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Abstract— In this article, an efficient iterative technique has 

been developed to solve the nonlinear fractional order differen-

tial equation based on the Legendre wavelet. The primary ob-

jective of the proposed scheme is to convert the nonlinear prob-

lem into a system of linear algebraic equations. The efficiency 

and accuracy of the present scheme have been investigated 

through various numerical examples and the obtained results 

demonstrate superior accuracy compared to existing ap-

proaches. The solution of the present scheme improves as the 

Legendre wavelet parameter or number of iterations increases. 

The convergence of the iterative technique is investigated 

through numerical examples. 

Index Terms — Legendre wavelet, fractional integration, Col-

location method, Laplace Transformation. 

 
I. INTRODUCTION 

 
Fractional calculus has a long mathematical history, intro-

duced by L’Hospital in 1695. It is a branch of calculus that 

extends the definition of the derivative of a function to non-

integer orders. In the past decades, this subject has gained 

widespread and diverse applications in science, engineering, 

finance, and other critical fields [1], [2], [3], [4]. The integer 

order differential equation has local behaviour, while on an-

other side the fractional differential equation (FDE) has non-

local behaviour. Due to the extensive application of FDE, 

many researchers have developed efficient numerical meth-

ods [5], [6], [7], [8], [9], [10] to obtain approximate numerical 

solutions. 

In the present work, an innovative iterative technique is de-

veloped to address the non-linear fractional order initial value 

problem (IVP) 

              𝐷𝛼𝑢(𝑡) = 𝑔(𝑡, 𝑢(𝑡)), 0 < 𝛼 ≤ 1                      (1) 

with                             𝑢(0) = 𝑏.                                            (2) 

Nowadays many researchers are interested in solving these 

types of problems and have also proposed many numerical 

techniques to approximate their solutions. A polynomial least 

squares method (PLSM) is applied to solve fractional Riccati-

type differential equation, as addressed in [11]. Saeed et al. 

[12] developed a numerical technique to solve the fractional 

delay type equation using the method of steps and the shifted 

Chebyshev wavelet method. A Bernoulli wavelet based new 

function is introduced by Rahimkhani et al [13] to solve FDEs 

using operational matrix (OM) of fractional integration (FI). 

The author used collocation method, to build up the given pr- 
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oblem into a system of algebraic equations (AE). Yang et al. 

[14] applied a Jacobi spectral collocation-based numerical 

method to solve fractional pantograph DDE. The author first 

converted the given problem into a nonlinear Volterra inte-

gral equation and then solutions for these integral equations 

were derived using a numerical technique. Kumbinarasaiah 

and Raghunatha [15] used the Hermite wavelet method 

(HWM) for solving the nonlinear heat transfer problem. The 

fractional order Legendre collocation spectral method has 

been used by Mdallal and Omer [16], where the author con-

structed a system of non-linear equations to solve second-or-

der fractional IVP. Banihashemi et al. [17] applied Legendre 

collocation method to approximate the solution of non-linear 

fractional stochastic DDE. Mohammadi and Cattani [18] pro-

posed a numerical scheme to solve non-linear fractional dif-

ferential equations that are based on the OM and the typical 

Tau method. There are several methods [19], Bernstein Poly-

nomials Collocation Method (BPCM) [20], [21], [22], [23] 

that exist in the literature in which the researcher solved the 

non-linear problem by converting it to a nonlinear system of 

an AE. Solving the system of the nonlinear AE is the main 

drawback of these existing methods. Keeping in view the ma-

jor drawback of these methods, in our study Legendre wave-

let (LW) based iterative process has been proposed in the cur-

rent article. Here the solution to the non-linear problem is ap-

proximated as a linear combination of fractional integrals of 

the LW basis function. In this process, each iterative step re-

duces the non-linear AE of wavelet coefficients to a system 

of linear AE whose solutions are used in the next iteration 

(iter) for the improvement of the solution of the problem. The 

exact FI and Legendre wavelet method (LWM) have been 

used in the present work. To the best of our knowledge, the 

idea presented in this paper has not been previously addressed 

in existing literature. 

The remaining article is structured in the following man-

ner: In section II, important results and essential definitions 

related to the present work have been introduced. Section III 

is associated with the proposed technique for solving the IVP 

based on the LWM. The error analysis is presented in Section 

IV. The proposed scheme’s reliability and efficiency are 

demonstrated through numerical examples in Section V, cul-

minating in a conclusive presentation in Section VI. 

 

II. PRELIMINARIES 

In this section, various properties and definitions pertain-

ing to fractional calculus are presented. 

Definition 1. [4] 𝐶𝜇 and 𝐶𝜇
𝑛 spaces are defined on the do-

main [0,∞] as follows 

𝐶𝜇 = {𝑓(𝑡) ∈ ℝ: 𝑝(> 𝜇) ∈ ℝ, 𝑓1(𝑡) ∈ 𝐶[0,∞], 𝑓(𝑡)

= 𝑡𝑝𝑓1(𝑡)} 
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and 𝐶𝜇
𝑛 = {𝑓 ∈ 𝐶𝜇: 𝑓

(𝑛), 𝑒𝑥𝑖𝑠𝑡𝑠}. 

Definition 2. [1] The Riemann-Liouville (RL) fractional 

order integration 𝐼𝛼of 𝛼 which is greater than equal to zero of 

a function 𝑓 ∈ 𝐶𝜇is defined 

𝐼𝛼𝑓(𝑡) = {

1

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑓(𝑠)𝑑𝑠,    𝛼 > 0
𝑡

0

𝑓(𝑡),                                            𝛼 = 0

 

Definition 3. [1] The RL differential operator 𝐷𝑅 𝑡
𝛼𝑓(𝑡) of 

order 𝛼 > 0, 𝑓 ∈ 𝐶1
𝑛 is defined as 

𝐷𝑅 𝑡
𝛼𝑓(𝑡)

=

{
 

 
1

𝛤(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑡𝑛
∫ (𝑡 − 𝑠)𝑛−𝑠−1𝑓(𝑠)𝑑𝑠,    𝑛 − 1 < 𝛼 < 𝑛
𝑡

0

𝑑𝑛𝑓(𝑡)

𝑑𝑡𝑛
,                                                               𝛼 = 𝑛          

 

where 𝑛 ∈ ℤ. 
Definition 4. [1] The Caputo fractional differential opera-

tor 𝐷∗
𝛼 of 𝛼 which is greater than zero of a function 𝑓 ∈ 𝐶1

𝑛 is  

𝐷∗
𝛼𝑓(𝑡) =

1

𝛤(𝑛 − 𝛼)
∫ (𝑡 − 𝑠)𝑛−𝛼−1𝑓(𝑛)(𝑠)𝑑𝑠
𝑡

0

, 

where 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑡 > 0 and 𝑛 is an integer. 

