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Abstract—This paper discusses the problem of finding the
state transformation and feedback law for linearizing nonlinear
systems. The construction of the state transformation and
feedback law is proposed for two types of nonlinear systems.
The steps are easy for practitioners to understand and follow.
The result in this paper generalizes the well-known feedback
linearization result for triangular systems by Meyer, Su, and
Hunt. Two numerical examples are given to illustrate the state
transformation and feedback law’s construction process.

Index Terms—feedback linearization; coordinate transforma-
tion; nonlinear systems; triangular systems

I. INTRODUCTION

L INEAR system theories are relatively more mature,
with many design and analysis tools available for use;

in contrast, Controlling nonlinear systems poses greater
challenges. Due to the inherent complexity of nonlinear
systems, researchers began exploring advanced techniques,
particularly in the field of differential geometry, to analyze
and control such systems. This shift in focus was partly
driven by the increasing prevalence of nonlinear dynamics in
communication, networked systems, and other cyber-physical
domains.

In the early 70’s, researchers started to use differential
geometry to analyze nonlinear systems partly driven by the
needs in the aerospace industry. In the last three decades,
many significant discoveries have been made in nonlinear
geometric control theory [1]. An extensive review of the
history of nonlinear geometric control up to the early 90’s can
be found in [2], [3]. Exact linearization of nonlinear systems
is one of the major research topics in nonlinear control
theory. In the late 70’s, exact linearization of nonlinear
systems via state transformation was first proposed by Krener
[4]. A necessary and sufficient condition was derived for
the existence of diffeomorphic nonlinear coordinate trans-
formation to convert an affine nonlinear control system to
a controllable linear system [4]. Brockett further introduced
the concept of feedback invariance for nonlinear systems by
adding feedback to the state coordinate transformation [5].

Consider an affine nonlinear system described by the
equation

ẋ = f(x) + g(x)u (1)

where x ∈ Rn, f(0) = 0, and f(x) and g(x) are n-
dimensional C∞ vector fields. This system is said to be
locally feedback linearizable if there exists a nonlinear coor-
dinate transformation, a diffeomorphism defined in an open
neighborhood of the origin x = 0,

z = T (x) (2)
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and a feedback law

u = α(x) + β(x)v (3)

such that
ż = Az + bv (4)

where (A, b) is a controllable pair in Brunovsky form [6],
z, b ∈ Rn, A ∈ Rn×n, and u, v, α(), β() ∈ R1. This
definition can be easily extended to a multi-input case. If
the linearization is valid in a given region, the system (1) is
called globally feedback linearizable.

Since

ż =
∂T (x)

∂x
{f(x) + g(x)[α(x) + β(x)v]}|x=T−1(z),

feedback linearization is equivalent to finding coordinate
transformation T ( ) in Equation (2), and α( ) β( ) in the
feedback law (3) such that

∂T (x)

∂x
{f(x) + g(x)α(x)}|x=T−1(z) = Az

∂T (x)

∂x
{g(x)β(x)}|x=T−1(z) = b

The existence of such functions is highly non-trivial.
Jakubczyk and Respondek [7], Su [8], and Su, Meyer, and
Hunt [9] presented necessary and sufficient conditions for
the existence of linearizing coordinate transformation and
feedback law.

Theorem 1: [2] The affine nonlinear system (1) is locally
feedback linearizable if and only if the following
conditions hold in an open neighborhood of the origin:
(1) The following distribution is involutive

D = span{g(x), adfg(x), ad2fg(x), ..., adn−2
f g(x)}

(2) rank[g(x), adfg(x), ad
2
fg(x), ..., ad

n−1
f g(x)] = n

The definitions for the Lie derivative adifg(x), involutivity,
and other terminologies in differential geometry can be found
in [2], [3], [10].

Feedback linearization has been mostly viewed as a com-
pletely solved control problem, a mature field, and a great
success in nonlinear control theory.

Meanwhile, global feedback linearization problem is sig-
nificantly more complex than the local feedback linearization
problem. Many results can be found in [11], [12], [13], [14].

