation for TrpNFFPC: Table IV consists of the
calculations to TrpNFFPC in detail and it is computed
using equations (19) & (20). The forward pass in project
calculations requires the completion of all jth activities
before starting the ith activities, since specific activities are
dependent on predecessor activities. To calculate the interval
version of the ith activity of TrpNFFPC is given as follows.
Let us take i=10. Using equation (19), the interval version
of TrpNFES is found as
R(TÑeuES

10
) = max

5,7,8

[
R(TÑeuES

j
) +R(TÑeuAj

)
]

= max
[
R(TÑeuES

5
) +R(TÑeuA5

),

R(TÑeuES
7
) +R(TÑeuA7

),

R(TÑeuES
8
) +R(TÑeuA8

)
]

= max
[
⟨4.5, 2⟩+ ⟨2.9, 2⟩, ⟨7.75, 3⟩+ ⟨4.58, 3⟩,
⟨7.25, 2⟩+ ⟨2.5, 1⟩

]
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TABLE III
DURATIONS IN THE FORM OF INTERVAL NUMBER (EXAMPLE 1)

Durations (day)
Nr Activity Predecessor Optimistic time Pessimistic

time
Most likely
time

Expected days

1 A - ⟨2, 0.5⟩ ⟨5, 3⟩ ⟨3.5, 0.5⟩ ⟨3.5, 3⟩
2 B - ⟨5, 2⟩ ⟨2, 0.5⟩ ⟨5, 2⟩ ⟨4.5, 2⟩
3 C A ⟨4, 2⟩ ⟨1.5, 0.75⟩ ⟨5, 2⟩ ⟨4.25, 2⟩
4 D B ⟨3, 1.25⟩ ⟨3.5, 1⟩ ⟨2.5, 1⟩ ⟨2.75, 1.25⟩
5 E B ⟨2.5, 1⟩ ⟨5, 2⟩ ⟨2.5, 0.75⟩ ⟨2.9, 2⟩
6 F A ⟨4, 1⟩ ⟨2, 0.5⟩ ⟨4, 1⟩ ⟨3.7, 1⟩
7 G C ⟨2.5, 1⟩ ⟨5, 1.5⟩ ⟨5, 3⟩ ⟨4.58, 3⟩
8 H D ⟨3.5, 1⟩ ⟨3.5, 1⟩ ⟨2, 0.5⟩ ⟨2.5, 1⟩
9 I A ⟨5, 1⟩ ⟨2.5, 1⟩ ⟨5, 1.5⟩ ⟨4.58, 1.5⟩
10 J E,G,H ⟨3.5, 1⟩ ⟨2.5, 0.75⟩ ⟨2, 0.5⟩ ⟨2.3, 1⟩
11 K F,I,J ⟨5, 1.5⟩ ⟨4, 1⟩ ⟨3.75, 1.5⟩ ⟨2.5, 1.5⟩

= max
[
⟨7.4, 2⟩, ⟨12.33, 3⟩, ⟨9.75, 2⟩

]
= ⟨12.33, 3⟩.

Also, using equation (20), the TrpNFEF based on interval
number is

R(TÑeuEF
10
) = R(TÑeuES

10
) +R(TÑeuA10

)

= ⟨12.33, 3⟩+ ⟨2.3, 1⟩ = ⟨14.63, 3⟩.

4) Calculation for TrpNFBPC: The calculations to Trp-
NFBPC is computed using equations (23) & (24). When
calculating the backward pass from the finish of the project,
certain activities require successor activities, therefore, all
the jth activities must finish to start the ith activities. To
calculate the interval version of the ith activity of TrpNFBPC
is given as follows.
Let us take i=1. Using equation (23), the TrpNFLF is found
as

R(TÑeuLF 1
) = min

3,6,9

[
R(TÑeuLF j

)−R(TÑeuAj
)
]

= min
[
R(TÑeuLF 3

)−R(TÑeuA3
),

R(TÑeuLF 6
)−R(TÑeuA6

),

R(TÑeuLF 9
)−R(TÑeuA9

)
]

= min
[
⟨7.75, 3⟩ − ⟨4.25, 2⟩, ⟨14.63, 3⟩ − ⟨3.7, 1⟩,

⟨14.63, 3⟩ − ⟨4.58, 1.5⟩
]

= min
[
⟨3.5, 3⟩, ⟨10.93, 3⟩, ⟨10.05, 3⟩

]
= ⟨3.5, 3⟩.

Also, using equation (24), the TrpNFEF based on interval number
is R(TÑeuLS1

) = R(TÑeuLF 1
)−R(TÑeuA1

)

= ⟨3.5, 3⟩ − ⟨3.5, 3⟩ = ⟨0, 3⟩.

5) Calculation for TrpNFST: TrpNFST is used to identify
the critical and non-critical activities by using equation (25).
Let us calculate for the activity i=3,

R(TÑeuST 3
) = R(TÑeuLS3

)−R(TÑeuES
3
)

= R(TÑeuLF 3
)−R(TÑeuEF

3
)

= ⟨3.5, 3⟩ − ⟨3.5, 3⟩ = ⟨7.75, 3⟩ − ⟨7.75, 3⟩
= ⟨0, 3⟩ = 0̃, a critical activity

For example, let us calculate for the activity i=8,
R(TÑeuST 8

) = R(TÑeuLS8
)−R(TÑeuES

8
)

= R(TÑeuLF 8
)−R(TÑeuEF

8
)

= ⟨9.83, 3⟩ − ⟨7.25, 3⟩ = ⟨12.33, 3⟩ − ⟨9.75, 3⟩
= ⟨2.58, 3⟩, a non-critical activity

The activities that has the TrpNFST values as 0 is considered
as the critical path.

6) Calculation for TrpNFCD: The critical degree for
TrpNFN is calculated for showing the validity of the pro-
posed grading technique. And it is calculated based on the
TrpNFST for each activity. Let us calculate the TrpNFCD
for i=3 and the TrpNFST is ⟨0, 3⟩.
Therefore, based on section IV-E,
M(k̃)−W(k̃) < 0 < M(k̃) +W(k̃) =⇒ −3 < 0 < 3 .

Hence R(TÑeuCD
3
) =

W(k̃)−M(k̃)

M(k̃) +W(k̃)

=
3− 0

0 + 3
= 1, is the critical activity.

For i=4, the TrpNFST is ⟨2.58, 3⟩. Therefore, based on section IV-E,

M(k̃)−W(k̃) < 0 < M(k̃) +W(k̃) =⇒ −0.42 < 0 < 5.58.

Hence R(TÑeuCD
4
) =

W(k̃)−M(k̃)

M(k̃) +W(k̃)

=
3− 2.58

2.58 + 3
= 0.075, is the non-critical activity.

It is clearly visible that the TrpNFCD is 1 for all critical
activities and the rest are 0.
The detailed values of TrpNFFPC, TrpNFBPC, TrpNFST
and TrpNFCD are provided in Table IV.

7) Comparison of Results:
• Using our proposed interval-based de-neutrosophication

methodology for trapezoidal neutrosophic fuzzy num-
ber, the critical path of the project in the TrpNFPERT
is A → C → G → J → K and it is obtained as same
as the path in the existing method [17].

