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Abstract—An adaptive event-triggered tracking control
method with preset performance is proposed for a class of
uncertain nonlinear systems with full-state constraints and
unknown time-varying disturbances. Firstly, a performance
function is designed and the original system error is converted.
In order to eliminate the influence of state constraints on the
system, a barrier Lyapunov function is introduced. Secondly,
the influence of unknown function is solved by using radial
basis function neural network (RBFNN). Simultaneously, event-
triggering mechanism was used to reduce the update frequency
of control signals, thereby the communication burden is re-
duced. Then, based on the Lyapunov stability theorem, all
signals of the closed-loop control system are verified to be
bounded, all states do not violate the predefined interval, and
the Zeno behavior does not occur. Finally, the effectiveness of
the proposed method was verified using a single-link flexible
manipulator as a simulation example.

Index Terms—nonlinear system, event-triggered control, pre-
scribed performance, full-state constraints, flexible manipulator.

I. INTRODUCTION

THE control problem of nonlinear system has always
been a hot issue in the control field [1]–[4]. Especially

in recent decades, the systems have become more and more
complex, and people’s requirements for the control system
have become higher and higher. The unknown nonlinear
problems and uncertain factors bring difficulty to the control
of the system. For solving these problems, adaptive control
for uncertain nonlinear systems has been widely studied
and practiced on the basis of neural networks and fuzzy
logic systems [5]–[7]. However, the various constraints of
the system also bring new problems to the control of the
system. Considering the security of the system and the
higher requirements for implementation, constraints such as
state constraints and input/output constraints generally exist
in practical systems such as flexible manipulators [8]–[10].
To address these issues, scholars have conducted extensive
research [11]–[13]. In [14], an adaptive tracking control
strategy based on instruction filtering was given by using
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the barrier Lyapunov function, which not only ensured the
stability of the system, but also made all the states of
the system not violate the preset interval. Different from
logarithmic barrier Lyapunov function, by introducing a tan
barrier Lyapunov function and combining with RBFNN, Lu
et al. [15] designed an adaptive event-triggered controller
for a class of stochastic nonlinear systems with full state
constraints. However, the above researches only focused on
the impact of state constraints, without considering how to
improve the transient and steady-state performance of the
system, which is equally important in practical production.

Prescribed performance control (PPC) method not only
ensures system stability, but also takes into account both
transient and steady-state performance of the system [16].
In [17], the boundedness and steady-state error of the sys-
tem were effectively controlled due to the introduction of
dynamic surface control with prescribed performance, but
the author only considered the case of input saturation, which
may make the system performance unsatisfactory when other
constraints appear. On this basis, [18] designed an acceler-
ated adaptive fuzzy neural prescribed performance controller
for permanent magnet synchronous motor (PMSM), and
solved the problems of full-state constraint, uncertain time
delay and so on. Mu et al. [19] proposed an adaptive neural
network output feedback control method for a class of double
switched nonlinear systems with time-delay, which ensures
that the tracking performance meets the predetermined per-
formance well.

In recent years, with the development of network control
systems, the issue of communication resource allocation has
received significant attention [20]. Event-triggered control
(ETC) can effectively reduce the communication burden by
only updating control signals when necessary [21], [22].
In [23], by introducing the event-triggered mechanism, the
amount of online training calculation was reduced and data
transmission resources were saved. Moreover, the stability of
the system can be well satisfied. In [24], aiming at a class of
single input single output non-affine nonlinear systems, the
authors proposed an event-triggered based adaptive tracking
control method through output feedback, which ensures
approximate minimization of system performance indicators
while reducing computational and transmission loads.

On the basis of the foregoing discussion, this paper
proposes an adaptive control strategy of neural network
with prescribed performance based on event-triggered for
a class of uncertain strict-feedback nonlinear systems with
full-state constraints and unknown time-varying disturbances.
Based on [25] and [26], the control scheme proposed in
this paper can not only ensure that the system meets the
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constraints, but also make the system error converge better.
During the controller design process, a new parameter is
introduced to replace the ideal weight vector of neural net-
work, which saves the number of adjustment parameters. In
addition, unlike the fixed threshold event-triggered adopted
in [27], this paper introduces a relative threshold event-
triggered mechanism, which reduces the number of event
triggering while ensuring the expected performance. Finally,
the proposed method was validated by using actual numerical
examples.

