
Approximate Solution of K(p, q) and K(p, q, 1)
Equations with Time Fractional Derivatives

Johnson Adekunle Owolabi, Member, IAENG and Razaq Adekola Oderinu

Abstract—The coupled Kamal transform and Adomian poly-
nomial are used in this article to solve nonlinear fractional
partial differential equations. The technique was developed
to obtain an approximate solution to the fractional order
K(p, q): cDα

t u+ (up)x + (uq)xxx = 0 and K(p, q, 1): cDα
t u+

(up)x + (uq)xxx + u5x = 0 equations with initial conditions.
The solutions were calculated in the form of an infinite series
that converges rapidly to the exact solution when α = 1. The
results, as well as the graphs that were presented demonstrate
the method’s reliability and efficiency.

Index Terms—Solitary wave K(p, q) and K(p, q, 1) equations,
nonlinear fractional order differential equations, Kamal trans-
form, Adomian polynomial.

I. INTRODUCTION

The study of fractional order differential equations is
extremely essential and has been a mathematical topic with
many real-world applications. It serves as a great tool for
describing dynamical behavior, memory, and hereditary traits
in relation to physical systems and processes. Fractional
differential equations give more accurate models for real-
world problems than integer-order derivatives because of
their usefulness in describing some physical issues in the
simulation of complex applied science phenomena [1], [10],
[11], [13], [16], [29].

The fundamental applications of fractional differential
equations prompted this study to consider the nonlinear
time fractional order solitary waves, which are expressed as
follows:

cDα
t u+ (up)x + (uq)xxx = 0, p, q > 1. (1)

And
cDα

t u+ (up)x + (uq)xxx + u5x = 0, p, q > 1. (2)

Equations 1 and 2 presented above are called K(p, q) and
K(p, q, 1), which are the classes of solitary waves with
compact supports. The first term, expressed in Caputo sense,
is the generalized evolution term; the second is the nonlinear
term; and the third and fourth terms are the dispersion terms
that cause the wave form to spread [20], [21]. The K(p, q)
equation, which was first studied by Rosenan and Hyman
[20], belongs to the highly nonlinear Kortwge-deVries (Kdv)
family, which has applications in the investigation of non-
linear dispersion in pattern generation in liquid drops, and
the obtained solitary wave solution with compact support
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is called compactons. This compacton has the remarkable
property that the solitary wave solution reemerges after
colliding with other compact solitons [20], [22], [30], [24].
The K(p, q, 1) equation is an extension of K(p, q) equa-
tion, which was conducted as a result of further studies of
compactons. Hence, equation 2 is regarded as the higher
order Kdv equation [3], [24]. Obtaining the approximate
solutions of fractional order differential equations for the
solitary wave solution of K(p, q) and K(p, q) have been
studied using a number of approaches, including: homotopy
perturbation method [8], [15], [26], [28], reduced differential
transform method [2], [17], Adomian decomposition method
[24], [31], variational principle [30], lie symmetry analysis
[33], homotopy analysis method [12], decomposition method
[27]. In an effort to present analytical and approximative
solutions to the nonlinear dispersive equations with fractional
time derivatives, this research extends the application of the
coupled Kamal transform and Adomian polynomial to solve
nonlinear K(p, q) and K(p, q, 1) equations, which are in
the Caputo sense. The Kamal transform [7] was proposed
primarily to solve linear differential equations. However,
it is worth mentioning that when coupling the Adomian
polynomial with the Kamal transform, nonlinear differential
equations were successfully solved. Hence, one of the re-
markable features is that coupling the Kamal transform with
the Adomian polynomial is efficient in handling both linear
and nonlinear fractional order differential equations, which
are of the Caputo sense [13].

II. DEFINITIONS

This section provides a basic definition of fractional dif-
ferentiation and integration.

A. Definition 1

The Caputo fractional derivative of order α, denoted by
cDα, is defined by [8], [5], [13], [17].

cDαf(x) = Jn−αDnf(x) =
1

Γ(n− α)

∫ x

0

fn(τ)

(x− τ)α+1−n
dτ.

(3)
where n− 1 < α ≤ n, n ∈ N, x > 0, α > 0, and f ∈ Cn

−1.

B. Definition

The fractional integral operator of order α, called
Riemann-Liouville, is defined by [6], [8], [9], [17].

Jαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt. (4)

where α ≥ 0, f ∈ Cl, l ≥ −1, x > 0, and J0f(x) = f(x).
The properties of Reimann Liouville operator Jα for
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f ∈ Cl, l ≥ −1, α, β ≥ 0 and γ > −1 is given by [1], [10],
[12], [23].