• The project completion days we obtained as
⟨3.5, 3⟩ + ⟨4.25, 2⟩ + ⟨4.58, 3⟩ + ⟨2.3, 1⟩ + ⟨2.5, 1.5⟩ =
⟨17.13, 3⟩ = [14.13, 20.13] days.
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TABLE IV
DURATIONS CALCULATIONS BASED ON FORWARD AND BACKWARD PASS (EXAMPLE 1)

Nr Activity Early start Early finish Late finish Late start Slack time Description Critical degree
1 A ⟨0, 0⟩ ⟨3.5, 3⟩ ⟨3.5, 3⟩ ⟨0, 3⟩ ⟨0, 3⟩ Critical 1
2 B ⟨0, 0⟩ ⟨4.5, 2⟩ ⟨7.08, 3⟩ ⟨2.58, 3⟩ ⟨2.58, 3⟩ Non-Critical 0.075
3 C ⟨3.5, 3⟩ ⟨7.75, 3⟩ ⟨7.75, 3⟩ ⟨3.5, 3⟩ ⟨0, 3⟩ Critical 1
4 D ⟨4.5, 2⟩ ⟨7.25, 3⟩ ⟨9.83, 3⟩ ⟨7.08, 3⟩ ⟨2.58, 3⟩ Non-Critical 0.075
5 E ⟨4.5, 2⟩ ⟨7.4, 2⟩ ⟨12.33, 3⟩ ⟨9.43, 3⟩ ⟨4.93, 3⟩ Non-Critical 0
6 F ⟨3.5, 3⟩ ⟨7.2, 3⟩ ⟨14.63, 3⟩ ⟨10.93, 3⟩ ⟨7.43, 3⟩ Non-Critical 0
7 G ⟨7.75, 3⟩ ⟨12.33, 3⟩ ⟨12.33, 3⟩ ⟨7.75, 3⟩ ⟨0, 3⟩ Critical 1
8 H ⟨7.25, 2⟩ ⟨9.75, 2⟩ ⟨12.33, 3⟩ ⟨9.83, 3⟩ ⟨2.58, 3⟩ Non-Critical 0.075
9 I ⟨3.5, 3⟩ ⟨8.08, 3⟩ ⟨14.63, 3⟩ ⟨10.05, 3⟩ ⟨6.55, 3⟩ Non-Critical 0
10 J ⟨12.33, 3⟩ ⟨14.63, 3⟩ ⟨14.63, 3⟩ ⟨12.33, 3⟩ ⟨0, 3⟩ Critical 1
11 K ⟨14.63, 3⟩ ⟨17.13, 3⟩ ⟨17.13, 3⟩ ⟨14.63, 3⟩ ⟨0, 3⟩ Critical 1

TABLE V
PROJECT COMPLETION TIME FOR VARIOUS PARAMETERS (EXAMPLE 1)

Project completion time (Interval form)

α, β s=0 s=0.5 s=1

& γ
〈
C(k̃),W(k̃)

〉 [
C(k̃)−W(k̃),

〈
C(k̃),W(k̃)

〉 [
C(k̃)−W(k̃),

〈
C(k̃),W(k̃)

〉 [
C(k̃)−W(k̃),

C(k̃) +W(k̃)
]

C(k̃) +W(k̃)
]

C(k̃) +W(k̃)
]

0 ⟨37.67, 4⟩ [33.64, 41.64] ⟨27.75, 4⟩ [23.75, 31.75] ⟨17.83, 4⟩ [13.83, 21.83]

0.1 ⟨38.66, 3.9⟩ [34.76, 42.56] ⟨28.21, 3.9⟩ [24.31, 32.11] ⟨17.77, 3.9⟩ [13.87, 21.67]

0.2 ⟨39.65, 3.8⟩ [35.85, 43.45] ⟨28.68, 3.8⟩ [24.88, 32.48] ⟨17.70, 3.8⟩ [13.90, 21.50]

0.3 ⟨40.65, 3.7⟩ [36.95, 44.35] ⟨29.14, 3.7⟩ [25.44, 32.84] ⟨17.63, 3.7⟩ [13.93, 21.33]

0.4 ⟨41.64, 3.6⟩ [38.04, 45.24] ⟨29.60, 3.6⟩ [26.00, 33.2] ⟨17.57, 3.6⟩ [13.97, 21.17]

0.5 ⟨42.63, 3.5⟩ [39.13, 46.13] ⟨30.07, 3.5⟩ [26.57, 33.57] ⟨17.50, 3.5⟩ [14.00, 21.00]

0.6 ⟨43.63, 3.4⟩ [40.23, 47.03] ⟨30.53, 3.4⟩ [27.13, 33.93] ⟨17.43, 3.4⟩ [14.03, 20.83]

0.7 ⟨44.62, 3.3⟩ [41.32, 47.92] ⟨30.99, 3.3⟩ [27.69, 34.29] ⟨17.37, 3.3⟩ [14.07, 20.67]

0.8 ⟨45.61, 3.2⟩ [42.41, 48.81] ⟨31.46, 3.2⟩ [28.26, 34.66] ⟨17.30, 3.2⟩ [14.10, 20.50]

0.9 ⟨46.61, 3.1⟩ [43.51, 49.71] ⟨31.92, 3.1⟩ [28.82, 35.02] ⟨17.23, 3.1⟩ [14.13, 20.33]

1.0 ⟨47.60, 3⟩ [44.6, 50.6] ⟨32.38, 3⟩ [29.38, 38.38] ⟨17.13, 3⟩ [14.13, 20.13]

• But the project completion days acquired by [17] is
15.9.

• It shows that our method is efficient than the existing
and our result is more flexible that suits better in current
real-life scenarios.

TABLE VI
POSSIBLE PATHS OF THE PROJECT

Path Possible path Project completion days Rank

1 A→I→K ⟨10.58, 3⟩ 5

2 A→F→K ⟨9.7, 3⟩ 6

3 A→C→G→K ⟨14.83, 3⟩ 2

4 A→C→G→J→K ⟨17.13, 3⟩ 1

5 B→D→H→J→K ⟨14.55, 2⟩ 3

6 B→E→J→K ⟨12, 2⟩ 4

8) Sensitivity Analysis: In Table V, the trapezoidal neu-
trosophic fuzzy PERT problem is analyzed for various pa-
rameters of α, β and γ between [0,1]. Also, the problem
is discussed for various values of s between [0,1]. Fig. 4
represents the lower limit values for s=0, s=0.5 and s=1.

From the analysis, we observe that the project completion
days are more efficient for s=1, i.e., the highest membership
grade. In Table VI, the validity of our proposed method are
checked based on the possible path of the project.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Membership Degrees
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Fig. 4. Lower limit for various values of “s” (Example 1)
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TABLE VII
DURATIONS IN THE FORM OF TRAPEZOIDAL NEUTROSOPHIC FUZZY NUMBERS AND INTERVAL NUMBERS (EXAMPLE 2)

Acti Durations (day) Early Early Late Late Slack Descr Critical
-vity Trapezoidal neutrosophic

fuzzy form
Interval
form

start finish finish start time -iption degree

A
(
7, 8, 9, 12; 3.5, 4, 4.5, 6; ⟨8.5, 0.75⟩ ⟨0, 0⟩ ⟨8.5, 0.75⟩ ⟨8.5, 1.5⟩ ⟨0, 1.5⟩ ⟨0, 1.5⟩ Critical 1
1.4, 1.6, 1.8, 2.4

)
B

(
17, 19, 21, 22; 8.5, 9.5, ⟨20, 1⟩ ⟨0, 0⟩ ⟨20, 1⟩ ⟨29, 1.5⟩ ⟨9, 1.5⟩ ⟨9, 1.5⟩ Non-critical 0
10.5, 11; 3.4, 3.8, 4.2, 4.4

