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Abstract—This paper introduced the automata field concept
and studied its characteristics. In particular, we define new
operations by converting finite automata to finite automata field.
Additionally, we examine the properties of finite automata field
and their relation to field. We also define substructures of the
automata field, including sub-automata field and automata field
homomorphism.

Index Terms—Automata field, Sub-automata field, Automata
integral domain, Automata field Homomorphism.

I. INTRODUCTION

THE exploration of algebraic structures through the lens
of automata theory has garnered increasing attention,

emerging as a pivotal concept within abstract algebra. Nu-
merous theories have evolved in tandem with this field, as
documented in the scholarly work by Johnson [6]. This paper
aims to present a ground-breaking methodology that com-
bines algebra and automata theory, as put forth by Harris and
Miller [5]. The intersection of these disciplines is manifest in
various articles elucidating the role of automata in automata
groups [1], [2], [3], [8], [12], [13], and [14]. Luminaries
like John von Neumann, whose contributions have left an
indelible mark on the convergence of algebra and automata
theory, have significantly advanced the field of automata the-
ory, which has its roots in the annals of theoretical computer
science. At its core, automata theory investigates abstract
machines and the computational challenges surmountable
through them, establishing profound connections with math-
ematical logic. Of particular note are finite automata, pivotal
in discerning string membership within a specified language,
thereby facilitating string acceptance. An illustrative example
is the Watson-Crick automaton, a type operating on dual
standard tapes through complementary relationships. Finite
automata’s application in group theory is noteworthy, enhanc-
ing the comprehension of group properties and interactions.
The research by Y.S. Gang et al. on finite automata over
Zn and Zn × Zn is a big step in the right direction.
They found a link between the Cayley table and the picture
representation of finite automata. K. Muthukumaran’s team
of researchers has looked into the intersections between au-
tomata and finite groups. They have looked into finite abelian
groups, associates, and commutative finite binary automata,
quotient automata, isomorphic automata, homomorphisms,
and automaton groups [13]. They posit that if a finite group
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automaton accepts a language L, then the quotient is finite
group automata also accept L [9]. F.W. Heng et al. delve
into various aspects of automata for subgroups, permutation
groups in automata diagrams, and automata representation
for abelian groups [4]. Hellen and Mridul Dutta were the
first people to talk about automata on rings. They defined
and studied different types of automata rings, including sub-
automata, commutative automata, zero divisors of automata,
integral domain, and homomorphism [10]. John Kasper et
al. contributes to the discourse by exploring lattice automata
and their languages, elucidating theoretical and practical
applications in query checking, abstraction methods, and
verification. Their work on lattice grammar, showing closure
properties, and defining equivalence between different gram-
mar types and regular expressions give the field a lot more
depth [7]. Sarsengan Abdymanapov et al. give information
on how to make polynomials for finite groups using field
extension operations. They suggest a third-degree cyclic
polynomials over F2 and make irreducible polynomials of
degree 2n [11]. These contributions extend the theoretical
foundations and practical applications of automata theory
in the realm of finite fields. This paper embarks on an
exploration of finite automata fields, unravelling their char-
acteristics and underpinning them with illustrative examples
to foster comprehension. A meticulous examination of these
fields’ properties promise to yield a profound understanding
of their intricacies and potential applications. The paper
unfolds methodically, with Section 2 introducing essential
terminologies are vital for comprehension. Section 3 dis-
cusses the automata field in detail and provides pertinent
examples. Section 4 meticulously delineates the key features
of the automata field, while Section 5 succinctly summarises
the salient concepts discussed throughout the paper, and
finally conclusion.

II. PRELIMINARIES

This section will cover the basic definitions of the field, an es-
sential topic in abstract algebra and automata ring structures.
Thoroughly grasping the definitions related to algebra and
automata theory is crucial to building a strong foundation for
further analysis and study on these topics. One can better un-
derstand the underlying concepts of these subjects by clearly
understanding their properties. This knowledge is crucial for
excelling in these areas and contributing significantly to the
automata field. By utilising this knowledge, individuals can
develop innovative solutions and advancements within the
field of automata.

Definition 2.1: A deterministic finite automata is defined by
the quintuple

M = {Q ,
∑

, δ , q0 , F},
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where,
Q is a finite set of internal states,∑

is a finite set of symbols called as the input alphabet,
δ : Q×

∑
→ Q is the transition function,

q0 ∈ Q is the initial state,
F ⊆ Q is a set of final states.

Definition 2.2: Let us consider the automata,∑
= (Q, A, δ, F, G) with o (Q) = n and o (A) = m.

Let T = {F (qa, xi) : qa ∈ Q, xi ∈ A, a, i ∈ N ∪ {0}}.
Let us define the maps, µ : T × T → T as
µ (F (qa, xi), F (qb, xj)) = F (qa⊕nb, xi⊕mj) and
ν : T × T → T as
ν (F (qa, xi), F (qb, xj)) = F (qa⊗nb, xi⊗mj),

where, ⊕n denotes addition modulo n and ⊗m denotes
multiplication modulo m.
Then the triple (T, µ, ν) is an automata ring if it satisfies
the following axioms:
a) (T, µ) is an abelian group.
b) (T, ν) is a semigroup.
c) Distributive property.

Definition 2.3: A field is a commutative ring with unity in
which every nonzero element is a unit.

Definition 2.4: The characteristic of a ring R is the least
positive integer n such that nx = 0 ∀ x ∈ R. If no such integer
exists, we say that R has characteristic 0. The characteristic
of R is denoted by charR.

Theorem 2.1: A finite integral domain is a field.

Theorem 2.2: The characteristic of an integral domain is 0
or prime.

Definition 2.5: A field F is called perfect if F has character-
istic 0 or if F has characteristic p and F p = {ap | a ∈ F}
= F .

Theorem 2.3: Every finite field is perfect.

Definition 2.6: A commutative automata ring T is called an
automata integral domain if ∀ G (pa, yi), G (pb, yj) ∈ T ,
ν (G (pa, yi), G (pb, yj)) = G (pe, ye). This implies
G (pa, yi) = G (pe, ye) or G (pb, yj) = G (pe, ye).

III. CONSTRUCTION OF AUTOMATA FIELD

This section explores the relationship between automata
theory and algebraic structures. While Section 2 provides
concise definitions of the finite automata field, this section
aims to improve comprehension and facilitate visual under-
standing of these abstract structures through carefully crafted
illustrations. By fusing the fundamentals of automata theory
with the framework of algebraic fields, we build a solid
theoretical foundation for investigating the characteristics and
uses of finite automata field. This section is an excellent
resource for those interested in learning more about the
fascinating area where automata theory meets algebraic struc-
tures. Algebraic automata theory uses algebraic techniques
to explore and solve problems relating to abstract machines.

It also facilitates the efficient and precise analysis of the
behaviour of discrete systems.

Definition 3.1: Let us consider the automata,∑
= (Q, A, δ, G, H) choose o (Q) = n and o (A) = m

where o denotes the order or number of elements in the sets
Q and A such that cardinality of T is pn for some prime p
and n ∈ N.
Let T = {G (pa, yi) | pa ∈ Q, yi ∈ A, a, i ∈ N ∪ {0}}.
Let us define the maps µ : T × T → T as
µ (G (pa, yi), G (pb, yj)) = G (pa⊕|T |b, yi⊕|T |j) and
ν : T × T → T as
ν (G (pa, yi), G (pb, yj)) = G (pa⊗|T |b, yi⊗|T |j)

where ⊕|T | denotes addition modulo |T | and ⊗|T | denotes
multiplication modulo |T |, |T | is the cardinality of the set
T .
Then the triplet (T, µ, ν) is an automata field if it satisfies
the following axioms:

(a) (T, µ) is an abelian group, i.e.
(i) For any state transition function G (pa, yi), G (pb, yj)

∈ T , then µ (G (pa, yi), G (pb, yj)) ∈ T .
(ii) For any state transition function G (pa, yi), G (pb, yj),

G (pc, yk) ∈ T , then µ (G (pa, yi), µ (G (pb, yj), G (pc,

yk))) = µ (µ (G (pa, yi), G (pb, yj)), G (pc, yk)).
(iii) There exists a state transition G (pe, ye) ∈ T such that
µ (G (pa, yi), G (pe, ye)) = G (pa, yi) = µ (G (pe, ye),

G (pa, yi)).
(iv) For every state transition function G (pa, yi) ∈ T there
exists G (p−1a , y−1i ) ∈ T such that µ (G (pa, yi), G (p−1a ,

y−1i )) = G (pe, ye) = µ (G (p−1a , y−1i , G (pa, yi)).
(v) For any two state transition function G (pa, yi), G (pb,

yj) ∈ T , then µ (G (pa, yi), G (pb, yj)) = µ (G (pb, yj),

G (pa, yi)).

(b) (T, ν) is an abelian group, i.e.
(i) For any state transition function G (pa, yi), G (pb, yj)

∈ T , then ν (G (pa, yi), G (pb, yj)) ∈ T .
(ii) For any state transition function G (pa, yi), G (pb, yj),

G (pc, yk) ∈ T , then ν (G (pa, yi), ν (G (pb, yj), G (pc,

yk))) = ν (ν (G (pa, yi), G (pb, yj)), G (pc, yk)).
(iii) There exists a state transition G (p′e, y

′
e) ∈ T such that

ν (G (pa, yi), G (p′e, y
′
e)) = G (pa, yi) = ν (G (p′e, y

′
e),

G (pa, yi)).
(iv) For every non zero state transition function G (pa, yi)

∈ T there exists G (p−1a , y−1i ) ∈ T such that ν (G (pa, yi),

G (p−1a , y−1i )) = G (p′e, y
′
e) = ν (G (p−1a , y−1i ), G (pa,

yi)).
(v) For any two states transition function
G (pa, yi), G (pb,

yj) ∈ T , then ν (G (pa, yi), G (pb, yj)) = ν (G (pb, yj),

G (pa, yi)).
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(c) Distributive property
For any state transition function G (pa, yi), G (pb, yj),

G (pc, yk) ∈ T , then ν (G (pa, yi), µ (G (pb, yj), G (pc,

yk))) = µ (ν (G (pa, yi), G (pb, yj)), ν(G (pa, yi), G(pc,

yk))) and ν (µ (G (pa, yi), G (pb, yj)), G (pc, yk)) =
µ (ν (G (pa, yi), G (pc, yk)), ν (G (pb, yj), G (pc, yk))).