The majority of the theoretical studies in this field have
focused on the existence of the linearizing coordinate trans-
formation and feedback law. However, finding the coordinate
transformation and feedback law can be challenging. The
construction of the coordinate transformation requires solv-
ing the following set of partial differential equations (see
[2]):

<
∂λ(x)

∂x
, g(x) >=<

∂λ(x)

∂x
, adfg(x) >= · · ·
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=<
∂λ(x)

∂x
, adn−2

f g(x) >= 0

with the constraint

<
∂λ(x)

∂x
, adn−1

f g(x) > ̸= 0

where the operation < , > is the inner product of two
vector fields.

Feedback linearization has been used in many nonlinear
control problems, spanning motor control [15], robotics [16],
[17], power system control [18], flight control [19], and un-
manned aerial vehicle control [20]. A common challenge in
these applications involves solving partial differential equa-
tions, which has been addressed through various approaches.
In some instances, an output y = h(x) naturally emerges as
the solution to the partial differential equation. Alternatively,
a judicious selection of coordinates, such as position and
velocity derived from Newton’s Second Law, may also serve
as the solution. MATLAB, for instance, facilitates feedback
linearization by necessitating the user to furnish the function
y = h(x), utilizing it as a solution to the partial differential
equations.

Cheng et al. developed a sophisticated methodology for
finding the coordinate transformation using the semi-tencor
product [21], constructing the coordinate transformation by
iteratively adding higher-order terms. This approach works
well for local feedback linearization; however, it has limi-
tations for global applications, where omitted higher-order
terms may become significant in regions distant from the
origin.

Solving partial differential equations with constraints can
be more challenging than solving the original nonlinear
differential equations. Consequently, the feedback lineariza-
tion problem remains partially unsolved due to the lack of
practical methodologies for coordinate transformation and
feedback law construction.

For a specific class of nonlinear systems with a structured
form known as triangular systems triangular systems [19],
[22], explicit construction of the coordinate transformation
and feedback law is possible. This paper focuses on a
simplified version, strict triangular systems, for clarity and
accessibility.

A strict triangular system has the following form

ẋ1 = f1(x1) + x2

ẋ2 = f2(x1, x2) + x3

ẋ3 = f3(x1, x2, x3) + x4

...
ẋn−1 = fn−1(x1, x2, · · · , xn−1) + xn

ẋn = fn(x1, x2, · · · , xn) + gn(x)u

(5)

with fi(0) = 0 and gn(x) ̸= 0. Without loss of generality,
gn(x) can be assumed to be equal to 1 since the function
gn(x) can be taken care of by the input transformation u =

1
gn(x)

v. The assumption fi(0) = 0 is needed for 0 to be
the equilibrium point with no input. gn(x) ̸= 0 is necessary
because otherwise the system would not be controllable.

Theorem 2: [22] The strict triangular system (5) is
globally feedback linearizable. The coordinate

transformation is given by

z1 = x1

z2 = ż1 = f1(x1) + x2

z3 = ż2
...

zn = żn−1

The coordinate transformation and feedback law for feed-
back linearization are also used in other areas such as
nonlinear adaptive control. In the back-stepping design of
an adaptive controller for nonlinear systems proposed by
Kanellakopoulos et al. [23], it was assume that the nonlinear
system was transformed into the strict triangular form before
adaptive laws were derived. Without the actual coordinate
transformation and feedback law, it is impractical to apply
back-stepping design to nonlinear systems that are not in the
form of triangular systems.

Triangular systems are also seen in other control system
design problems [24]. However, many systems are not trian-
gular systems.

Zhan and Wang found necessary and sufficient conditions
for an affine nonlinear system (1) to be transformed to a
triangular system by linear coordinate transformation [25].
However, their methodology only works when g(x) is a
constant vector. Apparently, this condition is not satisfied
for all systems.

In this paper, a nonlinear system with a structure similar
to that of strict triangular systems will be considered. This
class of systems is not triangular systems, and g(x) may
not be constant; thus, the results in [19], [22], [25] are not
applicable.

II. EXTENDED TRIANGULAR SYSTEMS

Consider the following n-dimensional nonlinear system:

ẋ1 = f1(x1) + x2 + g(x2)x3

ẋ2 = f2(x1, x2) + x3

ẋ3 = f3(x1, x2, x3) + x4

...
ẋn−1 = fn−1(x1, x2, · · · , xn−1) + xn

ẋn = fn(x1, x2, · · · , xn) + gn(x)u

(6)

where g(0) = 0 and gn(0) ̸= 0. The system (6) will be
referred to as a type A extended triangular system. Strict
triangular systems are a special case of the type A extended
triangular system with g(x2) = 0.