(1) JαJβf(x) = Jα+βf(x),

(2) JαJβf(x) = JβJαf(x),

(3) Jαxγ = Γ(γ + 1)/Γ(α+ γ + 1)xα+γ .

C. Definition

Kamal transform is denoted by the operator K(·) which
is defined as [7], [13], [14], [18]:

K [f(t)] =

∫ ∞

0

f(t)e−t/vdt = G(v). t ≥ 0, k1 ≤ v ≤ k2.

(5)
where v is used to factor t in the argument of the function f .

Theorem 1. Assuming that K[f(t)] = G(v) and that
G(v) is a Kamal transform of the function f(t). Then,

1. K[f ′(t)] = 1
vG(v)− f(0),

2. K[f ′′(t)] = 1
v2G(v)− 1

vf(0)− f ′(0),

3. K[fn(t)] = 1
vnG(v)−

n−1∑
k=0

vk−n+1fk(0).

The proof of Theorem 1 was achieved by the principle of
mathematical induction in [18], [19].
Theorem 2. Assuming the nth order of Caputo fractional
derivative of order α is given, then the Kamal transform is
given as

K [cDα
xf(x)] = v−αG(v)−

n−1∑
k=0

vk−α+1fk(0). (6)

where n− 1 < α < n, n ∈ N .
The proof of Theorem 2 can be found in [13] as well.

III. THE COUPLED KAMAL TRANSFORM AND ADOMIAN
POLYNOMIAL FOR FRACTIONAL ORDER DIFFERENTIAL

EQUATIONS

A general Caputo fractional order differential equation is
defined as [13].

cDα
xu(x, t) + Lu(x, t) +Mu(x, t) = h(x, t). (7)

where t > 0, 0 < α ≤ 1, Lu(x, t), Mu(x, t) , and h(x, t) are
the linear operator, nonlinear operator and the source term
respectively. The term cDα

xu(x, t) is the Caputo fractional
derivative of order α.
The Kamal transform of equation (7) gives;

K [cDα
xu(x, t)] +K [Lu(x, t) +Mu(x, t)] = K [h(x, t)] .

(8)
Simplifying equation (8) gives;

v−αK [u(x, t)]−
n=1∑
k=0

vk−α+1uk(0)

+K [Lu(x, t) +Mu(x, t)] = K [h(x, t)] . (9)

Further simplification of equation (9) and applying the in-
verse Kamal transform gives;

u(x, t) = K−1

[
vα

{
n=1∑
k=0

vk−α+1uk(0) +K [h(x, t)]

}]

+K−1 [vαK {Lu(x, t) +Mu(x, t)}] (10)

Let

u0(x, t) = K−1

[
vα

{
n=1∑
k=0

vk−α+1uk(0) +K [h(x, t)]

}]
(11)

where u0(x, t) is obtained by simplifying the given initial
condition and the source term. Then, the recursive relation
is given as

un+1(x, t) = K−1 [vαK {Lu(x, t) +An}] . (12)

The nonlinear function in equation (8) is expressed as

Mu(x, t) =
∞∑

n=0

An, (13)

where An denote the nonlinear term which was decomposed
by Adomian polynomial formula [18], [19].

An =
1

n!

∂n

∂λn

[
M

( ∞∑
i=0

λiui

)]
λ=0

, n = 0, 1, · · · (14)

u(x, t) = lim
N→∞

N∑
n=0

un(x, t). (15)

The mean absolute error can be calculated by

X̄ =

n∑
i=1

αi

N
.

where X̄ is the mean absolute error,
n∑

i=1

αi is the summation

of the absolute difference between the exact and approximate
solution at a particular point, and N is the number of
points considered within the domain in each of the problems
considered.

IV. APPLICATIONS

A. Consider the K(p, q) equation for p = q = 2 [1], [26].

cDα
t u+ (u2)x + (u2)xxx = 0, 0 < α ≤ 1, t > 0.

(16)
with initial condition

u(x, 0) =
4k

3
sin2

(x
4

)
. (17)

The Kamal transform of equation (16) gives;

K [cDα
t u] = −K

[
(u2)x + (u2)xxx

]
. (18)

Simplifying equation (18) gives;

u(x, v)

vα
−

0∑
k=0

vk−α+1uk(x, 0) = −K
[
(u2)x + (u2)xxx

]
(19)

Then, equation (19) will give:

u(x, v) = vα
(
v−α+1u(x, 0)

)
− vαK

[
(u2)x + (u2)xxx

]
.