Definition 3.2: A non-empty subset ST of T is said to be a
sub-automata field if (ST , µ, ν) itself an automata field
under the operations µ and ν.

Definition 3.3: The Characteristic of an automata field is
defined to be a smallest positive integer n such that
µ (Gn (pa, yi)) = G (pe, ye) ∀ G (pa, yi) ∈ T and is
defined to be 0 otherwise.

Definition 3.4: Let (T, µ, ν) and (T ′, µ, ν) be two auto-
mata fields. A mapping f : T → T ′ is called automata field
homomorphism ∀ G (pa, yi), G (pb, yj) ∈ T :
(i) f (µ (G (pa, yi), G (pb, yj))) = µ (f (G (pa, yi)),

f (G (pb, yj))).
(ii) f (ν (G (pa, yi), G (pb, yj))) = ν (f (G (pa, yi)),

f (G (pb, yj))).
(iii) f (G (pe, ye)) = G (p′e, y

′
e).

Definition 3.5: An automata field T is called perfect if T
has characteristic 0 or if T has characteristic p and T p =
{ν (Gp (pa, yi)) | G (pa, yi) ∈ T} = T .

In order to better understand the difference between automata
and non-automata fields, it is helpful to examine specific
examples. This examination identifies the key characteristics
that distinguish an automata field from other algebraic struc-
tures. This type of analysis enables researchers to compare
and contrast the criteria and standards necessary to classify a
field as an automata field. Furthermore, studying these exam-
ples can enhance theoretical knowledge and provide valuable
insights into the practical applications of the automata field.

Example 3.1: Let us examine a finite state automaton den-
oted by

∑
= (Q, A, δ, G, H) with A = {y0, y1, y2, y3,

y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16},
Q = {p0}, and a state transition function G defined by the
Table I and the state diagram shown in Fig. 1.

p0 y0, ..., y16

Fig. 1. State Diagram Of
∑

From the definition of the automata field, let us consider
T = {G (p0, y0), G (p0, y1), G (p0, y2), G (p0, y3),

G (p0, y4), G (p0, y5), G (p0, y6), G (p0, y7), G (p0, y8),

G (p0, y9), G (p0, y10), G (p0, y11), G (p0, y12),

TABLE I
STATE TRANSITION TABLE OF

∑
G p0

y0 p0

y1 p0

y2 p0

y3 p0

y3 p0

y4 p0

y5 p0

y6 p0

y7 p0

y8 p0

y9 p0

y10 p0

y11 p0

y12 p0

y13 p0

y14 p0

y15 p0

y16 p0

G (p0, y13), G (p0, y14), G (p0, y15), G (p0, y16)}.
Two maps µ and ν on T are defined as follows:
µ : T × T → T as
µ (G (p0, y0), G (p0, y0)) = G (p0, y0)

µ (G (p0, y0), G (p0, y1)) = G (p0, y1)

µ (G (p0, y0), G (p0, y2)) = G (p0, y2)

µ (G (p0, y0), G (p0, y3)) = G (p0, y3)

µ (G (p0, y0), G (p1, y4)) = G (p0, y4)

µ (G (p0, y0), G (p0, y5)) = G (p0, y5)

µ (G (p0, y0), G (p0, y6)) = G (p0, y6)

µ (G (p0, y0), G (p0, y7)) = G (p0, y7)

µ (G (p0, y0), G (p0, y8)) = G (p0, y8)

µ (G (p0, y0), G (p0, y9)) = G (p0, y9)

µ (G (p0, y0), G (p0, y10)) = G (p0, y10)

µ (G (p0, y0), G (p0, y11)) = G (p0, y11)

µ (G (p0, y0), G (p0, y12)) = G (p0, y12)

µ (G (p0, y0), G (p0, y13)) = G (p0, y13)

µ (G (p0, y0), G (p0, y14)) = G (p0, y14)

µ (G (p0, y0), G (p0, y15)) = G (p0, y15)
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µ (G (p0, y0), G (p0, y16)) = G (p0, y16)

µ (G (p0, y1), G (p0, y0)) = G (p0, y1)

µ (G (p0, y1), G (p0, y1)) = G (p0, y2)

µ (G (p0, y1), G (p0, y2)) = G (p0, y3)

µ (G (p0, y1), G (p0, y3)) = G (p0, y4)

µ (G (p0, y1), G (p1, y4)) = G (p0, y5)

µ (G (p0, y1), G (p0, y5)) = G (p0, y6)

µ (G (p0, y1), G (p0, y6)) = G (p0, y7)

µ (G (p0, y1), G (p0, y7)) = G (p0, y8)

µ (G (p0, y1), G (p0, y8)) = G (p0, y9)

µ (G (p0, y1), G (p0, y9)) = G (p0, y10)

µ (G (p0, y1), G (p0, y10)) = G (p0, y11)

µ (G (p0, y1), G (p0, y11)) = G (p0, y12)

µ (G (p0, y1), G (p0, y12)) = G (p0, y13)

µ (G (p0, y1), G (p0, y13)) = G (p0, y14)

µ (G (p0, y1), G (p0, y14)) = G (p0, y15)

µ (G (p0, y1), G (p0, y15)) = G (p0, y16)

µ (G (p0, y1), G (p0, y16)) = G (p0, y0)

µ (G (p0, y2), G (p0, y0)) = G (p0, y2)

µ (G (p0, y2), G (p0, y1)) = G (p0, y3)

µ (G (p0, y2), G (p0, y2)) = G (p0, y4)

µ (G (p0, y2), G (p0, y3)) = G (p0, y5)

µ (G (p0, y2), G (p1, y4)) = G (p0, y6)

µ (G (p0, y2), G (p0, y5)) = G (p0, y7)

µ (G (p0, y2), G (p0, y6)) = G (p0, y8)

µ (G (p0, y2), G (p0, y7)) = G (p0, y9)

µ (G (p0, y2), G (p0, y8)) = G (p0, y10)

µ (G (p0, y2), G (p0, y9)) = G (p0, y11)

µ (G (p0, y2), G (p0, y10)) = G (p0, y12)

µ (G (p0, y2), G (p0, y11)) = G (p0, y13)

µ (G (p0, y2), G (p0, y12)) = G (p0, y14)

µ (G (p0, y2), G (p0, y13)) = G (p0, y15)

µ (G (p0, y2), G (p0, y14)) = G (p0, y16)

µ (G (p0, y2), G (p0, y15)) = G (p0, y0)

µ (G (p0, y2), G (p0, y16)) = G (p0, y1)

µ (G (p0, y3), G (p0, y0)) = G (p0, y3)

µ (G (p0, y3), G (p0, y1)) = G (p0, y4)

µ (G (p0, y3), G (p0, y2)) = G (p0, y5)

µ (G (p0, y3), G (p0, y3)) = G (p0, y6)

µ (G (p0, y3), G (p1, y4)) = G (p0, y7)

µ (G (p0, y3), G (p0, y5)) = G (p0, y8)

µ (G (p0, y3), G (p0, y6)) = G (p0, y9)

µ (G (p0, y3), G (p0, y7)) = G (p0, y10)

µ (G (p0, y3), G (p0, y8)) = G (p0, y11)

µ (G (p0, y3), G (p0, y9)) = G (p0, y12)

µ (G (p0, y3), G (p0, y10)) = G (p0, y13)

µ (G (p0, y3), G (p0, y11)) = G (p0, y14)

µ (G (p0, y3), G (p0, y12)) = G (p0, y15)

µ (G (p0, y3), G (p0, y13)) = G (p0, y16)

µ (G (p0, y3), G (p0, y14)) = G (p0, y0)

µ (G (p0, y3), G (p0, y15)) = G (p0, y1)

µ (G (p0, y3), G (p0, y16)) = G (p0, y2)

µ (G (p0, y4), G (p0, y0)) = G (p0, y4)

µ (G (p0, y4), G (p0, y1)) = G (p0, y5)

µ (G (p0, y4), G (p0, y2)) = G (p0, y6)

µ (G (p0, y4), G (p0, y3)) = G (p0, y7)

µ (G (p0, y4), G (p1, y4)) = G (p0, y8)

µ (G (p0, y4), G (p0, y5)) = G (p0, y9)

µ (G (p0, y4), G (p0, y6)) = G (p0, y10)

µ (G (p0, y4), G (p0, y7)) = G (p0, y11)

µ (G (p0, y4), G (p0, y8)) = G (p0, y12)

µ (G (p0, y4), G (p0, y9)) = G (p0, y13)

µ (G (p0, y4), G (p0, y10)) = G (p0, y14)

µ (G (p0, y4), G (p0, y11)) = G (p0, y15)

µ (G (p0, y4), G (p0, y12)) = G (p0, y16)

µ (G (p0, y4), G (p0, y13)) = G (p0, y0)

µ (G (p0, y4), G (p0, y14)) = G (p0, y1)

µ (G (p0, y4), G (p0, y15)) = G (p0, y2)

µ (G (p0, y4), G (p0, y16)) = G (p0, y3)

µ (G (p0, y5), G (p0, y0)) = G (p0, y5)

µ (G (p0, y5), G (p0, y1)) = G (p0, y6)

µ (G (p0, y5), G (p0, y2)) = G (p0, y7)

µ (G (p0, y5), G (p0, y3)) = G (p0, y8)

µ (G (p0, y5), G (p1, y4)) = G (p0, y9)

µ (G (p0, y5), G (p0, y5)) = G (p0, y10)

µ (G (p0, y5), G (p0, y6)) = G (p0, y11)

µ (G (p0, y5), G (p0, y7)) = G (p0, y12)

µ (G (p0, y5), G (p0, y8)) = G (p0, y13)

µ (G (p0, y5), G (p0, y9)) = G (p0, y14)

µ (G (p0, y5), G (p0, y10)) = G (p0, y15)

µ (G (p0, y5), G (p0, y11)) = G (p0, y16)

µ (G (p0, y5), G (p0, y12)) = G (p0, y0)

µ (G (p0, y5), G (p0, y13)) = G (p0, y1)

µ (G (p0, y5), G (p0, y14)) = G (p0, y2)

µ (G (p0, y5), G (p0, y15)) = G (p0, y3)

µ (G (p0, y5), G (p0, y16)) = G (p0, y4)

µ (G (p0, y6), G (p0, y0)) = G (p0, y6)

µ (G (p0, y6), G (p0, y1)) = G (p0, y7)

µ (G (p0, y6), G (p0, y2)) = G (p0, y8)

µ (G (p0, y6), G (p0, y3)) = G (p0, y9)