Theorem 3: The type A extended triangular system (6) is
feedback linearizable with the following coordinate
transformation:

z1 = x1 −
∫ x2

0

g(t)dt

z2 = ż1 = f1(x1) + x2 − g(x2)f2(x1, x2)

...
zn = żn−1

Proof: Define z1 as

z1 = x1 −
∫ x2

0

g(t)dt
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It follows that

ż1 = f1(x1) + x2 + g(x2)x3 − g(x2)[f2(x1, x2) + x3]

= f1(x1) + x2 − g(x2)f2(x1, x2)

Define z2 as

z2 = f1(x1) + x2 − g(x2)f2(x1, x2)

It follows that
ż1 = z2

Note that the transformation (x1, x2, x3, ..., xn) →
(z1, z2, x3, ..., xn) is a valid coordinate transformation lo-
cally around the origin since the Jacobian matrix evaluated
at 0 is nonsingular under the assumption g(0) = 0.

Taking the derivative of z2 to get

ż2=
df1(x1)
dx1

[f1(x1) + x2 + g(x2)x3] + f2(x1, x2)+

x3 − g(x2)
∂f2(x1,x2)

∂x1
[f1(x1) + x2 + g(x2)x3]−

∂(g(x2)f2(x1,x2))
∂x2

[f2(x1, x2) + x3]

(7)

it can be seen that ż2 is an affine function of x3, and ż2 can
be written in the following form

ż2 = f
′

1(z1, z2) + f
′

2(z1, z2)x3 + x3,

where f
′

1 and f
′

2 are defined based on the right hand side of
Equation (7), and f

′

2(0, 0) = 0. Let

z3 = f
′

1(z1, z2) + f
′

2(z1, z2)x3 + x3

Since f
′

2(0, 0) = 0, the Jacobian matrix for the transforma-
tion (x1, x2, x3) → (z1, z2, z3) evaluated at 0 is nonsingular.
Therefore, (x1, x2, x3, ..., xn) → (z1, z2, z3, x4, ..., xn) is a
valid coordinate transformation. This process of defining zi
as the derivative of zi−1 can be continued until i = n. The
last equation can be written as

żn = f
′

n−1(z) + f
′

n(z)u+ gn(x)u,

where f
′

n(0) = 0. Therefore, the input transformation of

f
′

n−1(z) + f
′

n(z)u+ gn(x)u = v

completes the final step of feedback linearization.

Q.E.D.

Next, consider the following n-dimensional nonlinear sys-
tem: 

ẋ1 = f1(x1) + x2 + x1g(x2)x3

ẋ2 = f2(x1, x2) + x3

ẋ3 = f3(x1, x2, x3) + x4

...
ẋn−1 = fn−1(x1, x2, · · · , xn−1) + xn

ẋn = fn(x1, x2, · · · , xn) + gn(x)u

(8)

where gn(0) ̸= 0. The system (8) will be referred to as a
type B extended triangular system. Strict triangular systems
are a special case of the type B extended triangular system
with g(x2) = 0.

Theorem 4: The type B extended triangular system (8) is
feedback linearizable with the following coordinate
transformation:

z1 = x1e
−

∫ x2
0 g(t)dt

z2 = ż1 = [f1(x1) + x2 − x1g(x2)f2(x1, x2)]e
−

∫ x2
0 g(t)dt

...
zn = żn−1

Proof: Define z1 as

z1 = x1e
−

∫ x2
0 g(t)dt

It follows that

ż1 = f1(x1) + x2 + x1g(x2)x3e
−

∫ x2
0 g(t)dt

−x1g(x2)[f2(x1, x2) + x3]e
−

∫ x2
0 g(t)dt

= [f1(x1) + x2 − x1g(x2)f2(x1, x2)]e
−

∫ x2
0 g(t)dt

Define z2 as

z2 = [x2 + f1(x1) + x2 − x1g(x2)f2(x1, x2)]e
−

∫ x2
0 g(t)dt

It follows that
ż1 = z2

Note that the transformation (x1, x2, x3..., xn) →
(z1, z2, x3..., xn) is a valid coordinate transformation
locally around the origin since the Jacobian matrix evaluated
at 0 is nonsingular.