II. SYSTEM DESCRIPTIONS AND BASIC
KNOWLEDGE

A. problem formulation

A class of nonlinear systems with full-state constraints and
unknown time-varying disturbances is considered as follows:

ẋi = fi(x̄i) + xi+1 + di(t), 1 ≤ i ≤ n− 1

ẋn = fn(x̄n) + u+ dn(t)

y = x1.

(1)

Where x̄i = [x1, x2, · · · , xi]T ∈ Ri and y ∈ R are the states
and output of the system, respectively; fi(i = 1, 2, · · · , n)
are the unknown smooth functions. In addition, di(t)(i =
1, 2, · · · , n) are the unknown external disturbances.

Control objective: Design an event-triggered adaptive con-
trol scheme for the system (1), which makes the system
tracking error yd converge to the preset error range within
a preset time, and ensures that all signals in the closed-loop
system are bounded and do not violate the state constraints.

For subsequent analysis, the following assumptions are
given.

Assumption 1. The unknown disturbances di(t)(i =
1, 2, · · · , n) are bounded, and there exists positive constants
d̄i that makes |di| ≤ d̄i, i = 1, 2, ..., n.

Assumption 2. The reference signal yd and the derivative
yd

(i) are known and bounded.
Assumption 3. All states of the system hold |xi| < kci,

here kci is a normal number.

B. Basic knowledge

Definition 1. [28] For a smooth continuous function
ρ(t) : R+ → R+, if ρ(t) is positive and strictly decreasing,
lim
t→∞

ρ(t) = ρ∞ > 0, it is called a performance function. In
this paper, the following default performance function will
be selected:

ρ(t) = (ρ0 − ρ∞)e−lt + ρ∞ (2)

Where ρ0, ρ∞, l are preset normal numbers.
Error transformation: e(t) = ρ(t)S(η), where e(t)=y(t)−

yd(t) is the tracking error of the original system, η is the
new conversion error. Take S(η) = eη−e−η

eη+e−η , then η(t) =
1
2 ln

[
ρ(t)+e(t
ρ(t)−e(t

]
.

Definition 2. [29] RBFNN can be stated as f(Z) =

W ∗T

S(Z) + τ(Z), where S(Z) = [S1(Z), ..., Sk(Z)]
T rep-

resents radial basis function vector, k represents the number
of radial basis function nodes, W = [W1,W2...,Wk]

T ∈ Rk

is the neural network weight vector. There are many choices

of basis functions, and Gaussian function is usually selected
as radial basis function.

The following lemmas are introduced for achieving the
control objective of the system.

Lemma 1. [30] f(Z) is a continuous function defined in
a compact set Ω ∈ Rn, and there is a constant weight vector
W ∗, which makes the following formula hold:

f(Z) =W ∗T

S(Z) + τ(Z) (3)

W ∗ = arg min
W∈Rk

{
sup
Z∈Ω

∣∣f(Z)−WTS(Z)
∣∣} (4)

Where W ∗ = [W1
∗, ...W2

∗,Wk
∗]T ∈ Rk is the optimal

weight, τ(Z) is the approximation error, and it satisfies
τ(Z) ≤ τ̄ , τ̄ > 0.

Lemma 2. [31] There is a normal number ι > 0, and the
function tanh(·) satisfies

0 ≤ |x| − x tanh(
x

ι
) ≤ 0.2785ι (5)

Lemma 3. [32] For a system with bounded initial con-
ditions, if there is a continuously differentiable and positive
definite function V (x, t), it satisfies k1(|x|) ≤ V (x, t) ≤
k2(|x|), V̇ ≤ −CV + D, where C,D are normal numbers
and 0 ≤ V (t) ≤ V (0)e−Ct +D/C, then the solution of the
system is semi-globally uniformly and finally bounded.