µ (G (p0, y6), G (p1, y4)) = G (p0, y10)

µ (G (p0, y6), G (p0, y5)) = G (p0, y11)

µ (G (p0, y6), G (p0, y6)) = G (p0, y12)

µ (G (p0, y6), G (p0, y7)) = G (p0, y13)
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µ (G (p0, y6), G (p0, y8)) = G (p0, y14)

µ (G (p0, y6), G (p0, y9)) = G (p0, y15)

µ (G (p0, y6), G (p0, y10)) = G (p0, y16)

µ (G (p0, y6), G (p0, y11)) = G (p0, y0)

µ (G (p0, y6), G (p0, y12)) = G (p0, y1)

µ (G (p0, y6), G (p0, y13)) = G (p0, y2)

µ (G (p0, y6), G (p0, y14)) = G (p0, y3)

µ (G (p0, y6), G (p0, y15)) = G (p0, y4)

µ (G (p0, y6), G (p0, y16)) = G (p0, y5)

µ (G (p0, y7), G (p0, y0)) = G (p0, y7)

µ (G (p0, y7), G (p0, y1)) = G (p0, y8)

µ (G (p0, y7), G (p0, y2)) = G (p0, y9)

µ (G (p0, y7), G (p0, y3)) = G (p0, y10)

µ (G (p0, y7), G (p1, y4)) = G (p0, y11)

µ (G (p0, y7), G (p0, y5)) = G (p0, y12)

µ (G (p0, y7), G (p0, y6)) = G (p0, y13)

µ (G (p0, y7), G (p0, y7)) = G (p0, y14)

µ (G (p0, y7), G (p0, y8)) = G (p0, y15)

µ (G (p0, y7), G (p0, y9)) = G (p0, y16)

µ (G (p0, y7), G (p0, y10)) = G (p0, y0)

µ (G (p0, y7), G (p0, y11)) = G (p0, y1)

µ (G (p0, y7), G (p0, y12)) = G (p0, y2)

µ (G (p0, y7), G (p0, y13)) = G (p0, y3)

µ (G (p0, y7), G (p0, y14)) = G (p0, y4)

µ (G (p0, y7), G (p0, y15)) = G (p0, y5)

µ (G (p0, y7), G (p0, y16)) = G (p0, y6)

µ (G (p0, y8), G (p0, y0)) = G (p0, y8)

µ (G (p0, y8), G (p0, y1)) = G (p0, y9)

µ (G (p0, y8), G (p0, y2)) = G (p0, y10)

µ (G (p0, y8), G (p0, y3)) = G (p0, y11)

µ (G (p0, y8), G (p1, y4)) = G (p0, y12)

µ (G (p0, y8), G (p0, y5)) = G (p0, y13)

µ (G (p0, y8), G (p0, y6)) = G (p0, y14)

µ (G (p0, y8), G (p0, y7)) = G (p0, y15)

µ (G (p0, y8), G (p0, y8)) = G (p0, y16)

µ (G (p0, y8), G (p0, y9)) = G (p0, y0)

µ (G (p0, y8), G (p0, y10)) = G (p0, y1)

µ (G (p0, y8), G (p0, y11)) = G (p0, y2)

µ (G (p0, y8), G (p0, y12)) = G (p0, y3)

µ (G (p0, y8), G (p0, y13)) = G (p0, y4)

µ (G (p0, y8), G (p0, y14)) = G (p0, y5)

µ (G (p0, y8), G (p0, y15)) = G (p0, y6)

µ (G (p0, y8), G (p0, y16)) = G (p0, y7)

µ (G (p0, y9), G (p0, y0)) = G (p0, y9)

µ (G (p0, y9), G (p0, y1)) = G (p0, y10)

µ (G (p0, y9), G (p0, y2)) = G (p0, y11)

µ (G (p0, y9), G (p0, y3)) = G (p0, y12)

µ (G (p0, y9), G (p1, y4)) = G (p0, y13)

µ (G (p0, y9), G (p0, y5)) = G (p0, y14)

µ (G (p0, y9), G (p0, y6)) = G (p0, y15)

µ (G (p0, y9), G (p0, y7)) = G (p0, y16)

µ (G (p0, y9), G (p0, y8)) = G (p0, y0)

µ (G (p0, y9), G (p0, y9)) = G (p0, y1)

µ (G (p0, y9), G (p0, y10)) = G (p0, y2)

µ (G (p0, y9), G (p0, y11)) = G (p0, y3)

µ (G (p0, y9), G (p0, y12)) = G (p0, y4)

µ (G (p0, y9), G (p0, y13)) = G (p0, y5)

µ (G (p0, y9), G (p0, y14)) = G (p0, y6)

µ (G (p0, y9), G (p0, y15)) = G (p0, y7)

µ (G (p0, y9), G (p0, y16)) = G (p0, y8)

µ (G (p0, y10), G (p0, y0)) = G (p0, y10)

µ (G (p0, y10), G (p0, y1)) = G (p0, y11)

µ (G (p0, y10), G (p0, y2)) = G (p0, y12)

µ (G (p0, y10), G (p0, y3)) = G (p0, y13)

µ (G (p0, y10), G (p1, y4)) = G (p0, y14)

µ (G (p0, y10), G (p0, y5)) = G (p0, y15)

µ (G (p0, y10), G (p0, y6)) = G (p0, y16)

µ (G (p0, y10), G (p0, y7)) = G (p0, y0)

µ (G (p0, y10), G (p0, y8)) = G (p0, y1)

µ (G (p0, y10), G (p0, y9)) = G (p0, y2)

µ (G (p0, y10), G (p0, y10)) = G (p0, y3)

µ (G (p0, y10), G (p0, y11)) = G (p0, y4)

µ (G (p0, y10), G (p0, y12)) = G (p0, y5)

µ (G (p0, y10), G (p0, y13)) = G (p0, y6)

µ (G (p0, y10), G (p0, y14)) = G (p0, y7)

µ (G (p0, y10), G (p0, y15)) = G (p0, y8)

µ (G (p0, y10), G (p0, y16)) = G (p0, y9)

µ (G (p0, y11), G (p0, y0)) = G (p0, y11)

µ (G (p0, y11), G (p0, y1)) = G (p0, y12)

µ (G (p0, y11), G (p0, y2)) = G (p0, y13)

µ (G (p0, y11), G (p0, y3)) = G (p0, y14)

µ (G (p0, y11), G (p1, y4)) = G (p0, y15)

µ (G (p0, y11), G (p0, y5)) = G (p0, y16)

µ (G (p0, y11), G (p0, y6)) = G (p0, y0)

µ (G (p0, y11), G (p0, y7)) = G (p0, y1)

µ (G (p0, y11), G (p0, y8)) = G (p0, y2)

µ (G (p0, y11), G (p0, y9)) = G (p0, y3)

µ (G (p0, y11), G (p0, y10)) = G (p0, y4)

µ (G (p0, y11), G (p0, y11)) = G (p0, y5)

µ (G (p0, y11), G (p0, y12)) = G (p0, y6)

µ (G (p0, y11), G (p0, y13)) = G (p0, y7)

µ (G (p0, y11), G (p0, y14)) = G (p0, y8)

µ (G (p0, y11), G (p0, y15)) = G (p0, y9)

µ (G (p0, y11), G (p0, y16)) = G (p0, y10)
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µ (G (p0, y12), G (p0, y0)) = G (p0, y12)

µ (G (p0, y12), G (p0, y1)) = G (p0, y13)

µ (G (p0, y12), G (p0, y2)) = G (p0, y14)

µ (G (p0, y12), G (p0, y3)) = G (p0, y15)

µ (G (p0, y12), G (p1, y4)) = G (p0, y16)

µ (G (p0, y12), G (p0, y5)) = G (p0, y0)

µ (G (p0, y12), G (p0, y6)) = G (p0, y1)

µ (G (p0, y12), G (p0, y7)) = G (p0, y2)

µ (G (p0, y12), G (p0, y8)) = G (p0, y3)

µ (G (p0, y12), G (p0, y9)) = G (p0, y4)

µ (G (p0, y12), G (p0, y10)) = G (p0, y5)

µ (G (p0, y12), G (p0, y11)) = G (p0, y6)

µ (G (p0, y12), G (p0, y12)) = G (p0, y7)

µ (G (p0, y12), G (p0, y13)) = G (p0, y8)

µ (G (p0, y12), G (p0, y14)) = G (p0, y9)

µ (G (p0, y12), G (p0, y15)) = G (p0, y10)

µ (G (p0, y12), G (p0, y16)) = G (p0, y11)

µ (G (p0, y13), G (p0, y0)) = G (p0, y13)

µ (G (p0, y13), G (p0, y1)) = G (p0, y14)

µ (G (p0, y13), G (p0, y2)) = G (p0, y15)

µ (G (p0, y13), G (p0, y3)) = G (p0, y16)

µ (G (p0, y13), G (p1, y4)) = G (p0, y0)

µ (G (p0, y13), G (p0, y5)) = G (p0, y1)

µ (G (p0, y13), G (p0, y6)) = G (p0, y2)

µ (G (p0, y13), G (p0, y7)) = G (p0, y3)

µ (G (p0, y13), G (p0, y8)) = G (p0, y4)

µ (G (p0, y13), G (p0, y9)) = G (p0, y5)

µ (G (p0, y13), G (p0, y10)) = G (p0, y6)

µ (G (p0, y13), G (p0, y11)) = G (p0, y7)

µ (G (p0, y13), G (p0, y12)) = G (p0, y8)

µ (G (p0, y13), G (p0, y13)) = G (p0, y9)

µ (G (p0, y13), G (p0, y14)) = G (p0, y10)

µ (G (p0, y13), G (p0, y15)) = G (p0, y11)

µ (G (p0, y13), G (p0, y16)) = G (p0, y12)

µ (G (p0, y14), G (p0, y0)) = G (p0, y14)

µ (G (p0, y14), G (p0, y1)) = G (p0, y15)

µ (G (p0, y14), G (p0, y2)) = G (p0, y16)

µ (G (p0, y14), G (p0, y3)) = G (p0, y0)

µ (G (p0, y14), G (p1, y4)) = G (p0, y1)

µ (G (p0, y14), G (p0, y5)) = G (p0, y2)

µ (G (p0, y14), G (p0, y6)) = G (p0, y3)

µ (G (p0, y14), G (p0, y7)) = G (p0, y4)

µ (G (p0, y14), G (p0, y8)) = G (p0, y5)

µ (G (p0, y14), G (p0, y9)) = G (p0, y6)