(20)
By substituting the initial conditions given in equation (17)
into equation (20). Then,

u(x, v) =
4k

3
sin2

(x
4

)
v − vαK

[
(u2)x + (u2)xxx

]
. (21)

IAENG International Journal of Applied Mathematics

Volume 54, Issue 3, March 2024, Pages 398-410

 
______________________________________________________________________________________ 



Applying the inverse Kamal transform on equation (21) give;

u(x, t) = K−1

[
4k

3
sin2

(x
4

)
v

]
−K−1

[
vαK

[
(u2)x + (u2)xxx

]]
. (22)

Then, equation (22) give;

u(x, t) =
4k

3
sin2

(x
4

)
−K−1

[
vαK

[
(u2)x + (u2)xxx

]]
.

(23)
From equation (23), let

u0(x, t) =
4k

3
sin2

(x
4

)
, (24)

Then,

un+1(x, t) = −K−1 [vαK [(An)x + (Bn)xxx]] . (25)

Put n = 0 in equation (25) such that,

u1(x, t) = −k−1 [vαK [(A0)x + (B0)xxx]] . (26)

where A0 and B0 are the nonlinear terms which will be de-
composed by Adomian polynomial formula given in equation
(14) and can be express as

A0 = u2
0, B0 = u2

0. (27)

Simplifying equation (26) so as to have

u1(x, t) = −K−1

[
vαK

[
2

3
k2 sin

(x
4

)
cos
(x
4

)]]
. (28)

Equation (28) becomes;

u1(x, t) = −K−1

[
2

3
k2 sin

(x
4

)
cos
(x
4

)
vα+1

]
. (29)

Thus,

u1(x, t) = −2

3
k2 sin

(x
4

)
cos
(x
4

) tα

Γ(α+ 1)
. (30)

If n = 1 in equation (25) then,

u2(x, t) = −K−1 [vαK [(A1)x + (B1)xxx]] (31)

where

A1 = 2u0u1, B1 = 2u0u1. (32)

Simplifying equation (31) gives;

u2(x, t) = −K−1

[
−1

6
k3
(
2 cos2

(x
4

)
− 1
)
v2α+1

]
(33)

Therefore,

u2(x, t) =
1

6
k3
(
2 cos2

(x
4

)
− 1
) t2α

Γ(2α+ 1)
. (34)

Putting n = 2 in equation (25) to give,

u3(x, t) = −K−1 [vαK [(A2)x + (B2)xxx]] , (35)

where

A2 = 2u0u2 + u2
1, B1 = 2u0u2 + u2

1. (36)

Simplifying equation (35) gives;

u3(x, t) = −K−1

[
−1

6
k4 sin

(x
4

)
cos
(x
4

)
v2α+1

]
, (37)

Therefore,

u3(x, t) =
1

6
k4 sin

(x
4

)
cos
(x
4

) t2α

Γ(2α+ 1)
. (38)

Thus, the series solution becomes;

u(x, t) = u0(x, t)+u1(x, t)+u2(x, t)+u3(x, t)+ · · · (39)

Then,

u(x, t) =
4k

3
sin2

(x
4

)
− 2

3
k2 sin

(x
4

)
cos
(x
4

) tα

Γ(α+ 1)

+
1

6
k3
(
2 cos2

(x
4

)
− 1
) t2α

Γ(2α+ 1)

+
1

6
k4 sin

(x
4

)
cos
(x
4

) t2α

Γ(2α+ 1)
(40)

In order to check for the classical solution, put α = 1 in
equation (40), then the close solution becomes;

u(x, t) =
4k

3
sin2

(
x− kt

4

)
. (41)

B. Consider the K(p, q) equation for p = q = 3 [1], [26].

cDα
t u+(u3)x +(u3)xxx = 0, 0 < α ≤ 1, t > 0. (42)

with initial condition

u(x, 0) =

√
6

2
k

1
2 sin

(x
3

)
. (43)

The Kamal transform of equation (42) gives;

K [Dα
t u] = −K

[
(u3)x + (u3)xxx

]
. (44)

Simplifying equation (44) gives;

u(x, v)

vα
−

0∑
k=0

vk−α+1uk(x, 0) = −K
[
(u3)x + (u3)xxx

]
(45)

Then, equation (45) will give:

u(x, v) = vα
(
v−α+1u(x, 0)

)
− vαK

[
(u3)x + (u3)xxx

]
.

(46)
By substituting the initial conditions given in equation (43)
into equation (46). Then,

u(x, v) =

√
6

2
k

1
2 sin

(x
3

)
v − vαK

[
(u3)x + (u3)xxx

]
.