Lemma 4. [33] For a and b, there has

xy ≤ pa

a
|x|a + 1

bpb
|y|b (6)

Where p > 0, a > 1, b > 1, and (a− 1)(b− 1) = 1.

III. ADAPTIVE CONTROLLER DESIGN

A. Controller design

In order to design the controller conveniently, a set of state
coordinate transformations are introduced first.{

z1 = x1 − yd

zi = xi − αi−1, i = 2, ..., n.
(7)

Where αi(i = 1, 2, · · ·n− 1) are virtual controllers.
Step 1: Introduce a new error transformation

η1(t) =
1

2
ln

[
ρ(t) + z1(t)

ρ(t)− z1(t)

]
(8)

For convenience, η1(t), ρ(t) and z1(t) are abbreviated as η1,
ρ and z1. Derivation of η1 can be obtained as follows

η̇1 = r [ẋ1 − v] = r [f1 + x2 + d1 − v] (9)

Where r = ρ
ρ2−z12 , v = ẏd +

z1ρ̇
ρ .

Construct the following barrier Lyapunov function

V1 =
1

2
log

kb1
2

kb1
2 − η12

+
1

2
θ̃21 (10)

Where kb1 = kc1 − A1 is a positive design parameter, θ̃1 =
θ1 − θ̂1, θ̂1 is an estimated value of θ1.

By using (1), (7) and (10), it can be obtained that

V̇1 =
η1r

kb1
2 − η12

(f1 + z2 + α1 + d1 − v)− θ̃1
˙̂
θ1 (11)

According to Lemma 4, the following inequality holds

η1r

kb1
2 − η12

d1 ≤ η1
2r2

2(kb1
2 − η12)

2 +
d̄21
2

(12)
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Substituting (12) for (11), there has

V̇1 ≤ η1r

kb1
2 − η12

[F1(Z1) + z2 + α1 − v]

+
d̄21
2

− θ̃1
˙̂
θ1

(13)

Where F1(Z1) = f1+
η1r

2(kb1
2−η1

2)
, Z1 = [x1, yd, ẏd, ρ]. Since

f1 is an unknown function, it cannot be directly used to
construct a virtual control law, so it can be resolved by
RBFNN

F1(Z1) =W1
∗TS1(Z1) + τ1(Z1) (14)

Where W1
∗ is the optimal weight, τ1(Z1) ≤ τ̄1, τ̄1 > 0 and

τ1(Z1) is the minimum approximation error. According to
Lemma 4, there has

η1r

kb1
2 − η12

F1(Z1) ≤
η1

2r2θ1S1
TS1

2a12(kb1
2 − η12)

2 +
a1

2

2

+
η1

2r2

2(kb1
2 − η12)

2 +
τ̄21
2

(15)

Where θ1 = ∥W1
∗∥2, a1 > 0, a1 is the design parameter.

Substituting (15) into (13) yields

V̇1 ≤ η1r

kb1
2 − η12

[
z2 + α1 +

η1r

2(kb1
2 − η12)

+
η1rθ1S1

TS1

2a12(kb1
2 − η12)

− v

]

+
a1

2

2
+
d̄21
2

+
τ̄21
2

− θ̃1
˙̂
θ1

(16)

By using θ̃1 = θ1 − ˙̂
θ1, there has

V̇1 ≤ η1r

kb1
2 − η12

[
z2 + α1 +

η1r

2(kb1
2 − η12)

+
η1rθ̂1S1

TS1

2a12(kb1
2 − η12)

− v

]
+
a1

2

2
+
d̄21
2

+
τ̄21
2

+ θ̃1

[
η1

2r2S1
TS1

2a12(kb1
2 − η12)

2 − ˙̂
θ1

] (17)

Design a virtual controller and adaptive law as follows

α1 =− λ1
η1
r

− η1r

2(kb1
2 − η12)

− η1rθ̂1S1
TS1

2a12(kb1
2 − η12)