Taking the derivative of z2, one can derive an equation
similar to Equation (7) such that ż2 is an affine function of
x3, and it can be written in the following form

ż2 = f
′

1(z1, z2) + f
′

2(z1, z2)x3 + x3

with f2(0, 0) = 0.
The rest of the proof is exactly the same as that of Theorem

3.

Q.E.D.

Remarks:
1. While strict triangular systems are always globally
feedback linearizable in the entire state space, the types A
and B extended triangular systems are in general only
locally feedback linearizable. In the proofs, the Jacobian
matrix is not zero in a small neighborhood of the origin,
which only guarantees the existence of inverse
transformation around the origin.
2. It can be shown that not only strict triangular systems,
but also triangular systems more general can be extended to
include the extra term g(x2)x3 or x1g(x2)x3. In this case,
both triangular systems and types A and B extended
triangular systems are locally feedback linearizable.

III. TWO DIMENSIONAL SYSTEMS

In case of two dimensional systems, the variable x3 in
g(x2)x3 and x1g(x2)x3 will be replaced by u correspond-
ingly for types A and B extended triangular systems.

A two dimensional type A extended triangular system has
the following form:{

ẋ1 = f1(x1) + x2 + g2(x)g(x2)u

ẋ2 = f2(x) + g2(x)u
(9)
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where g2(x) ̸= 0, x = (x1, x2), and g(0) = 0.
Corollary 1: A two dimensional type A extended trian-

gular system (9) is feedback linearizable with the following
coordinate transformation:

z1 = x1 −
∫ x2

0
g(t)dt

z2 = ż1

Proof: First, apply a control variable substitution
g2(x)u = u′ to have the following type A extended triangular
system {

ẋ1 = f1(x1) + x2 + g(x2)u
′

ẋ2 = f2(x) + u′ (10)

Next, define a new coordinate z1 as

z1 = x1 −
∫ x2

0

g(t)dt

It follows that

ż1 = f1(x1) + x2 + g(x2)u
′ − g(x2)[f2(x) + u′]

= f1(x1) + x2 − g(x2)f2(x)

To simplify the notation, define f3(z1, x2) as

f3(z1, x2) = f1(x) + x2 − g(x2)f2(x)|x1=z1+
∫ x2
0 g(t)dt

and define the second coordinate z2 as

z2 = f3(z1, x2)

then

ż1 = z2

ż2 =
∂f3(z1, x2)

∂z1
z2 +

∂f3(z1, x2)

∂x2
[f2(x) + u′]

It can be verified that this system is locally feedback lin-
earizable since

∂f3(z1, x2)

∂x2
̸= 0

Introducing a new control variable v

v =
∂f3(z1, x2)

∂z1
z2 +

∂f3(z1, x2)

∂x2
[f2(x) + u′],

one gets a controllable linear system{
ż1 = z2

ż2 = v

Combining all the steps, one gets the coordinate transforma-
tion

z1 = x1 −
∫ x2

0

g(t)dt

z2 = f3(z1, x2)

and the feedback law

u =
−1

g2(x)

{
f2(x) +

[
∂f3(z1, x2)

∂x2

]−1
∂f3(z1, x2)

∂z1
z2

}

− 1

g2(x)

[
∂f3(z1, x2)

∂x2

]−1

v

With z1 and z2 substituted as functions of x1 and x2 into
the above formula, the feedback law takes the required form
of u = α(x) + β(x)v.

Q.E.D.

A similar result can be derived for two dimensional type
B extended triangular systems. A two dimensional type B
extended triangular system has the following form:{

ẋ1 = f1(x1) + x2 + g2(x)x1g(x2)u

ẋ2 = f2(x) + g2(x)u
(11)

where g2(x) ̸= 0, x = (x1, x2), and g(0) = 0.
Corollary 2: A two dimensional type B extended triangu-

lar system (11) is feedback linearizable with the following
coordinate transformation:

z1 = x1e
−

∫ x2
0 g(t)dt

z2 = ż1

Proof: First, apply a control variable substitution
g2(x)u = u′ to have the following type A extended triangular
system {

ẋ1 = f1(x1) + x2 + x1g(x2)u
′

ẋ2 = f2(x) + u′ (12)

Next, define a new coordinate z1 as

z1 = x1e
−

∫ x2
0 g(t)dt

It follows that

ż1 = [f1(x1) + x2 − x1g(x2)f2(x)]e
−

∫ x2
0 g(t)dt (13)

To simplify the notation, define f3(z1, x2) as the righ hand
side of Equation(13) with x1 substituted by z1e

∫ x2
0 g(t)dt.