)
C

(
39, 42, 45, 50; 19.5, ⟨43.5, 1.5⟩ ⟨8.5, 0.75⟩ ⟨52, 1.5⟩ ⟨52, 1.5⟩ ⟨8.5, 1.5⟩ ⟨0, 1.5⟩ Critical 1
21, 22.5, 25; 7.8, 8.4, 9, 10

)
D

(
14, 15, 17, 18; 7, 7.5, 8.5, ⟨16, 1⟩ ⟨8.5, 0.75⟩ ⟨24.5, 1⟩ ⟨94, 1.5⟩ ⟨78, 1.5⟩ ⟨69.5, 1.5⟩ Non-critical 0
9; 2.8, 3, 3.4, 3.6

)
E

(
14, 15, 17, 18; 7, 7.5, 8.5, ⟨16, 1⟩ ⟨20, 1⟩ ⟨36, 1⟩ ⟨45, 1.5⟩ ⟨29, 1.5⟩ ⟨9, 1.5⟩ Non-critical 0
9; 2.8, 3, 3.4, 3.6

)
F

(
13, 14, 15, 16; 6.5, 7, 7.5, ⟨14.5, 0.75⟩ ⟨36, 1⟩ ⟨50.5, 1⟩ ⟨59.5, 1.5⟩ ⟨45, 1.5⟩ ⟨9, 1.5⟩ Non-critical 0
8; 2.6, 2.8, 3, 3.2

)
G

(
16, 17, 18, 21; 8, 8.5, 9, ⟨17.5, 0.75⟩ ⟨50.5, 1⟩ ⟨68, 1⟩ ⟨77, 1.5⟩ ⟨59.5, 1.5⟩ ⟨9, 1.5⟩ Non-critical 0
10.5; 3.2, 3.4, 3.6, 4.2

)
H

(
44, 45, 48, 52; 22, 22.5, 24, ⟨46.5, 1.5⟩ ⟨52, 1.5⟩ ⟨98.5, 1.5⟩ ⟨98.5, 1.5⟩ ⟨52, 1.5⟩ ⟨0, 1.5⟩ Critical 1
26; 8.8, 9, 9.6, 10.4

)
J

(
3, 4, 5, 6; 1.5, 2, 2.5, 3; ⟨4.5, 0.5⟩ ⟨24.5, 1⟩ ⟨29, 1⟩ ⟨98.5, 1.5⟩ ⟨94.5, 1.5⟩ ⟨69.5, 1.5⟩ Non-critical 0
0.6, 0.8, 1, 1.2

)
L

(
20, 21, 22, 25; 10, 10.5, 11, ⟨21.5, 0.75⟩ ⟨68, 1⟩ ⟨89.5, 1⟩ ⟨98.5, 1.5⟩ ⟨77, 1.5⟩ ⟨9, 1.5⟩ Non-critical 0
12.5; 28.5, 30; 4, 4.2, 4.4, 5

)
N

(
54, 55, 57, 60; 27, 27.5, ⟨56, 1⟩ ⟨98.5, 1.5⟩ ⟨154.5, 1.5⟩ ⟨154.5, 1.5⟩ ⟨98.5, 1.5⟩ ⟨0, 1.5⟩ Critical 1
28.5, 30; 10.8, 11, 11.4, 12

)

B. Example 2

1) Description of the Problem and the Data: In this
example, we design a problem to compute TrpNFPERT
method in Diary farming. The process of the activities
are given in Table VIII. The flow of the activities with
the network diagram is shown in Fig. 5. The durations of
the activities are defined based on the fuzzy parameters
adapted from [18]. We consider into TrpNFN based on
decision maker’s perception with indeterminacy as 50
% and falsity as 20 % of the fuzzy membership values.
Considering the trapezoidal fuzzy numbers in terms of
TrpNFN makes the decision maker to analyze each duration
in all possible thoughts, that includes true, neutral and falsity
respectively. The durations in TrpNFN and its interval based
de-neutrosophication form (mid-point and width(half-
width)) are provided in Table VII. Also, the calculations to
TrpNFFPC (TrpNFES & TrpNFEF), TrpNFBPC (TrpNFLS
& TrpNFLF), TrpNFST, TrpNFCD and the description
(critical/non-critical) are given in Table VII.

Fig. 5. Network diagram (Example 2)

TABLE VIII
DESCRIPTION OF THE ACTIVITY IN DIARY FARMING (EXAMPLE 2)

Activity Description

A (1–2) Aware about all species and breed

B (1–3) Recognize each individual animal

C (2–5) Layout / Outline a breeding plan

D (2–4) Supply of necessary nutrition

E (3–6) Learn the practice of farming

F (6–7) Awareness of animal disease

G (7–8) Amenities for animals

H (5–9) Plot the local milk market

J (4–9) Reach the government milk market

L (8–9) Market with neighbours/ public

N (9–10) Structure a business plan

2) Comparison of Results:
• Using our proposed interval-based de-neutrosophication

methodology for trapezoidal neutrosophic fuzzy num-
ber, the critical path of the project in the TrpNFPERT
is A → C → H → N and it is obtained as same as the
path in the existing method [18].

• The project completion days we obtained as ⟨8.5, 0.75⟩
+ ⟨43.5, 1.5⟩ + ⟨46.5, 1.5⟩ + ⟨56, 1⟩ = ⟨154.5, 1.5⟩ =
[153, 156] days.

• But the project completion days acquired by [18] is
(144,150,159,174).

• It shows that our method is efficient than the existing
and our result is more flexible that suits better in real-
life scenarios.

• Interval numbers offer a convenient representation in
situations where uncertainty or imprecision exists in the
data or decision making process.
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TABLE IX
PROJECT COMPLETION TIME FOR VARIOUS PARAMETERS (EXAMPLE 2)

Project completion time (Interval form)

α, β s=0 s=0.5 s=1

& γ
〈
C(k̃),W(k̃)

〉 [
C(k̃)−W(k̃),

〈
C(k̃),W(k̃)

〉 [
C(k̃)−W(k̃),

〈
C(k̃),W(k̃)

〉 [
C(k̃)−W(k̃),

C(k̃) +W(k̃)
]

C(k̃) +W(k̃)
]

C(k̃) +W(k̃)
]

0 ⟨108.10, 5.50⟩ [102.60, 113.60] ⟨133.55, 5.50⟩ [128.05, 139.05] ⟨159, 5.50⟩ [153.5, 164.5]

0.1 ⟨108.87, 5.10⟩ [103.77, 113.97] ⟨133.71, 5.10⟩ [128.61, 138.81] ⟨158.55, 5.1⟩ [153.45, 163.65]

0.2 ⟨109.64, 4.70⟩ [104.94, 114.34] ⟨133.87, 4.7⟩ [129.17, 138.57] ⟨158.10, 4.7⟩ [153.4, 162.8]

0.3 ⟨110.41, 4.30⟩ [106.11, 114.71] ⟨134.03, 4.30⟩ [129.73, 138.33] ⟨157.65, 4.3⟩ [153.35, 161.95]

0.4 ⟨111.18, 3.90⟩ [107.28, 115.08] ⟨134.19, 3.90⟩ [130.29, 138.09] ⟨157.20, 3.9⟩ [153.30, 161.10]

0.5 ⟨111.95, 3.50⟩ [108.45, 115.45] ⟨134.35, 3.5⟩ [130.85, 137.85] ⟨156.75, 3.5⟩ [153.25, 160.25]