+ v

(18)

˙̂
θ1 = −σ1θ̂1 +

η1
2r2S1

TS1

2a12(kb1
2 − η12)

2 (19)

Where λ1 > 0, σ1 > 0 are design parameters, then V̇1 can
be rewritten as

V̇1 ≤ −λ1
η1

2

kb1
2 − η12

− 1

2
σ1θ̃

2
1 +

η1z2r

kb1
2 − η12

+ C1 (20)

Where C1 = a1
2

2 +
d̄2
1

2 +
τ̄2
1

2 + 1
2σ1θ1

2.
Step 2: Construct the following barrier Lyapunov function

V2 = V1 +
1

2
log

kb2
2

kb2
2 − z22

+
1

2
θ̃22 (21)

Where θ̃2 = θ2 − θ̂2 is parameter estimation error, θ̂2 is the
estimated value of θ2.

According to (7), we can get

ż2 = f2 + z3 + α2 + d2 − α̇1 (22)

Then, derivation of V2 is as follows

V̇2 =V̇1 +
z2

kb2
2 − z22

[f2 + z3 + α2 + d2 − α̇1]

− θ̃2
˙̂
θ2

(23)

According to Lemma 4 and Assumption 1, it has

z2

kb2
2 − z22

d2 ≤ z2
2

2(kb2
2 − z22)

2 +
d̄22
2

(24)

Substituting (24) for (23), there has

V̇2 ≤V̇1 +
z2

kb2
2 − z22

[F2(Z2) + z3 + α2]

+
d̄22
2

− θ̃2
˙̂
θ2 −

η1z2r

kb1
2 − η12

(25)

Where F2(Z2) = f2+
z2

2(kb2
2−z22)

− α̇1+
kb2

2−z2
2

kb1
2−η1

2 η1r, Z2 =

[x1, x2, yd, ẏd, ÿd, θ1, ρ].
Similarly, the RBFNN can be used to approach F2(Z2):

F2(Z2) =W2

∗TS2(Z2) + τ2(Z2) (26)

By using lemma 4, it has

z2

kb2
2 − z22

F2(Z2) ≤
z2

2θ2S2
TS2

2a22(kb2
2 − z22)

2 +
a2

2

2

+
z2

2

2(kb2
2 − z22)

2 +
τ̄22
2

(27)

Where θ2 = ∥W2
∗∥2, a2 > 0 is the design parameter. Then,

substituting (27) into (25) yields

V̇2 ≤V̇1 +
z2

kb2
2 − z22

[
z2θ̂2S2

TS2

2a22(kb2
2 − z22)

+
z2

2(kb2
2 − z22)

+ z3 + α2

]
+
a2

2

2
+
τ̄22
2

+
d̄22
2

− η1rz2

kb1
2 − η12

+ θ̃2

[
z2

2S2
TS2

2a22(kb2
2 − z22)

2 − ˙̂
θ2

]
(28)

Therefore, the virtual control signal is designed as follows

α2 = −λ2z2 −
z2

2(kb2
2 − z22)

− z2θ̂2S2
TS2

2a22(kb2
2 − z22)

(29)

and adaptive law is designed as follows

˙̂
θ2 = −σ2θ̂2 +

z2
2S2

TS2

2a22(kb2
2 − z22)

2 (30)

Where λ2 > 0, σ2 > 0 are design parameters, then V̇2 can
be rewritten as

V̇2 ≤− λ1
η1

2

kb1
2 − η12

− λ2
z2

2

kb2
2 − z22

− 1

2
σ1θ̃

2
1 −

1

2
σ2θ̃

2
2 +

z2z3

kb2
2 − z22

+ C2

(31)

Where C2 =
2∑

j=1

[
aj

2

2 +
d̄2
j

2 +
τ̄2
j

2 + 1
2σjθj

2
]
.
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Step i (i = 3, · · · , n − 1): Select the following barrier
Lyapunov function

Vi = Vi−1 +
1

2
log

kbi
2

kbi
2 − zi2

+
1

2
θ̃2i (32)