Some important results of the Caputo derivative are used 

in this paper 

𝐷𝛼𝑡𝛽 = {

0                           ,     𝛽 < 𝛼  
Γ(𝛽 + 1)

Γ(𝛽 − 𝛼 + 1)
𝑡𝛽−𝛼 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

where 𝛽 ∈ 𝑁0.  

𝐼𝛼𝐷𝛼𝑓(𝑡) = 𝑓(𝑡) −∑𝑓𝑖(0)
𝑡𝑖

𝑖!

𝑛−1

𝑖=0

. 

𝐷𝛼𝐼𝛼𝑓(𝑡) = 𝑓(𝑡). 
Definition 5. [4] The unit step function is defined as  

𝑢(𝑡) = {
0, 𝑡 < 0
1, 𝑡 > 0

 

and the shifted unit step function is defined as  

𝑢(𝑡 − 𝑐) = {
0, 𝑡 < 𝑐
1, 𝑡 > 𝑐

  

Definition 6. [1] The convolution of 𝑓(𝑡) and 𝑔(𝑡) for 𝑡 >
0, is given by  

(𝑓 ∗ 𝑔)(𝑡) = ∫ 𝑓(𝑡 − 𝜏)𝑔(𝜏)𝑑𝜏.
𝑡

0

 

The Laplace transformation of convolution is  

ℒ{(𝑓 ∗ 𝑔)(𝑡)} = 𝐹(𝑠)𝐺(𝑠). 
Theorem 1. [24] (Second Translation Theorem) If 

ℒ{𝑓(𝑡)} = 𝐹(𝑠), then, 

                 ℒ{𝑢(𝑡 − 𝑐)𝑓(𝑡 − 𝑐)} = 𝑒−𝑐𝑠𝐹(𝑠), 𝑐 ≥ 0.       (3) 

Lemma 1. [25] Let 𝑧: [0,1] → ℝ and 𝐼𝛼(. ) represents RL 

fractional integral operator. Then, 

‖𝐼𝛼𝑧(𝑡)‖∞ ≤
1

Γ(𝛼 + 1)
‖𝑧(𝑡)‖∞. 

 

Wavelets and Legendre wavelets: 

 

Wavelets constitute a family of functions constituted from the 

dilation and translation of a single function called mother 

wavelet is defined by 

𝜓𝑎,𝑏(𝑡) = |𝑎|
−
1
2𝜓 (

𝑡 − 𝑏

𝑎
) , 𝑎 ≠ 0, 𝑎, 𝑏 ∈ ℝ 

where 𝑎 is the dilation parameter and the translation parame-

ter 𝑏.  

The LW 𝜓𝑛,𝑚(𝑡) = 𝜓𝑛,𝑚(𝑘, 𝑛,̂ 𝑚, 𝑡) defined within [0,1) 

as 

𝜓𝑛,𝑚(𝑡) = {√(𝑚 +
1

2
) 2

𝑘
2𝐿𝑚(2

𝑘𝑡 − 𝑛̂),
𝑛̂ − 1

2𝑘
≤ 𝑡 <

𝑛̂ + 1

2𝑘

0                                          ,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where 𝑛̂ = 2𝑛 − 1, 𝑛 = 1,2, … , 2𝑘−1, 𝑘 ∈ ℕ,  and 𝑡 is the 

normalized time. 𝐿𝑚(𝑡) represents the Legendre polynomial 

of order 𝑚 = 0,1, … ,𝑀 − 1, where 𝑀 is a fixed positive in-

teger. These polynomial are orthogonal w.r.t. the weight 

function 𝑤(𝑡) = 1over [−1,1], satisfying a following recur-

sive formula 

𝐿0(𝑡) = 1, 𝐿1(𝑡) = 𝑡, 

𝐿𝑚+1(𝑡) = (
2𝑚 + 1

𝑚 + 1
) 𝑡𝐿𝑚(𝑡) − (

𝑚

𝑚 + 1
)𝐿𝑚−1(𝑡),   

A function 𝑓(𝑡) defined over [0,1] may be expressed by 

LW as 

                           𝑓(𝑡) = ∑ ∑ 𝑐𝑛𝑚𝜓𝑛𝑚(𝑡),
∞
𝑚=0

∞
𝑛=1              (4) 

where 𝑐𝑛𝑚 =< 𝑓(𝑡), 𝜓(𝑡) >. The above equation is trun-

cated and can be written as 

           𝑓(𝑡) ≈ ∑ ∑ 𝑐𝑛𝑚𝜓𝑛𝑚(𝑡) = 𝐶
𝑇𝜓(𝑡)𝑀−1

𝑚=0
2𝑘−1
𝑛=1             (5) 

where 𝐶𝑇and 𝜓(𝑡) are column matrices of order 2𝑘−1𝑀 ×

1, (𝑚̂ = 2𝑘−1𝑀), given by 

𝐶 = [𝑐10, 𝑐11, … , 𝑐1𝑀−1, 𝑐20, … , 𝑐2𝑀−1, … , 𝑐2𝑘−1𝑀−1]
𝑇
 

𝜓(𝑡) =

     [𝜓10(𝑡), . . . , 𝜓1𝑀−1(𝑡), . . , 𝜓2𝑘−10(𝑡), . . , 𝜓2𝑘−1𝑀−1(𝑡)]
𝑇
(6) 

 

Fractional integration of Legendre wavelet: 

 

The FI has already been studied in [26],[27]. The FI of the 

LW basis function is expressed using the unit step function as 

follows 

𝜓𝑛𝑚(𝑡) = √2𝑚 + 12
𝑘−1
2 [𝑢 (𝑡 −

𝑛 − 1

2𝑘−1
) 𝐿𝑚(2

𝑘𝑡 − 1 − 2(𝑛

− 1)) − 𝑢 (𝑡 −
𝑛

2𝑘−1
) 𝐿𝑚(2

𝑘𝑡 + 1 − 2𝑛)] 

Taking Laplace transformation in the above equation and 

using (3), we have 

ℒ{𝜓𝑛𝑚(𝑡)} = √2𝑚 + 12
𝑘−1

2 [𝑒
− 

𝑛−1

2𝑘−1
𝑠
ℒ{𝐿𝑚(2

𝑘𝑡 − 1)} −

 𝑒
− 

𝑛

2𝑘−1
𝑠
ℒ{𝐿𝑚(2

𝑘𝑡 + 1)}]           (7) 

Consider 

𝐿𝑚(2
𝑘𝑡 − 1) = 2𝑚∑(

𝑚
𝑣
)(
𝑚 + 𝑣 − 1

2
𝑚

)

𝑚

𝑣=0

(2𝑘𝑡 − 1)𝑣 

𝐿𝑚(2
𝑘𝑡 − 1)

= 2𝑚∑(
𝑚
𝑣
)(
𝑚 + 𝑣 − 1

2
𝑚

)

𝑚

𝑣=0

∑(
𝑣
𝜂) (−1)

𝜂

𝑣

𝜂=0

2𝑘(𝑣−𝜂)𝑡𝑣−𝜂, 

taking Laplace transformation in the above equation 

ℒ{𝐿𝑚(2
𝑘𝑡 − 1)} =

2𝑚 ∑ (
𝑚
𝑣
) (

𝑚+𝑣−1

2
𝑚

)𝑚
𝑣=0 ∑

𝑣!