0.6 ⟨112.72, 3.10⟩ [109.62, 115.82] ⟨134.51, 3.1⟩ [131.41, 137.61] ⟨156.30, 3.10⟩ [153.20, 159.40]

0.7 ⟨113.49, 2.70⟩ [110.79, 116.19] ⟨134.67, 2.7⟩ [131.97, 137.37] ⟨155.85, 2.7⟩ [153.15, 158.55]

0.8 ⟨114.26, 2.30⟩ [111.96, 116.56] ⟨134.83, 2.3⟩ [132.33, 137.13] ⟨155.4, 2.30⟩ [153.10, 157.70]

0.9 ⟨115.03, 1.90⟩ [113.13, 116.93] ⟨134.99, 1.5⟩ [133.09, 136.89] ⟨154.95, 1.90⟩ [153.05, 156.85]

1.0 ⟨115.8, 1.50⟩ [114.30, 117.30] ⟨135.15, 1.5⟩ [133.65, 136.65] ⟨154.50, 1.50⟩ [153, 156]

TABLE X
POSSIBLE PATHS OF THE PROJECT (EXAMPLE 2)

Path Possible path Project completion days Rank

1 A→D→J→N ⟨85, 1⟩ 3

2 A→C→H→N ⟨154.5, 1.5⟩ 1

3 B→E→F→G→L→N ⟨145.5, 1 2

3) Sensitivity Analysis: The trapezoidal neutrosophic
fuzzy PERT problem is analyzed for various parameters of
α, β and γ between [0,1]. It is analyzed for various values of
s between [0,1] and mentioned in Table IX. Also, Fig. 6 and
7 represents the lower and upper limit values for s=0, s=0.5
and s=1 respectively. The efficiency of the project completion
days can be perceived in two ways.
(i) all upper limit values of s ∈ [0, 1].
(ii) all lower limit values of s ∈ [0, 0.7].
In Table X, the validity of our proposed method are checked
based on the alternative or possible path together with its
project completion days and ranking order.
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VII. ILLUSTRATION – INTERVAL-VALUEDTRAPEZOIDAL
NEUTROSOPHIC FUZZY PERT

A. Example 3

1) Description of the Problem and the Data: A project
management in Goat farming is considered in this example
and the interval-valued trapezoidal neutrosophic fuzzy num-
bers (IVTrpNFN) are chosen as the parameters. The activities
of the problem with the description and the corresponding
predecessor are given in Table XIII. The flow of activities are
graphically presented in Fig. 8. The problem is adapted from
[15] and we consider it as IVTrpNFN based on the decision
maker’s perception. A production process is designed for
Goat farming with the proposed interval - valued trapezoidal
neutrosophic fuzzy pert method (IVTrpNFPERT). Consider-
ing IVTrpNFN makes one to analyze the problem in all the
3 known possibilites in certain limits.

2) Calculation for IVTrpNFED: The data in the form
of interval-valued trapezoidal neutrosophic fuzzy number in
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TABLE XI
DURATIONS IN THE FORM OF INTERVAL-VALUED TRAPEZOIDAL NEUTROSOPHIC FUZZY NUMBERS (EXAMPLE 3)

Durations (day)

Nr Optimistic time (IV T
Ñeu

OT
i
) Most likely time (IV T

Ñeu
MT

i
) Pessimistic time (IV T

Ñeu
PT

i
)

1 (0, .5, .75, 2); [.7, 0.9]; [.5, 0.7]; [.3, 0.5] (0, 1, 4, 5); [0.1, 0.3]; [0.4, 0.6]; [0.5, 0.7] (2, 3, 5, 6); [0.7, 0.9]; [0.1, 0.3]; [0.3, 0.5]

2 (0, 1, 3, 4); [0.1, 0.3]; [0.2, 0.4]; [0.4, 0.6] (1, 2, 6, 7); [0.4, 0.6]; [0.3, 0.5]; [0.8, 0.9] (3, 5, 7, 8); [0.6; 0.8]; [0.1, 0.3]; [0.4, 0.6]

3 (5, 6, 8, 9); [0.3, 0.5]; [0.5, 0.7]; [0.7, 0.9] (1, 3, 10, 11); [0.5, 0.7]; [0.3, 0.5]; [0.6, 0.8] (1, 5, 10, 16); [0.4, 0.6]; [0.1, 0.3]; [0.3, 0.5]

4 (1, 3, 9, 10); [0.8, 0.9]; [0, 0.2]; [0.2, 0.4] (4, 6, 9, 11); [0.6, 0.8]; [0.5, 0.7]; [0.2, 0.4] (1, 6, 10, 17); [0.6, 0.8]; [0.4, 0.6]; [0.5, 0.7]

5 (3, 5, 7, 8); [0.6; 0.8]; [0.1, 0.3]; [0.4, 0.6] (1, 3, 10, 11); [0.5, 0.7]; [0.3, 0.5]; [0.6, 0.8] (4, 6, 8, 15); [0.7, 0.9]; [0.3, 0.5]; [0.6, 0.8]

6 (2, 4, 7, 12); [.7, 0.9]; [0.1, 0.3]; [0.4, 0.6] (1, 5, 10, 16); [0.4, 0.6]; [0.1, 0.3]; [0.3, 0.5] (1, 6, 18, 22); [0.1, 0.3]; [0.3, 0.5]; [0.5, 0.7]

7 (3, 5, 7, 8); [0.6; 0.8]; [0.1, 0.3]; [0.4, 0.6] (2, 4, 7, 12); [0.7, 0.9]; [0.1, 0.3]; [0.4, 0.6] (1, 6, 13, 20); [0.8, 0.9]; [0.6, 0.8]; [0.7, 0.9]

8 (1, 3, 9, 10); [0.8, 0.9]; [0, 0.2]; [0.2, 0.4] (3, 5, 8, 13); [0.2, 0.4]; [0.5, 0.7]; [0.3, 0.5] (8, 10, 18, 21); [.1, 0.3]; [0.2, 0.4]; [0.4, 0.6]

TABLE XII
DURATIONS IN THE FORM OF INTERVAL NUMBER (EXAMPLE 3)

Durations (day)

Nr Activity Predecessor Optimistic time Most likely time Pessimistic time Expected days

1 A - ⟨0.46, 0.03⟩ ⟨2.50, 0.83⟩ ⟨4, 0.89⟩ ⟨2.41, 0.89⟩
2 B - ⟨2, 0.75⟩ ⟨4, 1.57⟩ ⟨6.33, 0.83⟩ ⟨4.06, 1.57⟩
3 C A ⟨7, 0⟩ ⟨7, 2.86⟩ ⟨6, 1.94⟩ ⟨6.83, 2.86⟩
4 D A ⟨6.13, 3⟩ ⟨7.50, 1⟩ ⟨7.33, 0.50⟩ ⟨7.24, 3⟩
5 E B ⟨6.33, 0.83⟩ ⟨7, 2.86⟩ ⟨5.93, 0.50⟩ ⟨6.71, 2.86⟩
6 F C, D ⟨4.86, 1.11⟩ ⟨6, 1.94⟩ ⟨16.50, 4.07⟩ ⟨7.56, 4.07⟩
7 G D, E ⟨6.33, 0.83⟩ ⟨4.86, 1.11⟩ ⟨9.25, 2.83⟩ ⟨5.84, 2.83⟩
8 H F, G ⟨6.13, 3⟩ ⟨0.50, 0⟩ ⟨9.50, 3.38⟩ ⟨2.94, 3.38⟩

TABLE XIII
DESCRIPTION OF THE ACTIVITY IN GOAT FARMING (EXAMPLE 3)

Nr Activity Description Predecessor

1 A Decide the type of Goat farm -

2 B Select a breed -

3 C Advantages of Goat farming A

4 D Purchase Goats A

5 E Choosing proper land B

6 F Gather experienced farmers opinion C, D

7 G Proper housing, equipment and food D, E

8 H Marketing the farm F, G

Fig. 8. Network diagram (Example 3)

three forms namely, optimistic, most-likely and pessimistic
are given in Table XI and its interval version is mentioned
in Table XII. The IVTrpNFED are calculated using section

V-A. For example, let us calculate for the activity i=6.