(47)
Applying the inverse Kamal transform on equation (47) give;

u(x, t) = K−1

[√
6

2
k

1
2 sin

(x
3

)
v

]
−K−1

[
vαK

[
(u3)x + (u3)xxx

]]
. (48)

Then, equation (48) give;

u(x, t) =

√
6

2
k

1
2 sin

(x
3

)
−K−1

[
vαK

[
(u3)x + (u3)xxx

]]
.

(49)
From equation (49), let

u0(x, t) =

√
6

2
k

1
2 sin

(x
3

)
, (50)
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Then,

un+1(x, t) = −k−1 [vαK [(An)x + (Bn)xxx]] .. (51)

Given that n = 0 in equation (51) then,

u1(x, t) = −K−1 [vαK [(A0)x + (B0)xxx]] . (52)

where A0 and B0 are the nonlinear terms given as

A0 = u3
0, B0 = u3

0.

Simplifying equation (52) gives

u1(x, t) = −K−1

[
vαK

[√
6

6
k

3
2 cos

(x
3

)]]
. (53)

Equation (53) becomes;

u1(x, t) = −K−1

[√
6

6
k

3
2 cos

(x
3

)
vα+1

]
. (54)

Thus,

u1(x, t) = −
√
6

6
k

3
2 cos

(x
3

) tα

Γ(α+ 1)
. (55)

moreso, putting n = 1 in equation (51) gives;

u2(x, t) = −K−1 [vαK [(A1)x + (B1)xxx]] , (56)

Simplifying equation (56) gives;

u2(x, t) = −K−1

[√
6

18
k

5
2 sin

(x
3

)
v2α+1

]
, (57)

Therefore,

u2(x, t) = −
√
6

18
k

5
2 sin

(x
3

) t2α

Γ(2α+ 1)
. (58)

Thus,

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + · · · (59)

Then,

u(x, t) =

√
6

2
k

1
2 sin

(x
3

)
−

√
6

6
k

3
2 cos

(x
3

) tα

Γ(α+ 1)

−
√
6

18
k

5
2 sin

(x
3

) t2α

Γ(2α+ 1)
(60)

The classical solution is checked when α = 1 in equation
(60), then the close solution becomes;

u(x, t) =

√
6

2
k

1
2 cos

(
x− kt

3

)
. (61)

C. Consider the K(2, 2, 1) equation for p = q = 2 [8], [25],
[27].

cDα
t u+ (u2)x − (u2)xxx + u5x = 0, 0 < α ≤ 1, t > 0.

(62)
with initial condition

u(x, 0) =
(16k − 1)

12
cosh2

(x
4

)
. (63)

The Kamal transform of equation (62) gives;

K [Dα
t u] = K

[
(u2)xxx − (u2)x − u5x

]
. (64)

Simplifying equation (64) gives;

u(x, v)

vα
−

0∑
k=0

vk−α+1uk(x, 0) = K
[
(u2)xxx − (u2)x − u5x

]
.

(65)
Then, equation (65) will give:

u(x, v) = vα
(
v−α+1u(x, 0)

)
+vαK

[
(u2)xxx − (u2)x − u5x

]
. (66)

By substituting the initial conditions given in equation (63)
into equation (66). Then,

u(x, v) =
16k − 1

12
cosh2

(x
4

)
v

+vαK
[
(u2)xxx − (u2)x − u5x

]
. (67)

Applying the inverse Kamal transform on equation (67) give;

u(x, t) = K−1

[
16k − 1

12
cosh2

(x
4

)
v

]
+K−1

[
vαK

[
(u2)xxx − (u2)x − u5x

]]
. (68)

Then, equation (68) give;

u(x, t) =
16k − 1

12
cosh2

(x
4

)
+K−1

[
vαK

[
(u2)xxx − (u2)x − u5x

]]
. (69)

From equation (69), let

u0(x, t) =
16k − 1

12
cosh2

(x
4

)
, (70)

Then,

un+1(x, t) = K−1 [vαK [(An)xxx − (Bn)x − (un)5x]] .
(71)

Assigning n = 0 in equation (71) then,

u1(x, t) = K−1 [vαK [(A0)xxx − (B0)x − (u0)5x]] . (72)

where A0 and B0 are the nonlinear terms.
Simplifying equation (72) gives

u1(x, t) = −K−1

[
vαK

[
(16k2 − k)

24
cosh

(x
4

)
sinh

(x
4

)]]
.