𝜂!
(−1)𝜂𝑣

𝜂=0 2𝑘(𝑣−𝜂)
1

𝑠𝑣−𝜂+1
 ,        (8) 

similarly  

ℒ{𝐿𝑚(2
𝑘𝑡 + 1)} =

2𝑚 ∑ (
𝑚
𝑣
) (

𝑚+𝑣−1

2
𝑚

)𝑚
𝑣=0 ∑

𝑣!

𝜂!

𝑣
𝜂=0 2𝑘(𝑣−𝜂)

1

𝑠𝑣−𝜂+1
 ,                   (9) 

substitute the values of (8) and (9) in (7), we get 
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ℒ{𝜓𝑛𝑚(𝑡)}

= √2𝑚 + 1 2
𝑘−1
2 2𝑚∑(

𝑚
𝑣
)(
𝑚 + 𝑣 − 1

2
𝑚

)

𝑚

𝑣=0

∑
𝑣!

𝜂!

𝑣

𝜂=0

2𝑘(𝑣−𝜂)𝐻 

where 𝐻 =
1

𝑠𝑣−𝜂+1
[(−1)𝜂𝑒

− 
𝑛−1

2𝑘−1
𝑠
− 𝑒

− 
𝑛

2𝑘−1
𝑠
]. RL integration 

is then defined using convolution properties as 

𝐼𝛼𝜓𝑛𝑚(𝑡) =
1

𝛤(𝛼)
𝑡𝛼−1 ∗ 𝜓𝑛𝑚(𝑡). 

Again, taking Laplace's transformation  

ℒ{𝐼𝛼𝜓𝑛𝑚(𝑡)} =
1

𝑠𝛼
ℒ{𝜓𝑛𝑚(𝑡)}, 

ℒ{𝐼𝛼𝜓𝑛𝑚(𝑡)}

= √2𝑚 + 1 2
𝑘−1
2 2𝑚∑(

𝑚
𝑣
)(
𝑚 + 𝑣 − 1

2
𝑚

)∑
𝑣!

𝜂!

𝑣

𝜂=0

2𝑘(𝑣−𝜂)𝐺

𝑚

𝑣=0

 

where 𝐺 =
1

𝑠𝛼
𝐻.  

Taking the inverse Laplace transformation in the above 

equation, we have  

𝐼𝛼𝜓𝑛𝑚(𝑡) =

{
 
 

 
 0 ,                              𝑡 ∈ [0,

𝑛−1

2𝑘−1
)

√2𝑚 + 1 2
𝑘−1

2  2𝑚𝑉 , 𝑡 ∈ [
𝑛−1

2𝑘−1
,
𝑛

2𝑘−1
)

√2𝑚 + 1 2
𝑘−1

2  2𝑚𝑆,   𝑡 ∈ [
𝑛

2𝑘−1
, 1]     

       (10) 

where  

𝑉 =∑∑(
𝑚
𝑣
)(
𝑚 + 𝑣 − 1

2
𝑚

)
𝑣!

𝜂!

2𝑘(𝑣−𝜂)(−1)𝜂𝐽

Γ(𝑣 − 𝜂 + 1 + 𝛼)

𝑣

𝜂=0

𝑚

𝑣=0

, 

where 𝐽 = (𝑡 −
𝑛−1

2𝑘−1
)
𝑣−𝜂+𝛼

and 

𝑆

=∑∑(
𝑚
𝑣
)(
𝑚 + 𝑣 − 1

2
𝑚

)
𝑣!

𝜂!

2𝑘(𝑣−𝜂)

Γ(𝑣 − 𝜂 + 1 + 𝛼)

𝑣

𝜂=0

𝑚

𝑣=0

[(−1)𝜂 (𝑡

−
𝑛 − 1

2𝑘−1
)
𝑣−𝜂+𝛼

− (𝑡 −
𝑛

2𝑘−1
)
𝑣−𝜂+𝛼

]. 

 

III. PROPOSED METHOD 

 

This section describes the proposed iterative technique 

based on LW, employed for solving the non-linear fractional 

order initial value problem, defined as 

                                  𝐷𝛼𝑢(𝑡) = 𝑔(𝑡, 𝑢(𝑡)),                    (11) 

with  

                               𝑢(0) = 𝑏, 0 < 𝛼 ≤ 1                        (12) 

For solving the problem in (11)-(12), let us assume that  

                         𝐷𝛼𝑢(𝑡) ≈ 𝜓𝑇(𝑡)𝐶 =  𝐷𝛼𝑢𝑚̂(𝑡)              (13) 

where 𝐶 and 𝜓(𝑡) are 2𝑘−1𝑀 × 1 order matrices. Applying 

RL integration operator 𝐼𝛼 in (13) and using condition in (12), 

we have 

𝑢(𝑡) − 𝑢(0) ≈ [𝐼𝛼𝜓(𝑡)]𝑇𝐶 

                  𝑢(𝑡) ≈ [𝐼𝛼𝜓(𝑡)]𝑇𝐶 + 𝑢(0) = 𝑢𝑚̂(𝑡),            (14) 

substituting values of 𝑢(𝑡) and  𝐷𝛼𝑢(𝑡) in (11), we get 

𝜓𝑇(𝑡)𝐶 = 𝑔(𝑡, [𝐼𝛼𝜓(𝑡)]𝑇𝐶 + 𝑢(0)) 
                                𝜓𝑇(𝑡)𝐶 = 𝑔(𝑡, 𝑢(𝑡))                        (15) 

To implement the iterative process, we have considered the 

initial approximation of 𝐶0 as a non-zero vector (obtained by 

solving 𝜓𝑇(𝑡)𝐶0 = 𝑢(0), if 𝑢(0) ≠ 0, otherwise any non-

zero random vector) which is substituted in R.H.S. of the 

above expression (15), and 𝐶 of L.H.S. are considered as 

modified unknown coefficients which need to be determined. 