T ˜IvNeu
OT

6
= (2, 4, 7, 12); [0.7, 0.9]; [0.1, 0.3]; [0.4, 0.6]

T ˜IvNeu
PT

6
= (1, 6, 18, 22); [0.1, 0.3]; [0.3, 0.5]; [0.5, 0.7]

T ˜IvNeu
MT

6
= (1, 5, 10, 16); [0.4, 0.6]; [0.1, 0.3]; [0.3, 0.5]

Then, using the interval-based de-neutrosophication tech-
nique provided by [28],

R(T ˜IvNeu
OT

6
) = ⟨4.86, 1.11⟩,

R(T ˜IvNeu
PT

6
) = ⟨16.50, 4.07⟩

and R(T ˜IvNeu
MT

6
) = ⟨6, 1.94⟩

Then, using equation (29), the expected duration of
interval-valued trapezoidal neutrosophic fuzzy number is
⟨7.56, 4.07⟩.
The IVTrpNFED for all activities in interval form are detailed
in Table XII.

3) Calculation for IVTrpNFFPC: The early start of
interval-valued trapezoidal neutrosophic fuzzy number can
be calculated using the equation (32) and for i=6,

R(T ˜IvNeu
ES

6
) =max

3,4

[
R(T ˜IvNeu

ES
j
) +R(T ˜IvNeu

A
j
)
]

=max
[
R(T ˜IvNeu

ES
3
) +R(T ˜IvNeu

A
3
),

R(T ˜IvNeu
ES

4
) +R(T ˜IvNeu

A
4
)
]

=max
[
⟨9.24, 2.86⟩, ⟨9.65, 3⟩

]
=⟨9.65, 3⟩.

Also, the early finish of interval-valued trapezoidal neutro-
sophic fuzzy number can be calculated using the equation
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TABLE XIV
DURATIONS CALCULATIONS BASED ON FORWARD AND BACKWARD PASS (EXAMPLE 3)

Nr Activity Early start Early finish Late finish Late start Slack time Description Critical degree

1 A ⟨0, 0⟩ ⟨2.41, 0.89⟩ ⟨2.41, 4.07⟩ ⟨0, 4.07⟩ ⟨0, 4.07⟩ Critical 1

2 B ⟨0, 0⟩ ⟨4.06, 1.57⟩ ⟨4.06, 3.38⟩ ⟨0.61, 4.07⟩ ⟨0.61, 4.07⟩ Non-Critical 0.74

3 C ⟨2.41, 0.89⟩ ⟨9.24, 2.86⟩ ⟨9.65, 4.07⟩ ⟨2.82, 4.07⟩ ⟨0.41, 4.07⟩ Non-Critical 0.82

4 D ⟨2.41, 0.89⟩ ⟨9.65, 3⟩ ⟨9.65, 4.07⟩ ⟨2.41, 4.07⟩ ⟨0, 4.07⟩ Critical 1

5 E ⟨4.06, 1.57⟩ ⟨10.77, 2.86⟩ ⟨11.38, 4.07⟩ ⟨4.67, 4.07⟩ ⟨0.61, 4.07⟩ Non-Critical 0.74

6 F ⟨9.65, 3⟩ ⟨17.21, 4.07⟩ ⟨17.21, 4.07⟩ ⟨9.65, 4.07⟩ ⟨0, 4.07⟩ Critical 1

7 G ⟨10.77, 3⟩ ⟨16.60, 3⟩ ⟨17.21, 4.07⟩ ⟨11.38, 4.07⟩ ⟨0.61, 4.07⟩ Non-Critical 0.74

8 H ⟨17.21, 4.07⟩ ⟨20.15, 4.07⟩ ⟨20.15, 4.07⟩ ⟨17.21, 4.07⟩ ⟨0, 4.07⟩ Critical 1

(33) and for i=6,

R(T ˜IvNeu
EF

6
) =R(T ˜IvNeu

ES
6
) +R(T ˜IvNeu

A
6
)

=⟨9.65, 3⟩+ ⟨7.56, 4.07⟩
=⟨17.21, 4.07⟩.

The detailed values of IVTrpNFES and IVTrpNFEF are
mentioned in Table XIV.

4) Calculation for IVTrpNFBPC: The latest finish of
interval-valued trapezoidal neutrosophic fuzzy number can
be calculated using the equation (36) and for i=4,

R(T ˜IvNeu
LF

4
) =min

6,7

[
R(T ˜IvNeu

LF
j
)−R(T ˜IvNeu

A
j
)
]

=min
[
R(T ˜IvNeu

LF
6
)−R(T ˜IvNeu

A
6
),

R(T ˜IvNeu
LF

7
)−R(T ˜IvNeu

A
7
)
]

=min
[
⟨9.65, 4.07⟩, ⟨11.38, 4.07⟩

]
=⟨9.65, 4.07⟩.

Also, the latest start of interval-valued trapezoidal neutro-
sophic fuzzy number can be calculated using the equation
(37) and for i=4,

R(T ˜IvNeu
LS

i
) =R(T ˜IvNeu

LF
4
)−R(T ˜IvNeu

A
4
)

=⟨9.65, 4.07⟩ − ⟨7.24, 3⟩
=⟨2.41, 4.07⟩.

The detailed values of IVTrpNFLF and IVTrpNFLS are
mentioned in Table XIV.

5) Calculation for IVTrpNFST: Using equation (39), let
us calculate for i=4.

R(T ˜IvNeu
ST

4
) =R(T ˜IvNeu

LS
4
)−R(T ˜IvNeu

ES
4
)

=⟨2.41, 4.07⟩ − ⟨2.41, 0.89⟩
=⟨0, 4.07⟩

Also, R(T ˜IvNeu
ST

4
) =R(T ˜IvNeu

LF
4
)−R(T ˜IvNeu

EF
4
)

=⟨9.65, 4.07⟩ − ⟨9.65, 3.00⟩
=⟨0, 4.07⟩, a critical activity

Also, for i=5,

R(T ˜IvNeu
ST

5
) =R(T ˜IvNeu

LS
5
)−R(T ˜IvNeu

ES
5
)

=⟨4.67, 4.07⟩ − ⟨4.06, 1.57⟩
=⟨0.61, 4.07⟩

Also, R(T ˜IvNeu
ST

5
) =R(T ˜IvNeu

LF
5
)−R(T ˜IvNeu

EF
5
)

=⟨11.38, 4.07⟩ − ⟨10.77, 2.86⟩
=⟨0.61, 4.07⟩, a non-critical activity

The detailed values of IVTrpNFST are mentioned in Table
XIV.

6) Calculation for IVTrpNFCD: The critical degree of
interval-valued trapezoidal neutrosophic fuzzy number is
calculated based on section V-E. For example, we calculate
for i=2 and the IVTrpNFST is ⟨0.61, 4.07⟩.