Now define the second coordinate z2 as

z2 = f3(z1, x2)

then

ż1 = z2

ż2 =
∂f3(z1, x2)

∂z1
z2 +

∂f3(z1, x2)

∂x2
[f2(x) + u′]

It can be verified that this system is locally feedback lin-
earizable since

∂f3(z1, x2)

∂x2
̸= 0

Introducing a new control variable v

v =
∂f3(z1, x2)

∂z1
z2 +

∂f3(z1, x2)

∂x2
[f2(x) + u′],

one gets a controllable linear system{
ż1 = z2

ż2 = v

Combining all the steps, one gets the coordinate transforma-
tion

z1 = x1 −
∫ x2

0

g(t)dt

z2 = f3(z1, x2)

and the feedback law

u =
−1

g2(x)

{
f2(x) +

[
∂f3(z1, x2)

∂x2

]−1
∂f3(z1, x2)

∂z1
z2

}

− 1

g2(x)

[
∂f3(z1, x2)

∂x2

]−1

v
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With z1 and z2 substituted as functions of x1 and x2 into
the above formula, the feedback law takes the required form
of u = α(x) + β(x)v.

Q.E.D.

Remarks 1. The feedback law looks complicated and the
derivation steps are tedious, nonetheless, the process is fairly
straightforward. The relatively simple construction process
allows practitioners to use symbolic calculation such as in
MATLAB [26] or other similar software packages [27].

2. The feedback linearization conditions can be expressed
as a certain function not equal to zero instead of the in-
volutivity of a distribution and non-singularity of another
distribution. This is extremely helpful when trying to extend
the result to the global feedback linearization problem.

3. Systems (10) and (12) have a non-constant coefficient
of the control variable u; thus the results in [19], [22], [25]
are not applicable.

IV. NUMERICAL EXAMPLES

Two numerical examples are presented in this section to
illustrate the step-by-step process of finding coordinate trans-
formation for feedback linearization in the context of types
A and B extended triangular systems. These examples serve
to provide practical insights and enhance the understanding
of the discussed methodology.

Example 1. Given the following nonlinear system

ẋ1 = x2 + sin(x1 + x2
2)− 2x2(1 + x2

1)u

ẋ2 = (1 + x2
1)u

Letting u′ = (1 + x2
1)u, the system is rewritten as

ẋ1 = x2 + sin(x1 + x2
2)− 2x2u

′

ẋ2 = u′

Define the new coordinate z1:

z1 = x1 −
∫ x2

0

−2tdt = x1 + x2
2

It follows that

ż1 = x2 + sin(x1 + x2
2)

Now define z2 as

z2 = x2 + sin(x1 + x2
2)

It follows that

ż2 = u′ + cos(x1 + x2
2)[x2 + sin(x1 + x2

2)]

Letting

v = u′ + cos(x1 + x2
2)[x2 + sin(x1 + x2

2)]

one can solve for u:

u =
− cos(x1 + x2

2)[x2 + sin(x1 + x2
2)]

1 + x2
1

+
1

1 + x2
1

v

With this feedback law and the coordinate transformation
(x1, x2) → (z1, z2), one gets a linear controllable system

ż1 = z2

ż2 = v

The inverse transformation is given by:

x1 = z1 − (z2 − sin(z1))
2

x2 = z2 − sin(z1)

For every point in the state space, the inverse of the coor-
dinate transformation exists. The coordinate transformation
and its inverse are both differentiable. The feedback law is
also invertible. Therefore, the nonlinear system is globally
feedback linearizable in the entire state space.

Example 2. Now change one term in Example 1 (inside
the sin( ) function)

ẋ1 = x2 + sin(x1)− 2x2(1 + x2
1)u

ẋ2 = (1 + x2
1)u

Let u′ = (1 + x2
1)u, the system can be rewritten as

ẋ1 = x2 + sin(x1)− 2x2u
′

ẋ2 = u′

Define the new coordinate z1:

z1 = x1 −
∫ x2

0

−2tdt = x1 + x2
2

It follows that
ż1 = x2 + sin(x1)

Now define z2 as

z2 = x2 + sin(x1)

It follows that

ż2 = u′ + cos(x1)[x2 + sin(x1)− 2x2u
′]