The above equation is written as 

                  𝜓𝑇(𝑡)𝐶𝑖+1 = 𝑔(𝑡, 𝑢𝑖(𝑡)), 𝑖 = 0,1,2, …           (16) 

where 𝑢𝑖(𝑡) = [𝐼𝛼𝜓(𝑡)]𝑇𝐶𝑖 + 𝑢(0). 
Then discretizing the above expression using collocation 

points 𝑡𝑗 =
2𝑗−1

2𝑘𝑀
, 𝑗 = 1,2,3, … , 2𝑘−1𝑀, to obtain a linear sys-

tem of AE for each 𝑖 = 0, 1, 2, …   

                        𝜓𝑇(𝑡𝑗)𝐶
𝑖+1 = 𝑔 (𝑡𝑗, 𝑢𝑖(𝑡𝑗)),                    (17) 

                                    𝐶𝑖+1 = 𝐵−1𝐹(𝐶𝑖),                        (18) 

where 𝐹(𝐶𝑖) = 𝑔 (𝑡𝑗, 𝑢𝑖(𝑡𝑗)) and 𝐵 = 𝜓𝑇(𝑡𝑗) be the non-

singular matrix. By solving (18), the unknown coefficient 

𝐶𝑖+1 is obtained. This coefficient will be re-substituted in the 

R.H.S. of (16) and again discretized to produce a linear sys-

tem of AE in (18). When this linear system is solved, the im-

proved value of the unknown coefficient 𝐶𝑖+1 is obtained. 

This iterative process has been repeated until the final modi-

fied unknown coefficient 𝑚𝑎𝑥|𝐶𝑖+1 − 𝐶𝑖| < 𝜀 where 𝜀 > 0, 

is attained. 

Substituting the final modified unknown coefficient 𝐶𝑖+1 

in (14), we arrive at an estimate for the solution to the speci-

fied problem outlined in (11). 

The algorithm of this proposed method follows the follow-

ing steps. 

Algorithm 

 

Step 1: Set 𝜀, 𝛼, and LW parameters 𝑘,𝑀, as input values. 

Step 2: Find the LW basis function 𝜓(𝑡) defined in (6) for 

input parameters 𝑘,𝑀. 
Step 3: Calculate the exact FI 𝐼𝛼𝜓(𝑡) in equation (10) of sec-

tion II. 

Step 4: Set 𝑖 = 0 in (16) to start the iteration process, and the 

initial approximate 𝐶0 in R.H.S of this equation as a column 

matrix 2𝑘−1𝑀 × 1. 

Step 5: Discretize the expression obtained in (16) using the 

collocation point 𝑡𝑗 =
2𝑗−1

2𝑘𝑀
, 𝑗 = 1,2,3, … , 2𝑘−1𝑀 to convert 

nonlinear equations to linear equations as mentioned in equa-

tion (18). 

Step 6: Calculate the modified coefficient 𝐶𝑖+1 from the ex-

pression 𝐶𝑖+1 = 𝐵−1𝐹(𝐶𝑖) in (18). 

Step 7: If 𝑚𝑎𝑥|𝐶𝑖+1 − 𝐶𝑖| < 𝜀, proceed to step 10 otherwise 

go to the next step. 

Step 8: Store 𝐶𝑖+1in (𝑖 + 1)th column of a matrix U. Set 𝑖 =

𝑖 + 1 in (16) and substitute the modified coefficient in the 

R.H.S of (16). 

Step 9: Repeat the procedure starting from step 5. 

Step 10: Substitute the modified coefficient 𝐶 = 𝐶𝑖+1 in 

𝑢(𝑡) ≈ [𝐼𝛼𝜓(𝑡)]𝑇𝐶 + 𝑢(0) to acquire the solution of prob-

lem in (11). 

 

IV. ERROR ANALYSIS 

 

The error analysis of the devised approach, as outlined in 

section III, for addressing nonlinear FDE is described in this 

segment. For non-integer order 𝛼 the exact solution is un-

known in most cases, so the following procedure has been 

demonstrated to verify the reliability and effectiveness of the 

present technique. 
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Let 

‖𝜑(𝑡)‖∞ =
𝑠𝑢𝑝|𝜑(𝑡)|

𝑡 ∈ [0,1]
 

Let 𝑢(𝑡) satisfies 

                                 𝐷𝛼𝑢(𝑡) = 𝑔(𝑡, 𝑢(𝑡))                       (19) 

and 𝑢𝑚̂(𝑡) satisfies 

                   𝐷𝛼𝑢𝑚̂(𝑡) = 𝑔(𝑡, 𝑢𝑚̂(𝑡)) − 𝑅𝑚̂(𝑡)                (20) 

where 𝑅𝑚̂(𝑡) is the residual function due to the substitution 

of the approximate solution 𝑢𝑚̂(𝑡) in (19). Substituting (20) 

from (19) we have, 

𝐷𝛼(𝑢(𝑡) − 𝑢𝑚̂(𝑡)) = 𝑔(𝑡, 𝑢(𝑡)) − 𝑔(𝑡, 𝑢𝑚̂(𝑡)) − 𝑅𝑚̂(𝑡) 

(21) 

Denoting the error 𝑒𝑚̂(𝑡) = 𝑢(𝑡) − 𝑢𝑚̂(𝑡),  and following 

the idea [28], the above equation (21) reduces to, 

  𝐷𝛼(𝑒𝑚̂(𝑡)) = 𝑔(𝑡, 𝑢(𝑡)) − 𝑔(𝑡, 𝑢𝑚̂(𝑡)) − 𝑅𝑚̂(𝑡)         (22) 

Therefore, 

𝑒𝑚̂(𝑡) = 𝐼𝛼 (𝑔(𝑡, 𝑢(𝑡)) − 𝑔(𝑡, 𝑢𝑚̂(𝑡))) − 𝐼
𝛼𝑅𝑚̂(𝑡)       (23) 

where from (14) 𝑒𝑚̂(𝑡) = 0. Using the Lemma 1, the above 

equation reduces to, 

|𝑒𝑚̂(𝑡)| ≤
𝑡𝛼

Γ(𝛼 + 1)
(|𝑔(𝑡, 𝑢(𝑡)) − 𝑔(𝑡, 𝑢𝑚̂(𝑡))|

+ |𝑅𝑚̂(𝑡)|) 

If we assume 𝑢(𝑡) and 𝑢𝑚̂(𝑡) is bounded in 0 ≤ 𝑡 ≤ 1 and 

|𝑔(𝑡, 𝑢(𝑡)) − 𝑔(𝑡, 𝑢𝑚̂(𝑡))| ≤ 𝜌|𝑢(𝑡) − 𝑢𝑚̂(𝑡)|, 𝜌 > 0, then, 

|𝑒𝑚̂(𝑡)| ≤
𝑡𝛼

𝛤(𝛼 + 1)
(𝜌 |𝑢(𝑡) − 𝑢𝑚̂(𝑡)|+|𝑅𝑚̂(𝑡)|) 

|𝑒𝑚̂(𝑡)| ≤
𝑡𝛼

𝛤(𝛼 + 1)
(𝜌  𝑠𝑢𝑝

𝑡∈[0,1]
|𝑢(𝑡) − 𝑢𝑚̂(𝑡)|

+ sup
𝑡∈[0,1]

|𝑅𝑚̂(𝑡)|) 

‖𝑒𝑚̂(𝑡)‖∞ ≤
1

𝛤(𝛼 + 1)
(𝜌‖𝑒𝑚̂(𝑡)‖∞ + ‖𝑅𝑚̂(𝑡)‖∞) 

‖𝑒𝑚̂(𝑡)‖∞ ≤
‖𝑅𝑚̂(𝑡)‖∞
Γ(𝛼 + 1) − 𝜌

 

If 𝛤(𝛼 + 1) − 𝜌 ≠ 0 and the residual function 𝑅𝑚̂(𝑡) ap-

proaches to zero as 𝑚̂ approaches to infinity, then the error 

‖𝑒𝑚̂(𝑡)‖∞ approaches to zero. 