µ (G (p0, y14), G (p0, y10)) = G (p0, y7)

µ (G (p0, y14), G (p0, y11)) = G (p0, y8)

µ (G (p0, y14), G (p0, y12)) = G (p0, y9)

µ (G (p0, y14), G (p0, y13)) = G (p0, y10)

µ (G (p0, y14), G (p0, y14)) = G (p0, y11)

µ (G (p0, y14), G (p0, y15)) = G (p0, y12)

µ (G (p0, y14), G (p0, y16)) = G (p0, y13)

µ (G (p0, y15), G (p0, y0)) = G (p0, y15)

µ (G (p0, y15), G (p0, y1)) = G (p0, y16)

µ (G (p0, y15), G (p0, y2)) = G (p0, y0)

µ (G (p0, y15), G (p0, y3)) = G (p0, y1)

µ (G (p0, y15), G (p1, y4)) = G (p0, y2)

µ (G (p0, y15), G (p0, y5)) = G (p0, y3)

µ (G (p0, y15), G (p0, y6)) = G (p0, y4)

µ (G (p0, y15), G (p0, y7)) = G (p0, y5)

µ (G (p0, y15), G (p0, y8)) = G (p0, y6)

µ (G (p0, y15), G (p0, y9)) = G (p0, y7)

µ (G (p0, y15), G (p0, y10)) = G (p0, y8)

µ (G (p0, y15), G (p0, y11)) = G (p0, y9)

µ (G (p0, y15), G (p0, y12)) = G (p0, y10)

µ (G (p0, y15), G (p0, y13)) = G (p0, y11)

µ (G (p0, y15), G (p0, y14)) = G (p0, y12)

µ (G (p0, y15), G (p0, y15)) = G (p0, y13)

µ (G (p0, y15), G (p0, y16)) = G (p0, y14)

µ (G (p0, y16), G (p0, y0)) = G (p0, y16)

µ (G (p0, y16), G (p0, y1)) = G (p0, y0)

µ (G (p0, y16), G (p0, y2)) = G (p0, y1)

µ (G (p0, y16), G (p0, y3)) = G (p0, y2)

µ (G (p0, y16), G (p1, y4)) = G (p0, y3)

µ (G (p0, y16), G (p0, y5)) = G (p0, y4)

µ (G (p0, y16), G (p0, y6)) = G (p0, y5)

µ (G (p0, y16), G (p0, y7)) = G (p0, y6)

µ (G (p0, y16), G (p0, y8)) = G (p0, y7)

µ (G (p0, y16), G (p0, y9)) = G (p0, y8)

µ (G (p0, y16), G (p0, y10)) = G (p0, y9)

µ (G (p0, y16), G (p0, y11)) = G (p0, y10)

µ (G (p0, y16), G (p0, y12)) = G (p0, y11)

µ (G (p0, y16), G (p0, y13)) = G (p0, y12)

µ (G (p0, y16), G (p0, y14)) = G (p0, y13)

µ (G (p0, y16), G (p0, y15)) = G (p0, y14)

µ (G (p0, y16), G (p0, y16)) = G (p0, y15)

It implies that (T, µ) forms an abelian group with
G (p0, y0) as its identity element.

ν : T × T → T as
ν (G (p0, y0), G (p0, y0)) = G (p0, y0)

ν (G (p0, y0), G (p0, y1)) = G (p0, y0)

ν (G (p0, y0), G (p0, y2)) = G (p0, y0)

ν (G (p0, y0), G (p0, y3)) = G (p0, y0)

ν (G (p0, y0), G (p0, y4)) = G (p0, y0)

ν (G (p0, y0), G (p0, y5)) = G (p0, y0)
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ν (G (p0, y0), G (p0, y6)) = G (p0, y0)

ν (G (p0, y0), G (p0, y7)) = G (p0, y0)

ν (G (p0, y0), G (p0, y8)) = G (p0, y0)

ν (G (p0, y0), G (p0, y9)) = G (p0, y0)

ν (G (p0, y0), G (p0, y10)) = G (p0, y0)

ν (G (p0, y0), G (p0, y11)) = G (p0, y0)

ν (G (p0, y0), G (p0, y12)) = G (p0, y0)

ν (G (p0, y0), G (p0, y13)) = G (p0, y0)

ν (G (p0, y0), G (p0, y14)) = G (p0, y0)

ν (G (p0, y0), G (p0, y15)) = G (p0, y0)

ν (G (p0, y0), G (p0, y16)) = G (p0, y0)

ν (G (p0, y1), G (p0, y0)) = G (p0, y0)

ν (G (p0, y1), G (p0, y1)) = G (p0, y1)

ν (G (p0, y1), G (p0, y2)) = G (p0, y2)

ν (G (p0, y1), G (p0, y3)) = G (p0, y3)

ν (G (p0, y1), G (p0, y4)) = G (p0, y4)

ν (G (p0, y1), G (p0, y5)) = G (p0, y5)

ν (G (p0, y1), G (p0, y6)) = G (p0, y6)

ν (G (p0, y1), G (p0, y7)) = G (p0, y7)

ν (G (p0, y1), G (p0, y8)) = G (p0, y8)

ν (G (p0, y1), G (p0, y9)) = G (p0, y9)

ν (G (p0, y1), G (p0, y10)) = G (p0, y10)

ν (G (p0, y1), G (p0, y11)) = G (p0, y11)

ν (G (p0, y1), G (p0, y12)) = G (p0, y12)

ν (G (p0, y1), G (p0, y13)) = G (p0, y13)

ν (G (p0, y1), G (p0, y14)) = G (p0, y14)

ν (G (p0, y1), G (p0, y15)) = G (p0, y15)

ν (G (p0, y1), G (p0, y16)) = G (p0, y16)

ν (G (p0, y2), G (p0, y0)) = G (p0, y0)

ν (G (p0, y2), G (p0, y1)) = G (p0, y2)

ν (G (p0, y2), G (p0, y2)) = G (p0, y4)

ν (G (p0, y2), G (p0, y3)) = G (p0, y6)

ν (G (p0, y2), G (p0, y4)) = G (p0, y8)

ν (G (p0, y2), G (p0, y5)) = G (p0, y10)

ν (G (p0, y2), G (p0, y6)) = G (p0, y12)

ν (G (p0, y2), G (p0, y7)) = G (p0, y14)

ν (G (p0, y2), G (p0, y8)) = G (p0, y16)

ν (G (p0, y2), G (p0, y9)) = G (p0, y1)

ν (G (p0, y2), G (p0, y10)) = G (p0, y3)

ν (G (p0, y2), G (p0, y11)) = G (p0, y5)

ν (G (p0, y2), G (p0, y12)) = G (p0, y7)

ν (G (p0, y2), G (p0, y13)) = G (p0, y9)

ν (G (p0, y2), G (p0, y14)) = G (p0, y11)

ν (G (p0, y2), G (p0, y15)) = G (p0, y13)

ν (G (p0, y2), G (p0, y16)) = G (p0, y15)

ν (G (p0, y3), G (p0, y0)) = G (p0, y0)

ν (G (p0, y3), G (p0, y1)) = G (p0, y3)

ν (G (p0, y3), G (p0, y2)) = G (p0, y6)

ν (G (p0, y3), G (p0, y3)) = G (p0, y9)

ν (G (p0, y3), G (p0, y4)) = G (p0, y12)

ν (G (p0, y3), G (p0, y5)) = G (p0, y15)

ν (G (p0, y3), G (p0, y6)) = G (p0, y1)

ν (G (p0, y3), G (p0, y7)) = G (p0, y4)

ν (G (p0, y3), G (p0, y8)) = G (p0, y7)

ν (G (p0, y3), G (p0, y9)) = G (p0, y10)

ν (G (p0, y3), G (p0, y10)) = G (p0, y13)

ν (G (p0, y3), G (p0, y11)) = G (p0, y16)

ν (G (p0, y3), G (p0, y12)) = G (p0, y2)

ν (G (p0, y3), G (p0, y13)) = G (p0, y5)

ν (G (p0, y3), G (p0, y14)) = G (p0, y8)

ν (G (p0, y3), G (p0, y15)) = G (p0, y11)

ν (G (p0, y3), G (p0, y16)) = G (p0, y14)

ν (G (p0, y4), G (p0, y0)) = G (p0, y0)

ν (G (p0, y4), G (p0, y1)) = G (p0, y4)

ν (G (p0, y4), G (p0, y2)) = G (p0, y8)

ν (G (p0, y4), G (p0, y3)) = G (p0, y12)

ν (G (p0, y4), G (p0, y4)) = G (p0, y16)

ν (G (p0, y4), G (p0, y5)) = G (p0, y3)

ν (G (p0, y4), G (p0, y6)) = G (p0, y7)

ν (G (p0, y4), G (p0, y7)) = G (p0, y11)

ν (G (p0, y4), G (p0, y8)) = G (p0, y15)

ν (G (p0, y4), G (p0, y9)) = G (p0, y2)

ν (G (p0, y4), G (p0, y10)) = G (p0, y6)

ν (G (p0, y4), G (p0, y11)) = G (p0, y10)

ν (G (p0, y4), G (p0, y12)) = G (p0, y14)

ν (G (p0, y4), G (p0, y13)) = G (p0, y1)

ν (G (p0, y4), G (p0, y14)) = G (p0, y5)

ν (G (p0, y4), G (p0, y15)) = G (p0, y9)

ν (G (p0, y4), G (p0, y16)) = G (p0, y13)

ν (G (p0, y5), G (p0, y0)) = G (p0, y0)

ν (G (p0, y5), G (p0, y1)) = G (p0, y5)

ν (G (p0, y5), G (p0, y2)) = G (p0, y10)

ν (G (p0, y5), G (p0, y3)) = G (p0, y15)

ν (G (p0, y5), G (p0, y4)) = G (p0, y3)

ν (G (p0, y5), G (p0, y5)) = G (p0, y8)

ν (G (p0, y5), G (p0, y6)) = G (p0, y13)

ν (G (p0, y5), G (p0, y7)) = G (p0, y1)

ν (G (p0, y5), G (p0, y8)) = G (p0, y6)

ν (G (p0, y5), G (p0, y9)) = G (p0, y11)

ν (G (p0, y5), G (p0, y10)) = G (p0, y16)

ν (G (p0, y5), G (p0, y11)) = G (p0, y4)

ν (G (p0, y5), G (p0, y12)) = G (p0, y9)

ν (G (p0, y5), G (p0, y13)) = G (p0, y14)