M(k̃)−W(k̃) < 0 < M(k̃) +W(k̃) =⇒ −3.46 < 0 < 4.68 .

Hence R(T ˜IvNeu
CD

2
) =

W(k̃)−M(k̃)

M(k̃) +W(k̃)

=
4.07− 0.61

4.07 + 0.61
= 0.74,

is the non - critical activity.
For i=4, the IVTrpNFST is ⟨0, 4.07⟩.
Therefore, based on section V-E,

M(k̃)−W(k̃) < 0 < M(k̃) +W(k̃) =⇒ −4.07 < 0 < 4.07.

Hence R(T ˜IvNeu
CD

4
) =

W(k̃)−M(k̃)

M(k̃) +W(k̃)

=
4.07− 0

0 + 4.07
= 1, is the critical activity.

The detailed values of IVTrpNFCD are mentioned in Table
XIV. It is clearly visible that the IVTrpNFCD is 1 for all
critical activities and the rest are 0.

7) Comparison of Results:
• Using interval-based de-neutrosophication methodology

[28] for interval-valued trapezoidal neutrosophic fuzzy
number, the critical path of the project in the IVTrpNF-
PERT is A → D → F → H and it is obtained as same
as the path in the existing method [15].

• The project completion days we obtained as
⟨2.41, 0.89⟩ + ⟨7.24, 3⟩ + ⟨7.56, 4.07⟩ + ⟨2.94, 3.38⟩ =
⟨20.15, 4.07⟩ = [16.08, 24.22] days.

• But the project completion days acquired by [15] is 18.
• It shows that our method is efficient than the existing.

Representing the days in interval numbers is more
flexible and convenient in current scenarios.

8) Sensitivity Analysis: The interval-valued trapezoidal
neutrosophic fuzzy PERT problem is examined for various
parameters of α, β and γ between [0,1]. The problem is
studied for various values of s between [0,1], which is
mentioned in Table XV. Also, Fig. 9 represents the lower
limit values for s=0, s=0.5 and s=1. From the analysis, we
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TABLE XV
PROJECT COMPLETION TIME FOR VARIOUS PARAMETERS (EXAMPLE 3)

Project completion time (Interval form)

α, β s=0 s=0.5 s=1

& γ
〈
C(k̃),W(k̃)

〉 [
C(k̃)−W(k̃),

〈
C(k̃),W(k̃)

〉 [
C(k̃)−W(k̃),

〈
C(k̃),W(k̃)

〉 [
C(k̃)−W(k̃),

C(k̃) +W(k̃)
]

C(k̃) +W(k̃)
]

C(k̃) +W(k̃)
]

0 ⟨54.67, 10.50⟩ [44.17, 65.17] ⟨41, 10.50⟩ [30.5, 51.50] ⟨27.33, 10.50⟩ [16.83, 37.83]

0.1 ⟨54.04, 9.86⟩ [44.18, 63.9] ⟨40.33, 9.86⟩ [30.47, 50.19] ⟨26.62, 9.86⟩ [16.76, 36.48]

0.2 ⟨53.42, 9.21⟩ [44.21, 62.63] ⟨39.66, 9.21⟩ [30.45, 48.87] ⟨25.90, 9.21⟩ [16.69, 35.11]

0.3 ⟨52.80, 8.57⟩ [44.23, 61.37] ⟨38.99, 8.57⟩ [30.42, 47.56] ⟨25.18, 8.57⟩ [16.61, 33.75]

0.4 ⟨52.18, 7.93⟩ [44.25, 60.11] ⟨38.32, 7.93⟩ [30.39, 46.25] ⟨24.46, 7.93⟩ [16.53, 32.39]

0.5 ⟨51.55, 7.29⟩ [44.26, 58.84] ⟨37.65, 7.29⟩ [30.36, 44.94] ⟨23.74, 7.29⟩ [16.45, 31.03]

0.6 ⟨50.93, 6.64⟩ [44.29, 57.57] ⟨36.98, 6.64⟩ [30.34, 43.62] ⟨23.02, 6.64⟩ [16.38, 29.66]

0.7 ⟨50.31, 6⟩ [44.31, 56.31] ⟨36.31, 6⟩ [30.31, 42.31] ⟨22.31, 6⟩ [16.31, 28.31]

0.8 ⟨49.69, 5.36⟩ [44.33, 55.05] ⟨35.64, 5.36⟩ [30.28, 41] ⟨21.59, 5.36⟩ [16.23, 26.95]

0.9 ⟨49.07, 4.71⟩ [44.36, 53.78] ⟨34.97, 4.71⟩ [30.26, 39.68] ⟨20.87, 4.71⟩ [16.16, 25.58]

1.0 ⟨48.44, 4.07⟩ [44.37, 52.51] ⟨34.30, 4.07⟩ [30.23, 38.37] ⟨20.15, 4.07⟩ [16.08, 24.22]

TABLE XVI
POSSIBLE PATHS OF THE PROJECT (EXAMPLE 3)

Path Possible path Project completion days Rank

1 A→C→F→H ⟨19.74, 4.07⟩ 2

2 A→D→F→H ⟨20.15, 4.07⟩ 1

3 A→D→G→H ⟨18.43, 3.38⟩ 4

4 B→E→D→H ⟨19.55, 3.38⟩ 3

observed that the project completion days are more efficient
for s=1, i.e., the highest membership grade. In Table XVI,
the validity of interval-based de-neutrosophication technique
in example VII-A is checked based on the possible paths
of the project together with its project completion days and
ranking order.
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Fig. 9. Lower limit for various values of “s” (Example 3)

B. Example 4
1) Description of the Problem and the Data: In this exam-

ple, we design a project to compute IVTrpNFPERT method
to start restaurant business. The process of the activities
are given in Table XVII. The flow of the activities with
network diagram is shown in Fig. 10. The duration of the
activities is defined based on the decision maker’s perception
which is adapted from [29]. The durations in IVTrpNFN
and its interval based de-neutrosophication form (mid-point
and width (half-width)) are provided in Table XVIII and
XIX. Also, the calculations to IVTrpNFFPC (IVTrpNFES &
IVTrpNFEF), IVTrpNFBPC (IVTrpNFLS & IVTrpNFLF),
IVTrpNFST, IVTrpNFCD(CD) and the critical/non-critical
(C/N-C) are given in Table XIX.

TABLE XVII
DESCRIPTION OF THE ACTIVITY IN DIARY FARMING (EXAMPLE 4)

Activity Description
1 Beginning of the project / Select the restaurant’s model
2 Choose the perfect site
3 Evaluate the budget
4 Arrange funds and finance
5 Get the license
6 Make contact with suppliers (Kitchenware and ingredients)
7 Get the assistance of Chef’s and advisor’s about the meal
8 Employ talented workers
9 In connect with food delivery partner
10 Market your restaurant
11 Completion of project

Fig. 10. Network diagram (Example 4)
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TABLE XVIII
DURATIONS IN THE FORM OF INTERVAL-VALUED TRAPEZOIDAL NEUTROSOPHIC FUZZY NUMBERS (EXAMPLE 4)

Durations (day)

Nr Optimistic time (IV T
Ñeu

OT
i
) Most likely time (IV T

Ñeu
MT

i
) Pessimistic time (IV T

Ñeu
PT

i
)

1 (0, 0, 0, 0); [1, 1]; [0, 0]; [0, 0] (0, 0, 0, 0); [1, 1]; [0, 0]; [0, 0] (0, 0, 0, 0); [1, 1]; [0, 0]; [0, 0]