It is clear from (20) that at the collocation point, 𝑡𝑗 =
2𝑗−1

2𝑘𝑀
, 𝑗 = 1,2,3, … , 2𝑘−1𝑀,  

            𝑅𝑚̂(𝑡𝑗) = |𝐷
𝛼𝑢𝑚̂(𝑡𝑗) − 𝑔 (𝑡𝑗, 𝑢𝑚̂(𝑡𝑗))| ≅ 0       (24) 

So ‖𝑒𝑚̂(𝑡)‖∞ ≅ 0. 
 

V. NUMERICAL IMPLEMENTATION 

 

In this section, different types of nonlinear problems will 

be addressed to illustrate the efficacy of the current scheme. 

Example 1. Consider nonlinear fractional order IVP [18] 

           𝐷𝛼𝑢(𝑡) + 𝑢𝛾(𝑡) = 𝑡 + (
𝑡𝛼+1

Γ(𝛼+2)
)
𝛾

, 𝛾 ≥ 2           (25) 

with                 𝑢(0) = 0, 0 < 𝛼 ≤ 1.  
The problem was studied in [18] for 𝛾 = 2. The exact solu-

tion of (25) is 𝑢(𝑡) =
𝑡𝛼+1

Γ(𝛼+2)
.   

𝐷𝛼
𝑡𝛼+1

Γ(𝛼+2)
= 𝐶𝑇𝜓(𝑡) = 𝑡 is polynomial in t and can be ex-

actly represented by the linear combination of LW basis func-

tion 𝑘 ≥ 1,𝑀 ≥ 2. Considering the parameter values 𝑘 =
1,𝑀 = 2,  we have 

𝑡 = (
1

2

√3

6
) (

1

√3(2𝑡 − 1)
) 

So, the solution problem 𝑢(𝑡) = 𝑢(0) + 𝐶𝑇𝐼𝛼𝜓(𝑡) can also 

be represented exactly as 𝐼𝛼𝜓(𝑡) wavelet basis function 𝑘 ≥
1,𝑀 ≥ 2, considering the parameter values 𝑘 = 1,𝑀 = 2,   

𝑡𝛼+1

Γ(𝛼 + 2)
= (

1

2

√3

6
)

(

 
 

𝑡𝛼

Γ(𝛼 + 1)

2√3𝑡𝛼+1

Γ(𝛼 + 2)
−

√3𝑡𝛼

Γ(𝛼 + 1))

 
 
. 

Since the problem (25) converges to 𝑢(𝑡) =
𝑡𝛼+1

Γ(𝛼+2)
 for 𝑘 ≥

1,𝑀 ≥ 2, the proposed methodology finds the unknown 

wavelet coefficient by an iterative process to find the approx-

imate solution to the problem for fixed parameter 𝑘,𝑀. 

For 𝛾 = 2, Table I shows the difference between the exact 

LW coefficient (𝐶𝑒) and the wavelet coefficient obtained by 

the proposed scheme (𝐶𝑝) for different 𝑘,𝑀. This table de-

picts that the proposed method highly approximates the 

wavelet coefficient 𝐶𝑝 in 120 iterations with the maximum 

difference 10−40. The approximate solution of problem (25) 

is plotted in Figure 1 for different 𝛼. Table II presents the ab-

solute error for 𝛼 = 0.5, 0.8, 1, and compared with those pro-

vided in [13] and [28]. This problem has also been investi-

gated for each 𝛾 from 2 to 9.5 with step length 0.5. At 𝛼 =
0.5, 0.8, 1 with wavelet parameter 𝑘 = 1, 𝑀 = 2, it has been 

observed that at 120 iterations the maximum absolute error 

for the solution of (25) in the discretized domain of 𝛾 for 𝛼 =
0.5 is 1.15e-40, 𝛼 = 0.8 is 1.03e-40, and 𝛼 = 1 is 6.89e-41. 

It is clear that as 𝛼 increases, the absolute error decreases. 

 

TABLE I 
COMPARISON OF WAVELET COEFFICIENT C OF EXAMPLE 1 

WITH 𝐼𝑇𝐸𝑅𝐴𝑇𝐼𝑂𝑁 = 120  

 

𝐶𝑒 
(𝐶𝑒 − 𝐶𝑝) 𝐶𝑒 (𝐶𝑒 − 𝐶𝑝) 

k=1, M=2 k=1, M=3 k=2, M=2 

1/2 0 9.184e-41 √2/8 0 

1/2√3 -1.11e-40 1.837e-40 √6/24 2.296e-41 

0 - 1.027e-40 3√2/8 1.837e-40 

- - - √6/24 1.378e-40 

 

 
Fig. 1.   The approximate solution with  𝑘 = 2,𝑀 = 4, and different 𝛼 of Ex-

ample 1 at 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 800.  
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TABLE II 
COMPARISON OF ABSOLUTE ERROR FOR 𝐼𝑇𝐸𝑅𝐴𝑇𝐼𝑂𝑁 = 120 WITH DIFFERENT 𝛼 OF EXAMPLE 1.  

 

t 

Present Method 

 𝑘 = 1, 𝑀 = 2 

BWM 

 [13] 

GBCM 

[28] 

𝛼 = 0.5 𝛼 = 0.8 𝛼 = 1 
𝛽 = 0.5 𝛽 = 0.8 𝛽 = 0.5 𝛽 = 0.5 

𝛼 = 0.5 𝛼 = 0.8 𝛼 = 1 𝛼 = 0.5 

0 0 0 0 8.44e-10 1.27e-05 3.05e-04 - 

0.1 4.5918e-41 0 1.1479e-41 1.42e-09 2.00e-06 3.57e-05 8.6736e-16 

0.2 9.1835e-41 4.5918e-41 2.2959e-41 1.71e-09 2.94e-06 2.30e-05 1.0131e-15 

0.3 9.1835e-41 0 4.5918e-41 1.95e-08 2.86e-06 2.15e-05 1.4794e-14 

0.4 9.1835e-41 9.1835e-41 2.2959e-41 1.47e-08 1.51e-06 1.87e-05 8.7930e-14 

0.5 0 9.1835e-41 4.5918e-41 1.14e-08 3.97e-04 1.64e-05 2.4547e-13 

0.6 6.8877e-41 2.2959e-41 6.8877e-41 8.98e-09 3.60e-04 1.02e-05 5.0115e-13 

0.7 5.7397e-41 0 0 7.47e-09 3.24e-04 1.91e-05 8.6287e-13 

0.8 4.5918e-41 0 2.2959e-41 6.98e-09 2.85e-04 1.65e-04 1.3342e-12 

0.9 4.5918e-41 0 1.1479e-41 7.78e-09 2.40e-04 7.00e-04 1.9169e-12 

1 1.8367e-40 4.5918e-41 0 1.02e-08 1.76e-04 2.25e-03 2.6106e-11 

Example 2. Consider the nonlinear fractional order IVP                                   

                  𝐷𝛼𝑢(𝑡) = 𝑡3𝑢2(𝑡) − 2𝑡4𝑢(𝑡) + 𝑡5 + 1           (26) 

with  

𝑢(0) = 0, 0 < 𝛼 ≤ 1. 
The exploration and solution of this problem were earlier ac-

complished by [28] through the utilization of the generalized 

Bell collocation method (GBCM).  