ν (G (p0, y5), G (p0, y14)) = G (p0, y2)

ν (G (p0, y5), G (p0, y15)) = G (p0, y7)
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ν (G (p0, y5), G (p0, y16)) = G (p0, y12)

ν (G (p0, y6), G (p0, y0)) = G (p0, y0)

ν (G (p0, y6), G (p0, y1)) = G (p0, y6)

ν (G (p0, y6), G (p0, y2)) = G (p0, y12)

ν (G (p0, y6), G (p0, y3)) = G (p0, y1)

ν (G (p0, y6), G (p0, y4)) = G (p0, y7)

ν (G (p0, y6), G (p0, y5)) = G (p0, y13)

ν (G (p0, y6), G (p0, y6)) = G (p0, y2)

ν (G (p0, y6), G (p0, y7)) = G (p0, y8)

ν (G (p0, y6), G (p0, y8)) = G (p0, y14)

ν (G (p0, y6), G (p0, y9)) = G (p0, y3)

ν (G (p0, y6), G (p0, y10)) = G (p0, y9)

ν (G (p0, y6), G (p0, y11)) = G (p0, y15)

ν (G (p0, y6), G (p0, y12)) = G (p0, y4)

ν (G (p0, y6), G (p0, y13)) = G (p0, y10)

ν (G (p0, y6), G (p0, y14)) = G (p0, y16)

ν (G (p0, y6), G (p0, y15)) = G (p0, y5)

ν (G (p0, y6), G (p0, y16)) = G (p0, y11)

ν (G (p0, y7), G (p0, y0)) = G (p0, y0)

ν (G (p0, y7), G (p0, y1)) = G (p0, y7)

ν (G (p0, y7), G (p0, y2)) = G (p0, y14)

ν (G (p0, y7), G (p0, y3)) = G (p0, y4)

ν (G (p0, y7), G (p0, y4)) = G (p0, y11)

ν (G (p0, y7), G (p0, y5)) = G (p0, y1)

ν (G (p0, y7), G (p0, y6)) = G (p0, y8)

ν (G (p0, y7), G (p0, y7)) = G (p0, y15)

ν (G (p0, y7), G (p0, y8)) = G (p0, y5)

ν (G (p0, y7), G (p0, y9)) = G (p0, y12)

ν (G (p0, y7), G (p0, y10)) = G (p0, y2)

ν (G (p0, y7), G (p0, y11)) = G (p0, y9)

ν (G (p0, y7), G (p0, y12)) = G (p0, y16)

ν (G (p0, y7), G (p0, y13)) = G (p0, y6)

ν (G (p0, y7), G (p0, y14)) = G (p0, y13)

ν (G (p0, y7), G (p0, y15)) = G (p0, y3)

ν (G (p0, y7), G (p0, y16)) = G (p0, y10)

ν (G (p0, y8), G (p0, y0)) = G (p0, y0)

ν (G (p0, y8), G (p0, y1)) = G (p0, y8)

ν (G (p0, y8), G (p0, y2)) = G (p0, y16)

ν (G (p0, y8), G (p0, y3)) = G (p0, y7)

ν (G (p0, y8), G (p0, y4)) = G (p0, y15)

ν (G (p0, y8), G (p0, y5)) = G (p0, y6)

ν (G (p0, y8), G (p0, y6)) = G (p0, y14)

ν (G (p0, y8), G (p0, y7)) = G (p0, y5)

ν (G (p0, y8), G (p0, y8)) = G (p0, y13)

ν (G (p0, y8), G (p0, y9)) = G (p0, y4)

ν (G (p0, y8), G (p0, y10)) = G (p0, y12)

ν (G (p0, y8), G (p0, y11)) = G (p0, y3)

ν (G (p0, y8), G (p0, y12)) = G (p0, y11)

ν (G (p0, y8), G (p0, y13)) = G (p0, y2)

ν (G (p0, y8), G (p0, y14)) = G (p0, y10)

ν (G (p0, y8), G (p0, y15)) = G (p0, y1)

ν (G (p0, y8), G (p0, y16)) = G (p0, y9)

ν (G (p0, y9), G (p0, y0)) = G (p0, y0)

ν (G (p0, y9), G (p0, y1)) = G (p0, y9)

ν (G (p0, y9), G (p0, y2)) = G (p0, y1)

ν (G (p0, y9), G (p0, y3)) = G (p0, y10)

ν (G (p0, y9), G (p0, y4)) = G (p0, y2)

ν (G (p0, y9), G (p0, y5)) = G (p0, y11)

ν (G (p0, y9), G (p0, y6)) = G (p0, y3)

ν (G (p0, y9), G (p0, y7)) = G (p0, y12)

ν (G (p0, y9), G (p0, y8)) = G (p0, y4)

ν (G (p0, y9), G (p0, y9)) = G (p0, y13)

ν (G (p0, y9), G (p0, y10)) = G (p0, y5)

ν (G (p0, y9), G (p0, y11)) = G (p0, y14)

ν (G (p0, y9), G (p0, y12)) = G (p0, y6)

ν (G (p0, y9), G (p0, y13)) = G (p0, y15)

ν (G (p0, y9), G (p0, y14)) = G (p0, y7)

ν (G (p0, y9), G (p0, y15)) = G (p0, y16)

ν (G (p0, y9), G (p0, y16)) = G (p0, y8)

ν (G (p0, y10), G (p0, y0)) = G (p0, y0)

ν (G (p0, y10), G (p0, y1)) = G (p0, y10)

ν (G (p0, y10), G (p0, y2)) = G (p0, y3)

ν (G (p0, y10), G (p0, y3)) = G (p0, y13)

ν (G (p0, y10), G (p0, y4)) = G (p0, y6)

ν (G (p0, y10), G (p0, y5)) = G (p0, y16)

ν (G (p0, y10), G (p0, y6)) = G (p0, y9)

ν (G (p0, y10), G (p0, y7)) = G (p0, y2)

ν (G (p0, y10), G (p0, y8)) = G (p0, y12)

ν (G (p0, y10), G (p0, y9)) = G (p0, y5)

ν (G (p0, y10), G (p0, y10)) = G (p0, y15)

ν (G (p0, y10), G (p0, y11)) = G (p0, y8)

ν (G (p0, y10), G (p0, y12)) = G (p0, y1)

ν (G (p0, y10), G (p0, y13)) = G (p0, y11)

ν (G (p0, y10), G (p0, y14)) = G (p0, y4)

ν (G (p0, y10), G (p0, y15)) = G (p0, y14)

ν (G (p0, y10), G (p0, y16)) = G (p0, y7)

ν (G (p0, y11), G (p0, y0)) = G (p0, y0)

ν (G (p0, y11), G (p0, y1)) = G (p0, y11)

ν (G (p0, y11), G (p0, y2)) = G (p0, y5)

ν (G (p0, y11), G (p0, y3)) = G (p0, y16)

ν (G (p0, y11), G (p0, y4)) = G (p0, y10)

ν (G (p0, y11), G (p0, y5)) = G (p0, y4)

ν (G (p0, y11), G (p0, y6)) = G (p0, y15)

ν (G (p0, y11), G (p0, y7)) = G (p0, y9)
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ν (G (p0, y11), G (p0, y8)) = G (p0, y3)

ν (G (p0, y11), G (p0, y9)) = G (p0, y14)

ν (G (p0, y11), G (p0, y10)) = G (p0, y8)

ν (G (p0, y11), G (p0, y11)) = G (p0, y2)

ν (G (p0, y11), G (p0, y12)) = G (p0, y13)

ν (G (p0, y11), G (p0, y13)) = G (p0, y7)

ν (G (p0, y11), G (p0, y14)) = G (p0, y1)

ν (G (p0, y11), G (p0, y15)) = G (p0, y12)

ν (G (p0, y11), G (p0, y16)) = G (p0, y6)

ν (G (p0, y12), G (p0, y0)) = G (p0, y0)

ν (G (p0, y12), G (p0, y1)) = G (p0, y12)

ν (G (p0, y12), G (p0, y2)) = G (p0, y7)

ν (G (p0, y12), G (p0, y3)) = G (p0, y2)

ν (G (p0, y12), G (p0, y4)) = G (p0, y14)

ν (G (p0, y12), G (p0, y5)) = G (p0, y9)

ν (G (p0, y12), G (p0, y6)) = G (p0, y4)

ν (G (p0, y12), G (p0, y7)) = G (p0, y16)

ν (G (p0, y12), G (p0, y8)) = G (p0, y11)

ν (G (p0, y12), G (p0, y9)) = G (p0, y6)

ν (G (p0, y12), G (p0, y10)) = G (p0, y1)

ν (G (p0, y12), G (p0, y11)) = G (p0, y13)

ν (G (p0, y12), G (p0, y12)) = G (p0, y8)

ν (G (p0, y12), G (p0, y13)) = G (p0, y3)

ν (G (p0, y12), G (p0, y14)) = G (p0, y15)

ν (G (p0, y12), G (p0, y15)) = G (p0, y10)

ν (G (p0, y12), G (p0, y16)) = G (p0, y5)

ν (G (p0, y13), G (p0, y0)) = G (p0, y0)

ν (G (p0, y13), G (p0, y1)) = G (p0, y13)

ν (G (p0, y13), G (p0, y2)) = G (p0, y9)

ν (G (p0, y13), G (p0, y3)) = G (p0, y5)

ν (G (p0, y13), G (p0, y4)) = G (p0, y1)

ν (G (p0, y13), G (p0, y5)) = G (p0, y14)

ν (G (p0, y13), G (p0, y6)) = G (p0, y10)

ν (G (p0, y13), G (p0, y7)) = G (p0, y6)

ν (G (p0, y13), G (p0, y8)) = G (p0, y2)

ν (G (p0, y13), G (p0, y9)) = G (p0, y15)

ν (G (p0, y13), G (p0, y10)) = G (p0, y11)

ν (G (p0, y13), G (p0, y11)) = G (p0, y7)

ν (G (p0, y13), G (p0, y12)) = G (p0, y3)

ν (G (p0, y13), G (p0, y13)) = G (p0, y16)

ν (G (p0, y13), G (p0, y14)) = G (p0, y12)

ν (G (p0, y13), G (p0, y15)) = G (p0, y8)

ν (G (p0, y13), G (p0, y16)) = G (p0, y4)

ν (G (p0, y14), G (p0, y0)) = G (p0, y0)

ν (G (p0, y14), G (p0, y1)) = G (p0, y14)

ν (G (p0, y14), G (p0, y2)) = G (p0, y11)