2 (0., 0.5, 0.75, 2); [0.7, 0.9]; [0.5, 0.7]; [0.3, 0.5] (0, 1, 3, 4); [0.1, 0.3]; [0.2, 0.4]; [0.4, 0.6] (0, 1, 4, 5); [0.1, 0.3]; [0.4, 0.6]; [0.5, 0.7]

3 (0, 1, 4, 5); [0.1, 0.3], [0.4, 0.6]; [0.5, 0.7] (1, 2, 6, 9); [0.4, 0.6]; [0.3, 0.5]; [0.8, 0.9] (1, 3, 6, 12); [0.7, 0.9]; [0.1, 0.3]; [0.3, 0.5]

4 (0, 1, 4, 5); [0.1, 0.3]; [0.4, 0.6]; [0.5, 0.7] (1, 3, 6, 12); [0.7, 0.9]; [0.1, 0.3]; [0.3, 0.5] (4, 5, 7, 15); [0.6, 0.8]; [0.1, 0.3]; [0.4, 0.6]

5 (1, 3, 9, 15); [0.8, 0.9]; [0, 0.2]; [0.2, 0.4] (3, 5, 10, 18); [0.5, 0.7]; [0.3, 0.5]; [0.6, 0.8] (3, 5, 8, 13); [0.2, 0.4]; [0.5, 0.7]; [0.3, 0.5]

6 (1, 2, 6, 9); [0.4, 0.6]; [0.3, 0.5]; [0.8, 0.9] (1, 3, 8, 11); [0.3, 0.5], [0.5, 0.7]; [0.7, 0.9] (3, 5, 10, 18); [0.5, 0.7]; [0.3, 0.5]; [0.6, 0.8]

7 (0, 1, 3, 4); [0.1, 0.3]; [0.2, 0.4]; [0.4, 0.6] (1, 2, 6, 9); [0.4, 0.6]; [0.3, 0.5]; [0.8, 0.9] (1, 3, 6, 12); [0.7, 0.9]; [0.1, 0.3]; [0.3, 0.5]

8 (0, 1, 4, 5); [0.1, 0.3]; [0.4, 0.6]; [0.5, 0.7] (1, 2, 6, 9); [0.4, 0.6]; [0.3, 0.5]; [0.8, 0.9] (4, 5, 7, 15); [0.6, 0.8]; [0.1, 0.3]; [0.4, 0.6]

9 (0., 0.5, 0.75, 2); [0.7, 0.9]; [0.5, 0.7]; [0.3, 0.5] (0, 1, 3, 4); [0.1, 0.3]; [0.2, 0.4]; [0.4, 0.6] (0, 1, 4, 5); [0.1, 0.3]; [0.4, 0.6]; [0.5, 0.7]

10 (0, 1, 3, 4); [0.1, 0.3]; [0.2, 0.4]; [0.4, 0.6] (0, 1, 4, 5); [0.1, 0.3]; [0.4, 0.6]; [0.5, 0.7] (1, 3, 6, 12); [0.7, 0.9]; [0.1, 0.3]; [0.3, 0.5]

11 (0, 0, 0, 0); [1, 1]; [0, 0]; [0, 0] (0, 0, 0, 0); [1, 1]; [0, 0]; [0, 0] (0, 0, 0, 0); [1, 1]; [0, 0]; [0, 0]

TABLE XIX
DURATIONS IN THE FORM OF INTERVAL NUMBER AND CALCULATIONS BASED ON FORWARD AND BACKWARD PASS (EXAMPLE 4)

Durations (day) Early Early Late Late Slack C CD

Nr Optimistic
time

Most likely
time

Pessimistic
time

Expected
days

start finish finish start time /NC

1 ⟨0, 0⟩ ⟨0, 0⟩ ⟨0, 0⟩ ⟨0, 0⟩ ⟨0, 0⟩ ⟨0, 0⟩ ⟨0, 3⟩ ⟨0, 3⟩ ⟨0, 3⟩ C 1

2 ⟨0.46, 0.03⟩ ⟨2, 0.75⟩ ⟨2.5, 0.83⟩ ⟨1.83, 0.83⟩ ⟨0, 0⟩ ⟨1.83, 0.83⟩ ⟨2.69, 3⟩ ⟨0.86, 3⟩ ⟨0.86, 3⟩ N-C 0.55

3 ⟨2.50, 0.83⟩ ⟨2.50, 1.14⟩ ⟨3.64, 1.06⟩ ⟨2.69, 1.14⟩ ⟨0, 0⟩ ⟨2.69, 1.14⟩ ⟨2.69, 3⟩ ⟨0, 3⟩ ⟨0, 3⟩ C 1

4 ⟨2.50, 0.83⟩ ⟨3.64, 1.06⟩ ⟨3.67, 0.50⟩ ⟨3.46, 1.06⟩ ⟨2.69, 1.14⟩ ⟨6.15, 1.14⟩ ⟨6.15, 3⟩ ⟨2.69, 3⟩ ⟨0, 3⟩ C 1

5 ⟨5.5, 3⟩ ⟨4.50, 0.36⟩ ⟨0.50, 0⟩ ⟨4, 3⟩ ⟨6.15, 1.14⟩ ⟨10.15, 3⟩ ⟨10.15, 3⟩ ⟨6.15, 3⟩ ⟨0, 3⟩ C 1

6 ⟨3.64, 1.06⟩ ⟨4.33, 0⟩ ⟨4.50, 0.36⟩ ⟨4.25, 1.06⟩ ⟨10.15, 3⟩ ⟨14.39, 3⟩ ⟨14.39, 3⟩ ⟨10.15, 3⟩ ⟨0, 3⟩ C 1

7 ⟨2, 0.75⟩ ⟨2.50, 1.14⟩ ⟨3.64, 1.06⟩ ⟨2.61, 1.14⟩ ⟨10.15, 3⟩ ⟨12.75, 3⟩ ⟨14.39, 3⟩ ⟨11.79, 3⟩ ⟨1.64, 3⟩ N-C 0.29

8 ⟨2.50, 0.83⟩ ⟨2.50, 1.14⟩ ⟨3.64, 1.06⟩ ⟨2.69, 1.14⟩ ⟨14.39, 3⟩ ⟨17.08, 3⟩ ⟨17.08, 3⟩ ⟨14.39, 3⟩ ⟨0, 3⟩ C 1

9 ⟨0.46, 0.03⟩ ⟨2, 0.75⟩ ⟨2.50, 0.83⟩ ⟨1.83, 0.83⟩ ⟨17.08, 3⟩ ⟨18.91, 3⟩ ⟨19.69, 3⟩ ⟨17.86, 3⟩ ⟨0.78, 3⟩ N-C 0.58

10 ⟨2, 0.75⟩ ⟨2.50, 0.83⟩ ⟨3.64, 1.06⟩ ⟨2.61, 1.06⟩ ⟨17.08, 3⟩ ⟨19.69, 3⟩ ⟨19.69, 3⟩ ⟨17.08, 3⟩ ⟨0, 3⟩ C 1

11 ⟨0, 0⟩ ⟨0, 0⟩ ⟨0, 0⟩ ⟨0, 0⟩ ⟨19.69, 3⟩ ⟨19.69, 3⟩ ⟨19.69, 3⟩ ⟨19.69, 3⟩ ⟨0, 3⟩ C 1

TABLE XX
POSSIBLE PATHS OF THE PROJECT (EXAMPLE 4)

Path Possible path Project com-
pletion days

Rank

1 1→2→4→5→6→8→9→11 ⟨18.06, 3⟩ 4

2 1→2→4→5→6→8→10→11 ⟨18.84, 3⟩ 3

3 1→2→4→5→7→8→9→11 ⟨16.42, 3⟩ 8

4 1→2→4→5→7→8→10→11 ⟨17.2, 3⟩ 7

5 1→3→4→5→6→8→9→11 ⟨18.92, 3⟩ 2

6 1→3→4→5→6→8→10→11 ⟨19.69, 3⟩ 1

7 1→3→4→5→7→8→9→11 ⟨17.28, 3⟩ 6

8 1→3→4→5→7→8→10→11 ⟨18.06, 3⟩ 4

2) Comparison of Results:

• Using the interval-based de-neutrosophication method-
ology [28] for interval-valued trapezoidal neutrosophic
fuzzy number, the critical path of the project in the
IVTrpNFPERT is 1→3→4→5→6→8→10→11 and it

is obtained as same as the path in the existing method
[29].