Let
v = u′ + cos(x1)[x2 + sin(x1)− 2x2u

′]

one can solve for u:

u =
− cos(x1)[x2 + sin(x1)]

(1 + x2
1)[1− 2x2 cos(x1)]

+
1

(1 + x2
1)[1− 2x2 cos(x1)]

v

With the feedback law defined in the above equation and the
coordinate transformation defined as

z1 = x1 + x2
2 (14)

z2 = x2 + sin(x1) (15)

the nonlinear system is transformed into a linear controllable
one. The control value cannot be infinity, therefore

2x2 cos(x1) ̸= 1 (16)

The the inverse of the coordinate transformation must exist,
i.e., one must be able to solve x1, x2 from Equations (14,
15) as functions of z1, z2. The Jacobian matrix at the origin
can be calculated as [

1 0
1 1

]
Therefore, the coordinate transformation is a local diffeomor-
phism. The control variable u is also finite at the origin. One
can conclude that the system is locally feedback linearizable.

Using numerical methods, one can search point-wise for
the region over which feedback linearization is valid.
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Fig. 1. Region of bounded control in x coordinates

Fig. 2. Region of bounded control in z coordinates

It is straightforward to plot the constraint specified in (16).
Fig. 1 shows the graph of the function

x2 =
1

2 cos(x1)

The feedback law is valid as long as the coordinates (x1, x2)
does not fall on the curve in Fig. 1. Using Equations (14,
15), one can easily map the region in (x1, x2) coordinates
to a region in (z1, z2) coordinates, as illustrated in Fig. 2.

The invertability of coordinate transformation is more
complicated. First, note that the existence of inverse of the
mapping (z1, z2) → (x1, x2) is equivalent to the existence
of a unique solution x2 to the following equation, for any
given value (z1, z2)

x2 = z2 − sin(z1 − x2
2)

The existence of such a unique solution for x2 for a given
z coordinate (z1, z2) can be determined by finding the
intersection of two curves:

x2 = t

x2 = z2 − sin(z1 − t2)

where t is a variable that takes values in the range of x2 for
the region that is being considered for feedback linearization.
For example, if one is interested in feedback linearization for
the system in the region x1 ∈ [−2, 2], x2 ∈ [−3, 2], t can be
varied from -3 to 2, as illustrated in Fig. 3. An algorithm was
developed in MATLAB to search for the unique solution for

Fig. 3. Region where inverse transformation exists

Fig. 4. Region of valid coordinate transformation

any given z coordinates (z1, z2) that can be mapped from
(x1, x2). The result of the numerical search process for all
(z1, z2) of interest is plotted in Fig. 4. The shaded area in Fig.
4 are values of (z1, z2) for which a unique solution does not
exist. In the white area, the system is feedback linearizable.

Remarks:
1. Fig. 4 only shows that the particular coordinate
transformation derived in Example 2 does not have an
inverse transformation in the dark area. It is possible that
there exists other coordinate transformations that would
work in some area inside the dark area. In other words, the
white area in Fig. 4 is a sufficient but not necessary
condition for feedback linearization.
2. Once the search algorithm is developed, a different
region can be easily checked for feedback linearization by
changing the search scope.

V. CONCLUSIONS

In this paper, the problem of finding the coordinate trans-
formation and feedback law for feedback linearization is
studied. For systems with some special structures defined as
types A and B extended triangular systems, the coordinate
transformation and feedback law can be readily derived
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without the need to solve partial differential equations. The
triangular system is a special case for the extended triangu-
lar systems. Therefore, the result in this paper generalizes
the well-known feedback linearization result for triangular
systems by Meyer, Su, and Hunt [19], [22].

For two dimensional extended triangular systems, coef-
ficient of the control variable u can be non-constant; thus
the results in [19], [22], [25] are not applicable. When the
coefficient of u contains higher order terms, the systems
cease to be bilinear. As a consequence, the results presented
in [28] are not applicable.

While the derivation of the coordinate transformation and
feedback law may appear tedious, the use of symbolic
computation software streamlines the process.

While this paper only presents the single input case, a
similar result can be easily derived for multi-input case.

Future work includes development of a dedicated software
package designed for feedback linearization in extended
triangular systems. Such software holds the potential to
make feedback linearization more accessible to practicing
engineers in the field of nonlinear system control.
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