ν (G (p0, y14), G (p0, y3)) = G (p0, y8)

ν (G (p0, y14), G (p0, y4)) = G (p0, y5)

ν (G (p0, y14), G (p0, y5)) = G (p0, y2)

ν (G (p0, y14), G (p0, y6)) = G (p0, y16)

ν (G (p0, y14), G (p0, y7)) = G (p0, y13)

ν (G (p0, y14), G (p0, y8)) = G (p0, y10)

ν (G (p0, y14), G (p0, y9)) = G (p0, y7)

ν (G (p0, y14), G (p0, y10)) = G (p0, y4)

ν (G (p0, y14), G (p0, y11)) = G (p0, y1)

ν (G (p0, y14), G (p0, y12)) = G (p0, y15)

ν (G (p0, y14), G (p0, y13)) = G (p0, y12)

ν (G (p0, y14), G (p0, y14)) = G (p0, y9)

ν (G (p0, y14), G (p0, y15)) = G (p0, y6)

ν (G (p0, y14), G (p0, y16)) = G (p0, y3)

ν (G (p0, y15), G (p0, y0)) = G (p0, y0)

ν (G (p0, y15), G (p0, y1)) = G (p0, y15)

ν (G (p0, y15), G (p0, y2)) = G (p0, y13)

ν (G (p0, y15), G (p0, y3)) = G (p0, y11)

ν (G (p0, y15), G (p0, y4)) = G (p0, y9)

ν (G (p0, y15), G (p0, y5)) = G (p0, y7)

ν (G (p0, y15), G (p0, y6)) = G (p0, y5)

ν (G (p0, y15), G (p0, y7)) = G (p0, y3)

ν (G (p0, y15), G (p0, y8)) = G (p0, y1)

ν (G (p0, y15), G (p0, y9)) = G (p0, y16)

ν (G (p0, y15), G (p0, y10)) = G (p0, y14)

ν (G (p0, y15), G (p0, y11)) = G (p0, y12)

ν (G (p0, y15), G (p0, y12)) = G (p0, y10)

ν (G (p0, y15), G (p0, y13)) = G (p0, y8)

ν (G (p0, y15), G (p0, y14)) = G (p0, y6)

ν (G (p0, y15), G (p0, y15)) = G (p0, y4)

ν (G (p0, y15), G (p0, y16)) = G (p0, y2)

ν (G (p0, y16), G (p0, y0)) = G (p0, y0)

ν (G (p0, y16), G (p0, y1)) = G (p0, y16)

ν (G (p0, y16), G (p0, y2)) = G (p0, y15)

ν (G (p0, y16), G (p0, y3)) = G (p0, y14)

ν (G (p0, y16), G (p0, y4)) = G (p0, y13)

ν (G (p0, y16), G (p0, y5)) = G (p0, y12)

ν (G (p0, y16), G (p0, y6)) = G (p0, y11)

ν (G (p0, y16), G (p0, y7)) = G (p0, y10)

ν (G (p0, y16), G (p0, y8)) = G (p0, y9)

ν (G (p0, y16), G (p0, y9)) = G (p0, y8)

ν (G (p0, y16), G (p0, y10)) = G (p0, y7)

ν (G (p0, y16), G (p0, y11)) = G (p0, y6)

ν (G (p0, y16), G (p0, y12)) = G (p0, y5)

ν (G (p0, y16), G (p0, y13)) = G (p0, y4)

ν (G (p0, y16), G (p0, y14)) = G (p0, y3)

ν (G (p0, y16), G (p0, y15)) = G (p0, y2)

ν (G (p0, y16), G (p0, y16)) = G (p0, y1)
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It implies (T, ν) is an abelian group under the binary map
ν with G (p0, y1) as its identity element. Also, it satisfies
distributive property.
Thus, ν is distributive with respect to µ.
Hence, we can say that (T, µ, ν) is an automata field.

Example 3.2: Let us examine a finite state automaton den-
oted by

∑
= (Q, A, δ, G, H) with A = {y0}, Q = {p0,

p1, p2, p3, p4}, and a state transition function G defined by
the Table II and the state diagram shown in Fig. 2.

TABLE II
STATE TRANSITION TABLE OF

∑
G y0

p0 p1

p1 p2

p2 p3

p3 p4

p4 p0

p0

p4

p3

p1

p2

y0y0

y0 y0

y0

Fig. 2. State Diagram Of
∑

From the definition of the automata field, T = {G (p0, y0),

G (p1, y0), G (p2, y0), G (p3, y0), G (p4, y0)}.
Two maps µ and ν on T are defined as follows:
µ : T × T → T as
µ (G (p0, y0), G (p0, y0)) = G (p0, y0)

µ (G (p0, y0), G (p1, y0)) = G (p1, y0)

µ (G (p0, y0), G (p2, y0)) = G (p2, y0)

µ (G (p0, y0), G (p3, y0)) = G (p3, y0)

µ (G (p0, y0), G (p4, y0)) = G (p4, y0)

µ (G (p1, y0), G (p0, y0)) = G (p1, y0)

µ (G (p1, y0), G (p1, y0)) = G (p2, y0)

µ (G (p1, y0), G (p2, y0)) = G (p3, y0)

µ (G (p1, y0), G (p3, y0)) = G (p4, y0)

µ (G (p1, y0), G (p4, y0)) = G (p0, y0)

µ (G (p2, y0), G (p0, y0)) = G (p2, y0)

µ (G (p2, y0), G (p1, y0)) = G (p3, y0)

µ (G (p2, y0), G (p2, y0)) = G (p4, y0)

µ (G (p2, y0), G (p3, y0)) = G (p0, y0)

µ (G (p2, y0), G (p4, y0)) = G (p1, y0)

µ (G (p3, y0), G (p0, y0)) = G (p3, y0)

µ (G (p3, y0), G (p1, y0)) = G (p4, y0)

µ (G (p3, y0), G (p2, y0)) = G (p0, y0)

µ (G (p3, y0), G (p3, y0)) = G (p1, y0)

µ (G (p3, y0), G (p4, y0)) = G (p2, y0)

µ (G (p4, y0), G (p0, y0)) = G (p4, y0)

µ (G (p4, y0), G (p1, y0)) = G (p0, y0)

µ (G (p4, y0), G (p2, y0)) = G (p1, y0)

µ (G (p4, y0), G (p3, y0)) = G (p2, y0)

µ (G (p4, y0), G (p4, y0)) = G (p3, y0)

Here (T, µ) forms an abelian group with
G (p0, y0) as its identity element.

ν : T × T → T as
ν (G (p0, y0), G (p0, y0)) = G (p0, y0)

ν (G (p0, y0), G (p1, y0)) = G (p0, y0)

ν (G (p0, y0), G (p2, y0)) = G (p0, y0)

ν (G (p0, y0), G (p3, y0)) = G (p0, y0)

ν (G (p0, y0), G (p4, y0)) = G (p0, y0)

ν (G (p1, y0), G (p0, y0)) = G (p0, y0)

ν (G (p1, y0), G (p1, y0)) = G (p1, y0)

ν (G (p1, y0), G (p2, y0)) = G (p2, y0)

ν (G (p1, y0), G (p3, y0)) = G (p3, y0)

ν (G (p1, y0), G (p4, y0)) = G (p4, y0)

ν (G (p2, y0), G (p0, y0)) = G (p0, y0)

ν (G (p2, y0), G (p1, y0)) = G (p2, y0)

ν (G (p2, y0), G (p2, y0)) = G (p4, y0)

ν (G (p2, y0), G (p3, y0)) = G (p1, y0)

ν (G (p2, y0), G (p4, y0)) = G (p3, y0)

ν (G (p3, y0), G (p0, y0)) = G (p0, y0)

ν (G (p3, y0), G (p1, y0)) = G (p3, y0)

ν (G (p3, y0), G (p2, y0)) = G (p1, y0)

ν (G (p3, y0), G (p3, y0)) = G (p4, y0)

ν (G (p3, y0), G (p4, y0)) = G (p2, y0)
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ν (G (p4, y0), G (p0, y0)) = G (p0, y0)

ν (G (p4, y0), G (p1, y0)) = G (p4, y0)

ν (G (p4, y0), G (p2, y0)) = G (p3, y0)

ν (G (p4, y0), G (p3, y0)) = G (p2, y0)

ν (G (p4, y0), G (p4, y0)) = G (p1, y0)

Thus, ν is distributive with respect to µ.
Hence, we can say that (T, µ, ν) is an automata field.

Example 3.3: Let us consider a finite state automata∑
= (Q, A, B, G, H) with Q = {p0, p1, p2} and A =

{y0, y1, y2} and the state function G is defined by Table III
and state diagram of

∑
in Fig. 3.

p0 p1

p2

y0
y1

y2 y0

y1

y2

y1

Fig. 3. State Diagram Of
∑

By the definition of the automata field, suppose T = {G (p0,

x0), G (p0, y1), G(p1, y1), G (p2, y0), G (p2, y1)}.
But µ (G (p0, y1), G (p1, y1)) = G (p1, y0) /∈ T . It does
not satisfy the closure property.
So (T, µ, ν) is not an automata field.

TABLE III
STATE TRANSITION TABLE OF

∑
G y0 y1 y2

p0 p1 p0 p2

p1 p2 p1 p0

p2 − p2 p1

Example 3.4: Consider the automata field in example 3.2.
Let us take ST = {G (p0, y0)}.
This set is a sub-automata field. Since (ST , µ) and (ST , ν)

are abelian group with G (p0, y0) identity of (ST , µ),
It is trivial automata field. By the definition of maps µ and ν,

µ (G (p0, y0), G (p0, y0)) = G (p0, y0)

ν (G (p0, y0), G (p0, y0)) = G (p0, y0)

Example 3.5: Consider the automata field in example 3.2.
Let us calculate the characteristic of the automata field.
According to the definition of the characteristic of automata
field µ (Gn (pa, yi)) = G (pe, ye) ∀ G (pa, yi) ∈ T is 5.

Below is the computation.
µ (G5 (p0, y0)) = µ (G (p0, y0), G (p0, y0), G (p0, y0)),

G (p0, y0), G (p0, y0)) = G (p0, y0).
µ (G5 (p1, y0)) = µ (G (p1, y0), G (p1, y0), G (p1, y0),

G (p1, y0), G (p1, y0)) = µ (G (p2, y0), G (p1, y0),

G (p1, y0) G (p1, y0)) = µ (G (p3, y0), G (p1, y0),

G (p1, y0)) = µ (G (p4, y0), G (p1, y0)) = G (p0, y0).