• The project completion days we obtained as ⟨2.69, 1.14⟩
+ ⟨3.46, 1.06⟩ + ⟨4, 3⟩ + ⟨4.25, 1.06⟩ + ⟨2.69, 1.14⟩ +
⟨2.61, 1.06⟩ = ⟨19.69, 3⟩ = [16.69, 22.69] days.

• But the project completion days acquired by [29] is
19.86.

• It shows that our method is efficient than the existing
and our result is more flexible that suits better in current
real-life scenarios.

• Interval numbers is a convenient representation in
situations where uncertainty or imprecision exists in
the data or decision making process.

3) Sensitivity Analysis: The trapezoidal neutrosophic
fuzzy PERT problem is analyzed for various parameters of
α, β and γ between [0,1]. It is analyzed for various values
of s between [0,1] and mentioned in Table XXI. Also, Fig.
11 represents the lower limit values for s=0, s=0.5 and
s=1 respectively. In Table XX, the validity of section VII-B
(Example 4) are checked based on the possible path together
with its project completion days and ranking order.
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TABLE XXI
PROJECT COMPLETION TIME FOR VARIOUS PARAMETERS (EXAMPLE 4)

Project completion time (Interval form)

α, β s=0 s=0.5 s=1

& γ
〈
C(k̃),W(k̃)

〉 [
C(k̃)−W(k̃),

〈
C(k̃),W(k̃)

〉 [
C(k̃)−W(k̃),

〈
C(k̃),W(k̃)

〉 [
C(k̃)−W(k̃),

C(k̃) +W(k̃)
]

C(k̃) +W(k̃)
]

C(k̃) +W(k̃)
]

0 ⟨71.17, 7.50⟩ [63.67, 78.67] ⟨53.38, 7.50⟩ [45.88, 60.88] ⟨35.58, 7.50⟩ [16.83, 37.83]

0.1 ⟨66, 6.79⟩ [59.21, 72.79] ⟨50.65, 6.79⟩ [43.86, 57.44] ⟨33.99, 6.79⟩ [16.76, 36.48]

0.2 ⟨60.83, 6.20⟩ [54.63, 67.03] ⟨47.93, 6.2⟩ [41.73, 54.13] ⟨32.40, 6.2⟩ [16.69, 35.11]

0.3 ⟨55.66, 5.8⟩ [49.86,61.46] ⟨45.21, 5.8⟩ [39.41,51.01] ⟨30.82, 5.8⟩ [16.61, 33.75]

0.4 ⟨50.49, 5.40⟩ [45.09, 55.89] ⟨42.49, 5.4⟩ [37.09, 47.89] ⟨29.23, 5.4⟩ [16.53, 32.39]

0.5 ⟨45.32, 5⟩ [40.32, 50.32] ⟨39.76, 5⟩ [34.76, 44.76] ⟨27.64, 5⟩ [16.45, 31.03]

0.6 ⟨40.16, 4.60⟩ [35.56, 44.76] ⟨37.04, 4.60⟩ [32.44, 41.64] ⟨26.05, 4.6⟩ [16.38, 29.66]

0.7 ⟨35.32, 4.20⟩ [31.12, 39.52] ⟨34.32, 4.20⟩ [30.12, 38.52] ⟨24.46, 4.2⟩ [16.31, 28.31]

0.8 ⟨31.03, 3.80⟩ [27.23, 34.83] ⟨31.60, 3.80⟩ [27.8, 35.4] ⟨22.87, 3.8⟩ [16.23, 26.95]

0.9 ⟨26.75, 3.40⟩ [23.35, 30.15] ⟨28.87, 3.40⟩ [25.47, 32.27] ⟨21.28, 3.4⟩ [16.16, 25.58]

1.0 ⟨22.46, 3⟩ [19.46, 25.46] ⟨26.15, 3⟩ [23.15, 29.15] ⟨19.69, 3⟩ [16.08, 24.22]
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Fig. 11. Lower limit for various values of “s” (Example 4)

VIII. STRENGTH AND LIMITATION OF THE STUDY

Trapezoidal neutrosophic fuzzy numbers and interval-
valued trapezoidal neutrosophic fuzzy numbers are more
flexible and expressive. It helps the decision makers in the
decision making process to model and analyze the imprecise
data and preferences, providing more comprehensive ap-
proach to handle uncertainty. In addition, analyzing such data
in a neutrosophic way helps the decision makers to handle it
neutrally. While performing calculations with a large number
of trapezoidal neutrosophic fuzzy number makes difficult
than the traditional crisp or fuzzy methods. Moreover, in-
terval number is more beneficial when the exact value is
not known. Hence we convert the trapezoidal neutrosophic
number into an interval number using the α, β & γ- cut.
While solving numerically, we obtain an optimal project
completion days for section VI-A, VII-A, VII-B (Example
1, 3 & 4) for a fixed α, β, γ & s = 1, i.e., the highest
membership grade. Section VI-B (Example 2) is optimal for
all α, β, γ & s. In most of the cases, if “s” decreases, the

project completion time reached the maximum for various
membership grades and this is considered as a limitation
of the study. Further research and standardization may help
to overcome some of the current limitations as the field of
neutrosophic computing and fuzzy system evolves.

IX. CONCLUSION

In this article, we address two methods of PERT problem
(Trapezoidal neutrosophic and Interval-valued trapezoidal
neutrosophic environment) by employing a novel interval
de-neutrosophication technique. To evaluate the efficacy of
the proposed approach, numerical examples are conducted
(two from each method), yielding superior results compared
to the existing method referenced as [17], [18], [15] and
[29]. The outcomes obtained in various stages of trapezoidal
neutrosophic PERT problem and interval-valued trapezoidal
neutrosophic PERT problem are thoroughly discussed in
sections VI and VII. Sensitivity analysis is done for all
the examples using various parameters and mentioned in
Table V, IX, XV and XXI. It is graphically shown in Fig.
4, 6, 7, 9 and 11. Additionally, Table VI, X, XVI and
XX clearly highlighted the possible paths of the project
for all the examples in section VI and VII. Furthermore,
the advantages and limitations of the developed approach is
detailed in section VIII. Future investigation may include the
development of advanced neutrosophic PERT models, hybrid
approaches and utilization of the proposed techniques in real-
world applications. Comparative studies shall be conducted
against other uncertainty modeling techniques that helps
accessing the model’s strength and weakness. Furthermore,
developing decision support systems or software tools that
integrate neutrosophic PERT can facilitate the former’s prac-
tical implementation.
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