Where θ̃i = θi − θ̂i, θ̂i is the estimated value of θi.
According to (7), it has

żi = fi + zi+1 + αi + di − α̇i−1 (33)

Taking the derivative of Vi yields

V̇i =V̇i−1 +
zi

kbi
2 − zi2

[fi + zi+1 + αi + di − α̇i−1]

− θ̃i
˙̂
θi

(34)

By using Lemma 4, it has

zi

kbi
2 − zi2

di ≤
zi

2

2(kbi
2 − zi2)

2 +
d̄2i
2

(35)

Substituting it into (34) yields

V̇i ≤V̇i−1 +
zi

kbi
2 − zi2

[Fi(Zi) + zi+1 + αi]

+
d̄2i
2

− θ̃i
˙̂
θi −

zi−1zi

kbi−1
2 − zi−1

2

(36)

Where Fi(Zi) = fi+
zi

2(kbi
2−zi2)

− α̇i−1+
kbi

2−zi
2

kbi−1
2−zi−1

2 zi−1,

Zi =
[
x̄Ti , ȳ

T
di, θ̄i−1, ρ

]
, ȳdi =

[
yd, ẏd, ..., yd

(i)
]T

, θ̄i−1 =

[θ1, ..., θi−1]
T .

Similarly, using RBFNN to approach Fi(Zi):

Fi(Zi) =Wi
∗TSi(Zi) + τi(Zi) (37)

By using Lemma 4 and Assumption 1, it has

zi

kbi
2 − zi2

Fi(Zi) ≤
zi

2θiSi
TSi

2ai2(kbi
2 − zi2)

2 +
ai

2

2

+
zi

2

2(kbi
2 − zi2)

2 +
τ̄2i
2

(38)

Where θi = ∥Wi
∗∥2, ai > 0 is the design parameter. Then,

combine (38) with (36) yields

V̇i ≤V̇i−1 +
zi

kbi
2 − zi2

[
ziθ̂iSi

TSi

2ai2(kbi
2 − zi2)

+
zi

2(kbi
2 − zi2)

+ zi+1 + αi

]
+
ai

2

2
+
τ̄2i
2

+
d̄2i
2

− zi−1zi

kbi−1
2 − zi−1

2
+ θ̃i

[
zi

2Si
TSi

2ai2(kbi
2 − zi2)

2 − ˙̂
θi

]
(39)

Design virtual control signal and adaptive law as follows

αi = −λizi −
zi

2(kbi
2 − zi2)

− ziθ̂iSi
TSi

2ai2(kbi
2 − zi2)

(40)

˙̂
θi = −σiθ̂i +

zi
2Si

TSi

2ai2(kbi
2 − zi2)

2 (41)

Where λi > 0, σi > 0 are design parameters, then V̇i can be
obtained

V̇i ≤− λ1
η1

2

kb1
2 − η12

−
i∑

j=2

λj
zj

2

kbj
2 − zj2

− 1

2

i∑
j=1

σj θ̃
2
j +

zizi+1

kbi
2 − zi2

+ Ci

(42)

Where Ci =
i∑

j=1

[
aj

2

2 +
d̄2
j

2 +
τ̄2
j

2 + 1
2σjθj

2
]
.

Step n: Select the obstacle Lyapunov function as follows

Vn = Vn−1 +
1

2
log

kbn
2

kbn
2 − zn2

+
1

2
θ̃2n (43)

Where θ̃n = θn − θ̂n, θ̂n is the estimated value of θn.
By using (7), there has

żn = fn + u+ dn − α̇n−1 (44)

Taking the derivative of Vn yields

V̇n =V̇n−1 +
zn

kbn
2 − zn2

[fn + u+ di − α̇n−1]

− θ̃n
˙̂
θn

(45)

According to Lemma 4 and Assumption 1, the following
inequality holds

zn

kbn
2 − zn2

dn ≤ zn
2

2(kbn
2 − zn2)

2 +
d̄2n
2

(46)