µ (G5 (p2, y0)) = µ (G (p2, y0), G (p2, y0), G (p2, y0),

G (p2, y0), G (p2, y0)) = µ (G (p4, y0), G (p2, y0),

G (p2, y0) G (p2, y0)) = µ (G (p1, y0), G (p2, y0),

G (p2, y0)) = µ (G (p3, y0), G (p2, y0)) = G (p0, y0).
µ (G5 (p3, y0)) = µ (G (p3, y0), G (p3, y0), G (p3, y0),

G (p3, y0), G (p3, y0)) = µ (G (p1, y0), G (p3, y0),

G (p3, y0) G (p3, y0)) = µ (G (p4, y0), G (p3, y0),

G (p3, y0)) = µ (G (p2, y0), G (p3, y0)) = G (p0, y0).
µ (G5 (p4, y0)) = µ (G (p4, y0), G (p4, y0), G (p4, y0),

G (p4, y0), G (p4, y0)) = µ (G (p3, y0), G (p4, y0),

G (p4, y0) G (p4, y0)) = µ (G (p2, y0), G (p4, y0),

G (p4, y0)) = µ (G (p1, y0), G (p4, y0)) = G (p0, y0).
So, the characteristic of the automata field is 5.

Example 3.6: Let (T, µ, ν) and (T ′, µ, ν) be two automata
fields. Consider f : T → T ′ defined as f (t) = t, i.e identity
map.
(i)f (µ (G (pa, yi), G (pb, yj))) = µ (G (pa, yi), G (pb,

yj)) = G (pa⊕|T |b, yi⊕|T |j)

µ (f (G (pa, yi)), f (G (pb, yj))) = µ (G (pa, yi), G (pb

, yj)) = G (pa⊕|T |b, yi⊕|T |j)

(ii)f (ν (G (pa, yi), G (pb, yj))) = ν (G (pa, yi), G (pb,

yj)) = ν (f (G (pa, yi)), f (G (pb, yj))).
(iii) f (G (pe, ye)) = G (pe, ye) = G (p′e, y

′
e).

This results that f is an automata field homomorphism.

Example 3.7: Let us examine the example 3.2.
According to the example, the automata field has the chara-
cteristic 5. We aim to prove it is perfect by computing
ν (G5 (pa, yi)).
ν (G5 (p0, y0)) = ν (G (p0, y0), G (p0, y0), G (p0, y0)),

G (p0, y0), G (p0, y0)) = G (p0, y0).
ν (G5 (p1, y0)) = ν (G (p1, y0), G (p1, y0), G (p1, y0)),
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G (p1, y0), G (p1, y0)) = G (p1, y0).
ν (G5 (p2, y0)) = ν (G (p2, y0), G (p2, y0), G (p2, y0),

G (p2, y0), G (p2, y0)) = ν (G (p4, y0), G (p2, y0),

G (p2, y0) G (p2, y0)) = ν (G (p3, y0), G (p2, y0),

G (p2, y0)) = ν (G (p1, y0), G (p2, y0)) = G (p2, y0).
ν (G5 (p3, y0)) = ν (G (p3, y0), G (p3, y0), G (p3, y0),

G (p3, y0), G (p3, y0)) = ν (G (p4, y0), G (p3, y0),

G (p3, y0) G (p3, y0)) = ν (G (p2, y0), G (p3, y0),

G (p3, y0)) = ν (G (p1, y0), G (p2, y0)) = G (p3, y0).
ν (G5 (p4, y0)) = ν (G (p4, y0), G (p4, y0), G (p4, y0),

G (p4, y0), G (p4, y0)) = ν (G (p1, y0), G (p4, y0),

G (p4, y0) G (p4, y0)) = ν (G (p4, y0), G (p4, y0),

G (p4, y0)) = ν (G (p1, y0), G (p4, y0)) = G (p4, y0).
This implies T 5 = {ν (G5 (pa, yi)) | G (pa, yi) ∈ T} = T .
So, the automata field is perfect.

IV. CHARACTERISTICS OF AUTOMATA FIELD

This section will examine the essential theorems developed
by studying the automata field. The application of field prop-
erties in finite automata is what enables this achievement.
These theorems provide valuable insights into the character-
istics and properties of algebraic structures, helping to reveal
their fundamental nature. By using automata theory, we have
found interesting connections between abstract algebra and
computational models. These theorems deepen our under-
standing of the automata field and set the groundwork for
future advancements. We aim to establish a strong framework
for studying algebraic automata theory.

Theorem 4.1: Let T be an automata field.
(i) The additive identity in T is unique.
(ii) The additive inverse in T is unique.
(iii) The Multiplicative identity in T is unique.
(iv) The multiplicative inverse in T is unique.

Proof: (i) Let us assume the existence of two state functions,
G(pe, ye) and G1(pe, ye), belonging to the automata field T .
These functions satisfy the conditions:

µ(G(pa, yi), G(pe, ye)) = G(pa, yi) = µ(G(pe, ye),

G1(pa, yi)) for all G(pa, yi), and

µ(G(pa, yi), G1(pe, ye)) = G(pa, yi) = µ(G1(pe, ye),

G(pa, yi)) for all G(pa, yi).

It implies that

µ(G(pa, yi), G(pe, ye)) = µ(G(pa, yi), G1(pe, ye)) =

G(pa, yi).

Therefore,

µ(G(pa, yi), G(pe, ye)) = µ(G(pa, yi), G1(pe, ye)) =

G(pa, yi).

As T is a deterministic finite automaton, we can conclude
that G(pe, ye) = G1(pe, ye). Thus, we have shown that the

additive identity in T is unique.

(ii) Let us consider two state functions, G((pa)−1, (yi)−1)
and G1((pa)

−1, (yi)
−1), both belonging to the automata field

T . These functions satisfy the conditions:

µ(G(pa, yi), G((pa)
−1, (yi)

−1)) = G(pe, ye) = µ(G((pa)
−1,

(yi)
−1), G1(pa, yi)) for all G(pa, yi), and

µ(G(pa, yi), G1((pa)
−1, (yi)

−1)) = G(pe, ye) = µ(G1((pa)
−1,

(yi)
−1), G(pa, yi)) for all G(pa, yi).

It implies that

µ(G(pa, yi), G((pa)
−1, (yi)

−1)) = µ(G(pa, yi), G1((pa)
−1,

(yi)
−1)) = G(pe, ye).

Therefore,

µ(G(pa, yi), G((pa)
−1, (yi)

−1)) = µ(G(pa, yi), G1((pa)
−1,

(yi)
−1)) = G(pe, ye).

As T is a deterministic finite automaton, we can conclude
that G((pa)−1, (yi)−1) = G1((pa)

−1, (yi)
−1). Thus, we

have shown that the additive inverse in T is unique.

(iii) Let G′(pe, ye) and G′′(pe, ye) be two state functions in
the automata field T such that

ν(G(pa, yi), G
′(pe, ye)) = G(pa, yi) = ν(G′(pe, ye),

G(pa, yi)) for all G(pa, yi), and

ν(G(pa, yi), G
′
1(pe, ye)) = G(pa, yi) = ν(G′1(pe, ye),

G(pa, yi)) for all G(pa, yi).

This implies that

ν(G(pa, yi), G
′(pe, ye)) = ν(G(pa, yi), G

′
1(pe, ye)) =

G(pa, yi).

Therefore,

ν(G(pa, yi), G
′(pe, ye)) = ν(G(pa, yi), G

′
1(pe, ye)) =

G(pa, yi).

As T is a deterministic finite automaton, we can conclude
that G′(pe, ye) = G′1(pe, ye). Thus, we have shown that the
multiplicative identity in T is unique.

(iv) Suppose there exist two state functions
G′((pa)

−1, (yi)
−1) and G′1((pa)

−1, (yi)
−1) in the automata

field T such that

ν(G(pa, yi), G
′((pa)

−1, (yi)
−1)) = G′(pe, ye) = ν(G′((pa)

−1,

(yi)
−1), G(pa, yi)) for all G(pa, yi), and

ν(G(pa, yi), G
′
1((pa)

−1, (yi)
−1)) = G(pe, ye) = ν(G′1((pa)

−1,

(yi)
−1), G(pa, yi)) for all G(pa, yi).

It implies that

ν(G(pa, yi), G
′((pa)

−1, (yi)
−1)) = ν(G(pa, yi), G

′
1((pa)

−1,
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(yi)
−1)) = G′(pe, ye).

So,

ν(G(pa, yi), G
′((pa)

−1, (yi)
−1)) = ν(G(pa, yi), G

′
1((pa)

−1,

(yi)
−1)) = G′(pe, ye).

As T is a deterministic finite automaton, we can conclude
that G′((pa)−1, (yi)−1) = G′1((pa)

−1, (yi)
−1). Thus, we

have shown that the multiplicative inverse in T is unique. It
completes the proof.

Theorem 4.2: In the automata field T , the only ideals are
{G(p0, y0)} and T .

Proof: Suppose there exists a non-zero ideal of the automata
field T other than T , denoted as A ⊂ T . It must contain a
non-zero element that is also a unit, as T is an automata
field. Since A is ideal, this non-zero element and its
inverse will form a unity, i.e., G(p1, y1) and G(p1, y1) ∈
A. Therefore, for all a and i, ν(G(p1, y1), G(pa, yi)) =
G(pa, yi). It implies that A = T . However, this contradicts
the assumption that A is a non-zero ideal distinct from T .
Therefore, no such non-zero ideal A exists, and the only
ideals of the automata field T are {G(p0, y0)} and T .

Theorem 4.3: An automata field is an automata integral
domain.

Proof: Let T be an automata field with zero element
G(pe, ye) and unity element G′(pe, ye). Assume there exist
two distinct elements G(pa, yi) and G(pb, yj) in T such that
their convolution, denoted as ν(G(pa, yi), G(pb, yj)), equals
G(pe, ye).
Now, assume G(pa, yi) 6= G(pe, ye). According to
the definition of an automata field, the inverse element
G((pa)

−1, (yi)
−1) exists in T , and we have G(pb, yj) =

ν(G′(pe, ye), G(pb, yj)).
This convolution can be expressed as follows:

ν(ν(G(pa, yi), G((pa)
−1, (yi)

−1)), G(pb, yj))

= ν(G((pa)
−1, (yi)

−1), ν(G(pa, yi), G(pb, yj)))

= ν(G((pa)
−1, (yi)

−1), G(pe, ye))

= G(pe, ye).