The exact solution of (26) is 𝑢(𝑡) = 𝑡, for 𝛼 = 1.  𝐷𝛼𝑡 =

𝐶𝑇𝜓(𝑡) = 1 is polynomial of 𝑡0 and can be exactly repre-

sented by the linear combination of the LW basis function 

for 𝑘 ≥ 1,𝑀 ≥ 1. For 𝑘 ≥ 1,𝑀 ≥ 1, the solution has been 

investigated and is seen as the number of iterations reaches to 

4, the difference between the coefficients 𝐶𝑝 and 𝐶𝑒 is zero. 

For 𝑘 = 1 ,𝑀 = 1 the difference between coefficients 𝐶𝑒 and 

𝐶𝑝 are tabulated in Table III with different number of itera-

tions. It is clear from the table that when the iteration reaches 

to 4, the wavelet coefficient 𝐶𝑝 approximates exactly as the 

coefficient 𝐶𝑒 . The absolute errors are listed in Table IV and 

also compared with results from [29], [30], [28]. The given 

table illustrates that the achieved results are highly accurate 

as compared to the existing method. The numerical results for 

𝛼 = 0.2, 0.7, 1 are depicted in Figure 2 and the zoomed in 

portion of these solutions is also included in this figure. 

 

TABLE IV 

COMPARISON OF ABSOLUTE ERROR WITH DIFFERENT METH-
ODS  FOR EXAMPLE 2 

 

t 
IRKHSM 

[29] 

JCM 

[30] 

GBCM 

[28] 

Present Method 

𝑀 = 1, 𝑘 = 1  
iter = 1 iter = 2 iter = 3 

0.1 5.59e-07 7.45e-07 8.80e-15 3.4e-07 3.3e-23 6.4e-29 

0.2 1.11e-06 8.51e-07 1.45e-14 6.8e-07 6.6e-23 1.3e-28 

0.3 1.67e-06 9.30e-07 1.05e-14 1.0e-06 9.9e-23 1.9e-28 

0.4 2.23e-06 1.08e-06 5.01e-15 1.4e-06 1.3e-22 2.6e-28 

0.5 2.79e-06 1.14e-06 9.75e-16 1.7e-06 1.6e-22 3.2e-28 

0.6 3.30e-06 1.14e-06 3.62e-14 2.0e-06 2.0e-22 3.8e-28 

0.7 3.95e-06 1.21e-06 1.81e-13 2.4e-06 2.3e-22 4.5e-28 

0.8 4.56e-06 1.04e-06 5.90e-13 2.7e-06 2.6e-22 5.1e-28 

0.9 5.24e-06 1.13e-06 1.51e-12 3.1e-06 3.0e-22 5.8e-28 

1 6.07e-06 4.84e-07 3.32e-12 3.4e-06 3.3e-22 6.4e-28 

 

 
Fig. 2.   Comparison of approximate solution with various values of parameters 𝑘,𝑀 of LW and 𝛼 of Example 2 at 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 4. 
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Table III 
COMPARISON OF WAVELET COEFFICIENT C AT 𝛼 = 1 AND 

𝑘 = 1,𝑀 = 1 FOR EXAMPLE 2. 

 

𝐶𝑒 𝐶𝑒 − 𝐶𝑝  

iter 1 2 3 4 

1 -2.4038e-09 -1.8057e-19 -1.1020e-39 0 

 

Example 3. Consider the nonlinear FDE 

𝐷𝛼𝑢(𝑡) =
40320

Γ(9 − 𝛼)
𝑡8−𝛼 −

3Γ (5 −
𝛼
2
)

Γ (5 −
𝛼
2
)
𝑡(4−

𝛼
2
)

+
9

4
Γ(𝛼 + 1) + (

3

2
𝑡
𝛼
2 − 𝑡4)

3

− (𝑢(𝑡))
3
2, 

with 0 < 𝛼 ≤ 1 and 𝑢(0) = 0.  

𝑢(𝑡) = 𝑡8 − 3𝑡(4+
𝛼

2
) +

9

4
𝑡𝛼 is the exact solution. 𝐷𝛼𝑢(𝑡) is 

not a polynomial form, so the proposed scheme’s reliability 

is evaluated by increasing the LW parameter 𝑘,𝑀. For vari-

ous values of parameter 𝑘 of LW, the absolute errors are tab-

ulated in Table V at iteration 54, and observed that it is stable 

after iteration 54. From the given table it is clear that as 𝑘 

increases, the error decreases. For 𝑘 = 5 and 𝑀 = 7, the ap-

proximate solution is plotted in Figure 3 with different 𝛼.  
For 𝛼 = 0.5, the residual error is shown in Figure 4. It is clear 

from Figure 4 that as 𝑘 increases, the residual error decreases.  

 

TABLE V 
ABSOLUTE ERROR WITH VARIOUS VALUES OF 𝑘 AT 𝑀 = 7, IT-

ERATION = 54, AND 𝛼 = 0.5 FOR EXAMPLE 3. 

 

t 𝑘 = 4 𝑘 = 5 𝑘 = 6 𝑘 = 7 𝑘 = 8 

0.1 3.64e-10 4.88e-12 3.15e-13 1.34e-14 5.02e-16 

0.2 5.02e-11 4.12e-12 1.86e-13 7.32e-15 2.54e-16 

0.3 5.46e-11 2.99e-12 1.24e-13 4.78e-15 1.55e-16 

0.4 3.30e-11 2.22e-12 8.99e-14 3.43e-15 1.05e-16 

0.5 1.93e-10 4.57e-13 6.22e-14 2.59e-15 7.82e-17 

0.6 2.87e-11 1.42e-12 5.53e-14 2.12e-15 6.733-17 

0.7 2.98e-11 1.08e-12 4.71e-14 1.80e-15 6.84e-17 

0.8 1.94e-11 1.03e-12 4.19e-14 1.61e-15 8.12e-17 

0.9 1.26e-13 9.69e-13 3.92e-14 1.54e-15 1.06e-16 

1 2.94e-10 7.39e-13 3.01e-14 1.54e-15 1.45e-16 

 

 
Fig. 3.   Comparison of approximate solution with 𝑀 = 7, 𝑘 = 5, and it-

eration=73 of Example 3 for different 𝛼.  