Substituting it into (45), it has

V̇n ≤V̇n−1 +
zn

kbn
2 − zn2

[Fn(Zn) + u]

+
d̄2n
2

− θ̃n
˙̂
θn − zn−1zn

kbn−1
2 − zn−1

2

(47)

Where Fn = fn+
zn

2(kbn
2−zn2)

− α̇n−1+
kbn

2−zn
2

kbn−1
2−zn−1

2 zn−1,

Zn =
[
x̄Tn , ȳ

T
dn, θ̄n−1, ρ

]
, ȳdn =

[
yd, ẏd, ..., yd

(n)
]T

, θ̄n−1 =

[θ1, ..., θn−1]
T .

Similarly

Fn(Zn) =Wn
∗TSn(Zn) + τn(Zn) (48)

By Lemma 4, it can be obtained

zn

kbn
2 − zn2

Fn(Zn) ≤
zn

2θnSn
TSn

2an2(kbn
2 − zn2)

2 +
an

2

2

+
zn

2

2(kbn
2 − zn2)

2 +
τ̄2n
2

(49)

Where θn = ∥Wn
∗∥2, an > 0, an is the design parameter.

Then, combining (49) with (47), it yields

V̇n ≤V̇n−1 +
zn

kbn
2 − zn2

[
znθ̂nSn

TSn

2an2(kbn
2 − zn2)

+
zn

2(kbn
2 − zn2)

+ u

]
+
an

2

2
+
τ̄2n
2

+
d̄2n
2
−

znzn−1

kbn
2 − zn2

+ θ̃n

[
znSn

TSn

2an2(kbn
2 − zn2)

2 − ˙̂
θn

] (50)

Based on the preceding information, design virtual con-
troller and adaptive law as follows

αn = −λnzn − zn

2(kbn
2 − zn2)

− znθ̂nSn
TSn

2an2(kb
2 − zn2)

(51)

˙̂
θn = −σnθ̂n +

zn
2Sn

TSn

2an2(kbn
2 − zn2)

2 (52)
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Where λn > 0, σn > 0 are design parameters, then V̇n can
be rewritten as

V̇n ≤− λ1
η1

2

kb1
2 − η12

−
n∑

j=2

λj
zj

2

kbj
2 − zj2

− 1

2

n∑
j=1

σj θ̃
2
j +

zn

kbn
2 − zn2

(u− αn) + Cn

(53)

Where Cn =
n∑

j=1

[
aj

2

2 +
d̄2
j

2 +
τ̄2
j

2 + 1
2σjθj

2
]
.

B. Event-triggered control

The relative threshold event-triggered mechanism [34] is
as follows

ψ(t) =− (1 + ξ)

[
αn tanh

(
znαn

ε(kbn
2 − zn2)

)
+

m̄1 tanh

(
znm̄1

ε(kbn
2 − zn2)

)]
u(t) =ψ(tk), ∀t ∈ [tk, tk+1)

tk+1 = inf {|χ(t)| ≥ ξ |u(t)|+m1}

(54)

Where ξ, ε, m̄1, m1 are positive design parameters, 0 <
ξ < 1 and m̄1 >

m1

1−ξ . χ(t) = ψ(t) − u(t) is the related
measurement error.

C. Stability analysis

Theorem 1. On the premise of assumptions 1-3, a class
of nonlinear uncertain system (1) with full-state constraints,
unknown time-varying disturbances and prescribed perfor-
mance is considered, and the control laws and adaptive
laws shown in (1), (29), (30), (40), (41), (51) and (52) are
designed. Under the action of the event-triggered mechanism
(54), the following conclusions are established by selecting
appropriate design parameters:

(1) All signals in the closed-loop system are uniformly and
ultimately bounded, and the system error meets the preset
requirements.

(2) All states in the system will be not violate the prede-
fined constraint interval.

(3) Event-triggered interval time meets tk+1 − tk ≥ t∗,
that is, the Zeno behavior will not happen.