Similarly, if G(pb, yj) 6= G(pe, ye), we can
show that G((pb)

−1, (yj)
−1) exists in T and

G(pa, yi) = ν(G′(pe, ye), G(pa, yi)) equals G(pe, ye).
This leads to a contradiction to our initial assumption.
Therefore, we conclude that G(pa, yi) = G(pe, ye) and
G(pb, yj) = G(pe, ye).

Theorem 4.4: Every finite automata integral domain is also
an automata field.

Proof: The only requirement for a finite automata integral
domain to be an automata field is to establish the existence
of a multiplicative inverse for a state function that is not
equal to G(pe, ye).
Consider the sequence G(pa, yi), ν(G(pa, yi), G(pa, yi)),
and so forth. Due to the finiteness of elements, there
must exist integers m and n such that m < n and
ν(Gm(pa, yi)) = ν(Gn(pa, yi)).

This implies that G(pe, ye) can be expressed as
ν(Gm(pa, yi)) − ν(Gn(pa, yi)), which further simplifies to
ν(Gm(pa, yi))(G(p

′
e, y
′
e)− ν(Gn−m(pa, yi)).

Given that there are no zero-divisors, we can deduce that
ν(Gm(pa, yi) 6= G(pe, ye). Consequently, we find that
G(p′e, y

′
e) − ν(Gn−m(pa, yi)) = G(pe, ye), leading to

G(p′e, y
′
e) = G(pa, yi)(ν(G

n−m−1(pa, yi))).
It establishes the existence of a multiplicative inverse
for G(pa, yi), thereby confirming that the finite automata
integral domain is indeed an automata field.

Theorem 4.5: If T is a finite automata field, then the
characteristic of T is a prime number p.

Proof: Suppose T has characteristic n = ab, where a and
b are integers greater than 1. By the distributive property,
we have µ(Gn(p1, y1)) = ν(µ(Ga(p1, y1)µ(G

b(p1, y1)))).
Consequently, µ(Ga(p1, y1)) = 0 or µ(Gb(p1, y1)) = 0,
which contradicts the minimal property of characteristic.
This contradiction arises from the assumption that n can
be expressed as the product of two integers greater than
1, concluding that the characteristic of T must be a prime
number.

Theorem 4.6: If T is a finite automata field of
characteristic p, then the map φ : T → T defined by
G(pa, yi)→ Gp(pa, yi) is an injective homomorphism.

Proof: (i) Consider the expression φ(µ(G(pa, yi), G(pb, yj)
)). By the definition of φ, this is equivalent to
(µ(G(pa, yi), G(pb, yj))

p. This further simplifies to
µ((Gp(pa, yi)), (G

p(pb, yj))). By the properties of automata
fields, this is equal to µ(φ(G(pa, yi)), φ(G(pb, yj))).

(ii) Similarly, consider φ(ν(G(pa, yi), G(pb, yj))). This is
equal to ν(φ(G(pa, yi)), φ(G(pb, yj))).

(iii) Consider φ(G(pe, ye)). By the definition of φ,
this is equal to Gp(pe, ye). By the characteristic
property of the automata field, this is equivalent to
ν(G(pe, ye), G(pe, ye), ..., G(pe, ye)), which further
simplifies to G(pe, ye).

The injective property follows from the fact that if
Gp(pa, yi) = G(pe, ye), then G(pa, yi) = G(pe, ye). It
establishes the injective homomorphism property of φ.

Corollary 4.6: Let T be a finite automata field of
characteristic p. If φ is an automorphism of T , then φ
preserves the field structure of T .

Proof: We only need to prove the surjection of φ. Since T
is a finite automaton field, we know φ is onto because it is
1-1. Therefore, φ is an automorphism of T .

Theorem 4.7: If φ : T → T ′ is an automata field
homomorphism, then the kernel of φ is given by:

ker(φ) = {G(p0, y0)} or ker(φ) = T

Proof: Consider an automata field homomorphism f : T →
T ′. We want to establish that the kernel of f , denoted as
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kerf , is either G(p0, y0) or the entire field T .
Firstly, we note that f(G(pe, ye)) = G(p′e, y

′
e). This implies

that if G(pe, ye) is in kerf , then f(G(pe, ye)) equals the
identity element in T ′, and consequently, kerf is nonempty.
Assume there exist elements G(pa, yi) and G(pb, yj) in
kerf . It implies that

f(G(pa, yi)) = G(p′e, y
′
e) and f(G(pb, yj)) = G(p′e, y

′
e).

Consequently, considering the multiplication operation in T ′,
we observe that

f(µ(G(pa, yi), G(p
−1
b , y−1j ))) = µ(f(G(pa, yi)), f(G(p

−1
b ,

y−1j ))) = G(p′e, y
′
e).

It implies that µ(G(pa, yi), G(p
−1
b , y−1j )) is also

in kerf . Similarly, ν(G(pa, yi), G(pr, yr)) and
ν(G(pr, yr), G(pa, yi)) are in kerf . It establishes that
kerf is an ideal of T .
Now, the ideals of an automata field are G(p0, y0) and the
automata field T , we conclude that kerf must be either
G(p0, y0) or T . Thus, the kernel of an automata field
homomorphism from T to T ′ is either G(p0, y0) or the
automata field T .

Theorem 4.8: Let φ : G → H be an automata field
homomorphism. Then, φ is injective.

Proof: Indeed, assuming φ is an automata field
homomorphism implies that it is also an automata
ring homomorphism. It is worth noting that the kernel of
an automata ring homomorphism is an automata ideal, and
an automata field G only possesses two automata ideals:
G(pe, ye) and G.
Furthermore, by the definition of an automata field
homomorphism, φ(G′(pe, ye)) = G′(pe, ye) holds.
Consequently, G′(pe, ye) is not in the kernel of the
map, implying that the kernel must be equal to G(pe, ye).
This fact, coupled with the limited options for automata
ideals in G, leads to the conclusion that the kernel of φ is
G(pe, ye). Therefore, we have the injectivity of φ.

Theorem 4.9: Every finite automata field is perfect.

Proof: Assume T is a finite automata field with characteristic
p. Let φ : T → T be defined as

φ(G(pa, yi)) = Gp(pa, yi) for all G(pa, yi) ∈ T.
We claim that φ is an automata field automorphism.
Firstly, observe that

φ(µ(G(pa, yi), G(pb, yj))) = µ(G(pa, yi), G(pb, yj))
p =

Gp(pa⊕nb, yi⊕mj) = Gp(pa, yi)⊕n G
p(pb, yj) =

µ(φ(G(pa, yi)), φ(G(pb, yj))).

Moreover, φ(ν(G(pa, yi), G(pb, yj))) = ν(G(pa, yi), G(pb,

yj))
p = Gp(pa⊗nb, yi⊗mj) = Gp(pa, yi)⊗n G

p(pb, yj) =

ν(φ(G(pa, yi)), φ(G(pb, yj))).

Finally, as Gp(pa, yi) 6= G(pe, ye) when G(pa, yi) 6=
G(pe, ye), it follows that kerφ = {G(pe, ye)}. Therefore, φ
is injective. Since T is finite, φ is also surjective, implying
T p = T .
Hence, every finite automata field is perfect.

V. STRUCTURE OF AUTOMATA FIELD

In this section, we explore the complexities of the automata
field structure, which can be classified into two distinct types.
Within the context of this discussion, the organisational
framework that defines the scope of automata studies is the
primary focus. These two categories of structures have a
significant influence on the dynamics of the field as well as
the way it is understood. The purpose of this investigation
is to provide a comprehensive and illuminating examination
with the goal of elucidating the fundamental components that
contribute to the overall framework of automata research.
The purpose of this examination is to provide insights into
the fundamental principles that govern the field, thereby
providing a solid understanding for those who are exploring
the various aspects of automata theory.

a g1, g2, ..., gn

Fig. 4. Structure/type-1
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an

g1

g1

g1

g1

g1

Fig. 5. Structure/type-2

Theorem 5.1: If the set T which has the structure that
o(Q) = p and o(A) = 1 or o(Q) = 1 and o(A) = p with
cardinality equals p for some prime p. Then the set T is an
automata field.

Proof: By the definition of T we have T = {G (pa, yi) | pa
∈ Q, yi ∈ A, a, i ∈ N ∪ {0}}. Since we have o(Q) = p and
o(A) = 1 it follows that T = {G (p0, y0), ..., G (pp, y0)}
implying |T | = p. Notably, the set {0, 1, 2, ..., p} = Zp is a
field. With the operations defined for automata field, it can
be deduced that T satisfies the axioms of automata field.
Therefore, T is indeed an automata field.

Theorem 5.2: For a set T with cardinality |T | = pn where
n 6= 1, T is not an automata field.
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Proof: The definition of an automata field specifies that the
cardinality of T must be p to satisfy the conditions for an
automata field. Specifically, for |T | = p, the set T forms an
automata field. However, for other forms of pn, where n 6= 1,
the set T fails to meet the axioms of an automata field.
Consider the elements G(pa, y0) and G(p0, yi) in T . For
these elements, the computation of ν yields:

ν(G(pa, y0), G(p0, yi)) = G(p0, y0),

ν(G(p0, y0), G(pa, y0)) = G(p0, y0),

ν(G(p0, y0), G(p0, yi)) = G(p0, y0).

This implies that for the order of T other than p, the set T
does not form an integral domain, and consequently, it does
not qualify as an automata field. Therefore, the theorem
holds true.

Theorem 5.3: In this automata field, the only sub-automata
fields are ST = {G(p0, y0)} and T , both of which are trivial
sub-automata fields.

Proof: Given that |T | = p, by Lagrange’s theorem, the
order of a subfield must divide the order of the field. The
only divisors of the prime number p are 1 and p itself.
Consequently, the only sub-automata fields that satisfy the
axioms of an automata field are ST = {G(p0, y0)} and T .
Therefore, these are the only sub-automata fields, and both
are trivial.

VI. CONCLUSION

The researchers have already established the definition of
automata rings and have presented theorems and illustrations
pertaining to automata rings. We formulated the definition for
the automata field as an extension. We have analysed and
identified the structures and characteristics of the automata
field. We have demonstrated the theorems and corollaries
pertaining to the automata field, drawing upon the funda-
mental theorems and corollaries associated with the algebraic
concept of a field. Thus, from the constructed automata field,
one can analyse the characteristics and properties of the field
with prime order p. In the future, this work has the potential
to be expanded to include extension fields, Galois fields, and
other related areas.
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