 
(a) 𝑘 = 6 

 
(b) 𝑘 = 7 

 
(c) 𝑘 = 8 

Fig. 4.   Residual error of  Example 3 with various values of 𝑘 at 𝑀 = 7, 𝛼 =
0.5 and 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 54. 

 

Example 4. Consider the nonlinear FDE as defined in [11] 

                                𝐷𝛼𝑢(𝑡) + 𝑢2(𝑡) − 1 = 0                  (27) 

with 𝑢(0) = 0, , 0 < 𝛼 ≤ 1. Let 𝑢𝑘,𝑀(𝑡) represents the ap-

proximate solution of LW parameters 𝑀 and 𝑘. The exact so-

lution of (27) is 𝑢(𝑡) =
𝑒2𝑡−1

𝑒2𝑡+1
 for 𝛼 = 1. The problem (27) has 

already been solved in Modified Homotopy Perturbation 

Method (MHPM) [31], Enhanced Homotopy Perturbation 
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Method (EHPM) [32], Bernstein Polynomials Collocation 

Method (BPCM)[20], Haar wavelet Operational Matrix 

Method (HWOMM) [6], where they have used different tech-

niques. To verify the effect of 𝛼 in the present scheme, we 

display the approximate solutions for various 𝛼 in Figure 5 

(a), with their residual errors is plotted in Figure 5 (b). 

 
(a) 

 
(b) 

Fig. 5.   For parameter 𝑘 = 𝑀 = 5, (a) approximate solution (b) residual 

error of Example 4 at  𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 35 

 

The difference in solution between different values of 𝑘 is 

tabulated in Table VI. For 𝛼 = 0.75 the residual error is plot-

ted in Figure 6 for different values of 𝑘. 
 

TABLE VI 
DIFFERENCES OF APPROXIMATE SOLUTION (𝑢𝑘,𝑀 − 𝑢𝑘−1,𝑀) 

AT 𝑀 = 6,𝛼 = 0.75, AND ITERATION=20 FOR EXAMPLE 4. 

 

t 𝑘 = 5 𝑘 = 6 𝑘 = 7 𝑘 = 8 

0.1 -7.05e-07 -1.53e-07 -2.63e-08 -4.61e-09 

0.2 -6.65e-07 -1.14e-07 -1.99e-08 -3.52e-09 

0.3 -5.25e-07 -9.14e-08 -1.62e-08 -2.84e-09 

0.4 -4.27e-07 -7.48e-08 -1.32e-08 -2.33e-09 

0.5 -3.52e-07 -6.18e-08 -1.09e-08 -1.92e-09 

0.6 -2.92e-07 -5.14e-08 -9.07e-09 -1.60e-09 

0.7 -2.45e-07 -4.31e-08 -7.60e-09 -1.34e-09 

0.8 -2.06e-07 -3.08e-08 -5.44e-09 -9.61e-10 

0.9 -1.49e-07 -2.63e-08 -4.64e-09 -8.20e-10 

 
(a) 𝑘 = 6 

 
(b) 𝑘 = 7 

 
(c) 𝑘 = 8 

Fig. 6.   Residual error of Example 4 with various values of 𝑘 at 𝑀 =
6, 𝛼 = 0.75 and 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 20. 
 

For various values of parameter 𝑀, 𝑘 of LW, the absolute er-

ror is tabulated in Table VII. For 𝛼 = 0.75, 0.9,  the approxi-

mate solution is listed in Table VIII-IX and compared with 

[31], [32], [6], [11], [20]. The given tables demonstrate that 

the achieved results are more accurate as compared to exist-

ing methods. Table X shows the absolute error for 𝑘 =
7,𝑀 = 6 and compared with those provided in [29], [28] 
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where it is observed that the achieved results are more accu-

rate as compared to [29], [28]. 

 

Example 5. Consider the nonlinear FDE [14], [33], [12] 

                 𝐷𝛼𝑢(𝑡) = 1 − 2𝑢2(0.5𝑡), 0 < 𝛼 ≤ 1           (28) 

with  

𝑢(0) = 0. 
The exact solution of (28) is 𝑢(𝑡) = 𝑠𝑖𝑛(𝑡) for 𝛼 = 1. Table 

XI presents the approximate solution for 𝑘 = 2, 𝑀 = 9, 

which is compared with [33]. The data given in this table il-

lustrates that the achieved results are more accurate as com-

pared to other existing methods. For 0 < 𝛼 < 1, since (28) 

lacks an exact solution, the reliability of the proposed scheme 

is assessed using the error estimation formula in (20). The re-

sults, depicted in Figure 7 show the residual error for different 

𝑘 with 𝛼 = 0.25, 𝑀 = 5. It is clear from the figure that as 

LW parameter 𝑘 increases the residual error decreases. 
 

TABLE VII 
ABSOLUTE ERROR OF EXAMPLE 4 WITH VARIOUS VALUES OF PARAMETER 𝑀, 𝑘 OF LW AND ITERATION = 23. 

 

t 
𝑀 = 6 𝑘 = 5 

𝑘 = 4 𝑘 = 5 𝑘 = 6 𝑘 = 7 𝑀 = 7 𝑀 = 8 𝑀 = 9 𝑀 = 10 

0.1 1.41e-11 3.13e-13 5.72e-15 8.43e-17 7.25e-16 6.54e-17 1.82e-19 1.33e-20 

0.2 3.39e-11 5.99e-13 9.05e-15 1.38e-16 1.10e-15 1.10e-16 2.60-19 1.96e-20 

0.3 4.04e-11 6.33e-13 1.00e-14 1.57e-16 1.04e-15 1.05e-16 2.12e-19 1.61e-20 

0.4 3.19e-11 5.39e-13 8.72e-15 1.35e-16 6.47e-16 6.09e-17 4.28e-20 3.53e-21 

0.5 2.28e-11 3.54e-13 5.52e-15 8.61e-17 2.68e-16 1.33e-17 2.64e-20 5.44e-21 

0.6 1.31e-11 1.45e-13 1.72e-15 3.02e-17 2.95e-16 2.40e-17 1.28e-19 9.25e-21 

0.7 1.84e-12 9.17e-14 1.10e-15 1.39e-17 5.21e-16 4.86e-17 1.08e-19 8.19e-21 

0.8 1.28e-11 1.68e-13 2.91e-15 4.78e-17 4.91e-16 4.72e-17 7.33e-20 5.65e-21 

0.9 1.67e-11 2.51e-13 3.77e-15 6.01e-17 3.99e-16 3.64e-17 1.50e-20 1.30e-21 

1 1.60e-11 2.48e-13 3.87e-15 6.04e-17 9.51e-17 2.22e-17 1.74e-20 9.82e-22 

 

TABLE VIII 
COMPARISON OF APPROXIMATE SOLUTION WITH DIFFERENT METHODS AT 𝑀 = 5, 𝛼 = 0.75, AND 𝐼𝑇𝐸𝑅𝐴𝑇𝐼𝑂𝑁 = 16 FOR EXAMPLE 4. 