Proof: (1) According to the following formula

ψ(t) = [1 + ξβ1(t)]u(t) +m1β2(t), ∀t ∈ [tk, tk+1) (55)

Where |β1(t)| ≤ 1, |β2(t)| ≤ 1 are time-varying parameters,
we can get

u(t) =
ψ(t)−m1β2(t)

1 + ξβ1(t)
(56)

Substituting (56) into (53) yields

V̇n ≤− λ1
η1

2

kb1
2 − η12

−
n∑

j=2

λj
zj

2

kbj
2 − zj2

− 1

2

n∑
j=1

σj θ̃
2
j +

zn

kbn
2 − zn2

[
ψ(t)

1 + ξβ1(t)

]
− zn

kbn
2 − zn2

[
m1β2(t)

1 + ξβ1(t)

]
+

∣∣∣∣ znαn

kbn
2 − zn2

∣∣∣∣+ Cn

(57)

Combining |β1(t)| ≤ 1 with ψ(t) yields

zn

kbn
2 − zn2

[
ψ(t)

1 + ξβ1(t)

]
≤ − znαn

kbn
2 − zn2

tanh

(
znαn

ε(kbn
2 − zn2)

)
− znm̄1

kbn
2 − zn2

tanh

(
znm̄1

ε(kbn
2 − zn2)

) (58)

Based on Lemma 2, it has

V̇n ≤− λ1
η1

2

kb1
2 − η12

−
n∑

j=2

λj
zj

2

kbj
2 − zj2

− 1

2

n∑
j=1

σj θ̃
2
j + 0.2785ε

− znm̄1

kbn
2 − zn2

tanh

(
znm̄1

ε(kbn
2 − zn2)

)
− zn

kbn
2 − zn2

[
m1β2(t)

1 + ξβ1(t)

]
+ Cn

≤ λ1
η1

2

kb1
2 − η12

−
n∑

j=2

λj
zj

2

kbj
2 − zj2

− 1

2

n∑
j=1

σj θ̃
2
j + 0.557ε−

∣∣∣∣ znm̄1

kbn
2 − zn2

∣∣∣∣
+

∣∣∣∣ znm1

(kbn
2 − zn2)(1− ξ)

∣∣∣∣+ Cn

(59)

By using m̄1 >
m1

1−ξ , it has

V̇n ≤− λ1
η1

2

kb1
2 − η12

−
n∑

j=2

λj
zj

2

kbj
2 − zj2

− 1

2

n∑
j=1

σj θ̃
2
j + 0.557ε+ Cn

(60)

Since log kb
2

kb
2−z2 <

z2

kb
2−z2 for |z| < kb, V̇n can finally be

rewritten as
V̇n ≤ −CVn +D (61)

Where C = min {2λj , σj , j = 1, ..., n} , D = 0.557ε+ Cn.
Furthermore, (61) can be solved by Lemma 3 as follows

Vn ≤ Vn(0)e
−Ct +

D

C
(62)

According to the definition of Vn, there has

|zj | ≤ kbj
√

1− e−2[Vn(0)e−Ct+D/C] (63)

The above results show that system signals are bounded,
and the tracking error can be converged to the prescribed
range by choosing appropriate design parameters. In addi-
tion, in view of θ̃j = θj − θ̂j , it can be concluded that θ̂j is
bounded.

(2) In view of |x1| < |z1| + |yd| < kb1 + A1 and kb1 =
kc1 − A1, we can get |x1| < kc1. Because α1 is composed
of bounded signals, there is a constant A2 that makes |α1| <
A2, combining |x2| = |z2 + α1|, it can be concluded that
|x2| < kb2 + A2. Let kb2 = kc2 − A2, then |x2| < kc2.
Likewise, |xi| < kci, i = 3, ..., n can be verified.

(3) From χ(t) = ψ(t)− u(t), it has

d

dt
|χ(t)| = sign(χ(t))χ̇(t) ≤

∣∣∣ψ̇(t)∣∣∣ (64)
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Based on (55), ψ̇(t) can be verified to be continuous.
Therefore, when ϖ is a constant,

∣∣∣ψ̇(t)∣∣∣ ≤ ϖ holds. In
addition, χ(tk) = 0 and lim

t→tk+1

χ(t) = ξ |u(t)| + m1, the

execution interval t∗ is required to meet t∗ ≥ ξ|u(t)|+m1

ϖ , so
the Zeno-behavior dose not happen.

Remark 1. All signals of the closed-loop system are
bounded and all states meet the predefined constraint interval
on the basis of the above proof process. The relative threshold
event-triggered mechanism can not only lower the triggering
times, but also maintain the expected performance.

IV. SIMULATION EXAMPLES

In order to verify the effectiveness of the control strategy,
this section takes the single-link flexible manipulator in [35]
as the simulation object. and its system dynamics model is
described as follows{

Jq̈ +Bq̇ +MgL sin(q) = u+ d

y = q
(65)

Defining the system state variables as x1 = q, x2 = q̇,
then (65) can be rewritten as

ẋ1 = x2

ẋ2 = 1
J (u+ d−Bx2 −MgL sin(x1))

y = x1

(66)

Where x1 = q, x2 = q̇ represent joint angle and angular
respectively, J represents joint moment of inertia, M rep-
resents the mass of the manipulator, g represents gravity
acceleration, and L is the length of the connecting rod. The
parameters of the manipulator are set as follows: J = 1, B =
1, MgL = 2, d = 0.01 sin(t). The initial values are set to
[x1(0), x2(0)]

T = [0.01, 0.01]T, [θ1(0), θ2(0)]T = [0, 0.2]T.
The system states are |x1| < 1.2 and |x2| < 1.4.

For certifying the tracking performance of the system, the
reference signal is chosen as yd = sin(t). Select Gaussian
function Si(Zi) = exp(− (Zi−υi)

2

2 ), i = 1, 2, υi = [−5, 5] as
radial basis function. The prescribed performance function is
set to ρ(t) = (1 − 0.03)e−2t + 0.03. Other relevant design
parameters are set as λ1 = 30, λ2 = 30, a1 = 4, a2 = 6,
σ1 = 6, σ2 = 4, kb1 = 0.5, kb2 = 1.8, m1 = 0.5, m̄1 = 1.5,
ξ = 0.5, ε = 11.

The simulation results are shown in Figure 1- Figure 7.
Figure 1 is the tracking curve of the system response. We
note that the system has good tracking performance and the
system state x1 meets the constraint conditions. Fig. 2 shows
the system state x2, which also does not violate the constraint
conditions. Fig. 3 shows the designed adaptive law, which
shows that θ1, θ2 are bounded. Fig. 4 is the error curve
without prescribed performance control. Compared with the
tracking error with prescribed performance shown in Figure
5, it can be noted that the prescribed performance function
effectively reduces the tracking error of the system and
improves the transient performance and steady performance
of the system. Fig. 6 shows the control input and the
event-triggered control input, which shows that the input
signal is bounded. In fig. 7, the total triggering times of
the event-triggered mechanism in 20s are only 388 times.
Contrast that with the traditional time-triggered mechanism,
communication resources are effectively saved on account of

the event triggering mechanism, and the Zeno-behavior will
not occur.

Fig. 1. Tracking curve.

Fig. 2. Curve of system state x2.

Fig. 3. Adaptive law .
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Fig. 4. Tracking error (no prescribed performance).

Fig. 5. Tracking error (prescribed performance).

Fig. 6. Control Signals.

Fig. 7. Trigger time interval.

V. CONCLUSION

In this paper, a prescribed performance adaptive event-
triggered control strategy is proposed for a class of uncertain
nonlinear systems with state constraints and unknown time-
varying disturbances. Compared with other existing control
schemes, it not only enables the system to have better
transient and steady-state performance, but also ensures that
all states of the system are bounded and do not violate
predetermined state intervals. The introduction of the relative
threshold event-triggered mechanism effectively reduces the
communication burden and greatly saves communication
resources, and the controller has no Zeno-behavior.
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