 

t 
MHPM 

[31] 

EHPM 

 [32] 

HWOMM

[6] 

PLSM 

[11] 

BPCM 

 [20] 

Present Method 

𝑘 = 8 𝑘 = 9 

0.2 0.3138 0.3214 0.3095 0.307 0.309975526145 0.3099752850 0.3099752842 

0.4 0.4929 0.5077 0.4814 0.4819 0.481631848538 0.4816316914 0.4816316908 

0.6 0.5974 0.6259 0.5977 0.5969 0.597782779119 0.5977826715 0.5977826711 

0.8 0.6604 0.7028 0.6788 0.6783 0.678849572343 0.6788494962 0.6788494955 

1 0.7183 0.7542 0.7368 0.7365 0.736836860238 0.7368366704 0.7368366702 

 

TABLE IX 
COMPARISON OF APPROXIMATE SOLUTION OBTAINED BY DIFFERENT METHODS AT 𝑀 = 5, 𝛼 = 0.9, AND 𝐼𝑇𝐸𝑅𝐴𝑇𝐼𝑂𝑁 = 13 FOR 

EXAMPLE 4. 

 

t 
MHPM 

 [31] 

EHPM 

 [32] 

PLSM 

 [11] 

BPCM 

 [20] 

Present Method 

𝑘 = 8 𝑘 = 9 

0 0 0 0 0 0 0 

0.2 0.2391 0.2647 0.2369 0.238789150071 0.23878913691 0.23878913685 

0.4 0.4229 0.4591 0.4211 0.422583099027   0.422583088475   0.422583088427 

0.6 0.5653 0.6031 0.5651 0.566171571136   0.5661715630 0.56617156298 

0.8 0.674 0.7068 0.6738 0.674627004671   0.674626998167 0.67462699814 

1 0.7569 0.7806 0.7541 0.754589017236   0.754588808569   0.754588808574 

 

TABLE XI 
COMPARISON OF APPROXIMATE SOLUTION FOR EXAMPLE 5 WITH 𝛼 = 1, 𝑘 = 2, 𝑀 = 9 AND ITERATION = 6 

 

t HPM [33] LWM [33] Approximate Solution Exact Solution 

0 0 0 0 0 

0.125 0.124674731 0.124674731 0.1246747333852261 0.1246747333852277 

0.25 0.247403957 0.247403957 0.2474039592545214 0.2474039592545229 

0.375 0.366272528 0.366272527 0.3662725290860461 0.3662725290860476 

0.5 0.479425533 0.479425537 0.4794255386042038 0.4794255386042030 

0.625 0.585097232 0.585097271     0.585097272940458      0.585097272940462 

0.75 0.681638554 0.681638759 0.6816387600233305 0.6816387600233342 

0.875 0.767542679 0.767543501 0.7675435022360236 0.7675435022360271 

1 0.841468253 0.841470984 0.8414709848078985 0.8414709848078965 
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(a) 𝑘 = 7 

 

(b) 𝑘 = 8 

 

(c) 𝑘 = 9 

Fig.7.   Residual error of Example 5 with different values of 𝑘 at 𝑀 =
 5, 𝛼 = 0.25 and 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 20. 

 

The absolute errors are tabulated in Table XII and also com-

pared with LWM [33], CWM [12], and Jacobi collocation 

method (JCM) [14] for different values of 𝑡 with step length 

0.125. It is evident from the given table that the achieved re-

sults are more accurate as compared to the existing technique.  

TABLE X 
COMPARISON OF ABSOLUTE ERROR OF EXAMPLE 4 WITH 

DIFFERENT METHODS.  

 

t 
IRKHSM 

 [29] 

GBCM  

[28] 

Present Method 
𝑀 = 6, 𝑘 = 7,
𝑖𝑡𝑒𝑟 = 23 

0.1 9.05e-06 2.51e-08 8.43e-17 

0.2 1.72e-05 4.64e-08 1.38e-16 

0.3 2.38e-05 5.60e-08 1.57e-16 

0.4 2.85e-05 1.08e-08 1.35e-16 

0.5 3.11e-05 1.46e-07 8.61e-17 

0.6 3.17e-05 2.42e-07 3.02e-17 

0.7 3.07e-05 1.17e-06 1.39e-17 

0.8 2.81e-05 1.57e-06 4.78e-17 

0.9 2.32e-05 1.16e-06 6.01e-17 

1 11.19e-05 1.04e-06 6.04e-17 

 

TABLE XII 
COMPARISON OF ABSOLUTE ERROR WITH DIFFERENT METH-

ODS FOR EXAMPLE 5 AT 𝑀 = 9, 𝑘 = 2, 𝐼𝑇𝐸𝑅𝐴𝑇𝐼𝑂𝑁 = 6. 

 

t 
LWM 

[33] 

CWM 

 [12] 

JCM 

 [14] 

Present 

Method 

0.125 2.38522e-9 1.70708e-12 2.04656e-12 1.61e-15 

0.25 2.25452e-9 2.47323e-12 1.61024e-12 1.54e-15 

0.375 2.08604e-9 9.36426e-11 3.47906e-11 1.42e-15 

0.5 1.60420e-9 1.78774e-11 5.31130e-11 7.49e-16 

0.625 1.94046e-9 1.88843e-11 2.06581e-11 3.93e-15 

0.75 1.02333e-9 3.04277e-12 2.47129e-11 3.67e-15 

0.875 1.23602e-9 1.64433e-12 1.59291e-11 3.42e-15 

1 8.07896e-10 4.51086e-10 3.85050e-10 2.04e-15 

 

VI. CONCLUSION 

 

The article successfully implements an effective new nu-

merical technique to solve various types of nonlinear frac-

tional order initial values problems. The primary advantage 

of this methodology resides in its adeptness at transforming 

nonlinear equations to linear equations. The efficacy of the 

proposed approach has been assessed through diverse numer-

ical illustrations, elucidating a comparative analysis of the so-

lution and their errors in tables and figures. Our findings show 

that our numerical solution offers a high degree of accuracy 

as compared to existing methods. Increasing the value of the 

LW parameter or increasing the number of iterations en-

hances solution precision. Furthermore, we’ve included error 

estimations for the proposed scheme using the residual func-

tion, and the effectiveness of this error estimation is demon-

strated through numerical examples. It’s worth nothing that 

this article focuses on solutions for nonlinear problems, but 

the proposed methodology can also be applied to solve linear 

problems.  
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