(73)
Equation (73) becomes;

u1(x, t) = −K−1

[
(16k2 − k)

24
cosh

(x
4

)
sinh

(x
4

)
vα+1

]
.

(74)
Thus,

u1(x, t) = − (16k2 − k)

24
cosh

(x
4

)
sinh

(x
4

) tα

Γ(α+ 1)
.

(75)
Similarly, if n = 1 in equation (71) then,

u2(x, t) = −K−1 [vαK [(A1)xxx − (B1)x − (u1)5x]] ,
(76)

Simplifying equation (76) gives;

u2(x, t) = K−1

[
(16k3 − k2)

96

(
2 cosh2

(x
4

)
− 1
)
v2α+1

]
,

(77)
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Therefore,

u2(x, t) =
(16k3 − k2)

96

(
2 cosh2

(x
4

)
− 1
) t2α

Γ(2α+ 1)
.

(78)
Thus,

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + · · · (79)

Then,

u(x, t) =
16k − 1

12
cosh2

(x
4

)
− (16k2 − k)

24
cosh

(x
4

)
sinh

(x
4

) tα

Γ(α+ 1)

+
(16k3 − k2)

96

(
2 cosh2

(x
4

)
− 1
) t2α

Γ(2α+ 1)
(80)

When α = 1 in equation (80) the classical solution is
obtained , then the close solution is given as;

u(x, t) =
(16k − 1)

12
cosh2

(
kt− x

4

)
. (81)

D. Consider the K(3, 3, 1) equation for p = q = 3 [8], [25],
[27].

cDα
t u+ (u3)x − (u3)xxx + u5x = 0, 0 < α ≤ 1, t > 0.

(82)
with initial condition

u(x, 0) =

√
(81k − 1)

54
cosh

(x
3

)
. (83)

The Kamal transform of equation (82) gives;

K [Dα
t u] = K

[
(u3)xxx − (u3)x − u5x

]
. (84)

Simplifying equation (84) gives;

u(x, v)

vα
−

0∑
k=0

vk−α+1uk(x, 0)

= K
[
(u3)xxx − (u3)x − u5x

]
. (85)

Then, equation (85) will give:

u(x, v) = vα
(
v−α+1u(x, 0)

)
+vαK

[
(u3)xxx − (u3)x − u5x

]
. (86)

By substituting the initial conditions given in equation (83)
into equation (86). Then,

u(x, v) =

√
(81k − 1)

54
cosh

(x
3

)
v

+vαK
[
(u3)xxx − (u3)x − u5x

]
. (87)

Applying the inverse Kamal transform on equation (87) give;

u(x, t) = K−1

[√
(81k − 1)

54
cosh

(x
3

)
v

]
+K−1

[
vαK

[
(u3)xxx − (u3)x − u5x

]]
. (88)

Then, equation (88) give;

u(x, t) =

√
(81k − 1)

54
cosh

(x
3

)

+K−1
[
vαK

[
(u3)xxx − (u3)x − u5x

]]
. (89)

From equation (89), let

u0(x, t) =

√
(81k − 1)

54
cosh

(x
3

)
, (90)

Then,

un+1(x, t) = K−1 [vαK [(An)xxx − (Bn)x − (un)5x]] ,
(91)

setting n = 0 in equation (91) then,

u1(x, t) = K−1 [vαK [(A0)xxx − (B0)x − (u0)5x]] . (92)

where A0 and B0 are the nonlinear terms
Simplifying equation (92) gives

u1(x, t) = −K−1

[
vαK

[
1

54

√
486k − 6 sinh

(x
3

)
k

]]
.

(93)
Equation (93) becomes;

u1(x, t) = −K−1

[
1

54

√
486k − 6 sinh

(x
3

)
kvα+1

]
. (94)

Thus,

u1(x, t) = − 1

54

√
486k − 6 sinh

(
x
3

)
ktα

Γ(α+ 1)
. (95)

Also when n = 1 in equation (91) then,

u2(x, t) = −K−1 [vαK [(A1)xxx − (B1)x − (u1)5x]] ,
(96)

Simplifying equation (96) gives;

u2(x, t) = K−1

[
1

162

√
486k − 6 cosh

(x
3

)
k2v2α+1

]
,

(97)
Therefore,

u2(x, t) =
1

162

√
486k − 6 cosh

(
x
3

)
k2t2α

Γ(2α+ 1)
. (98)

Thus,

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + · · · (99)

Then,

u(x, t) =

√
(81k − 1)

54
cosh

(x
3

)
− 1

54

√
486k − 6 sinh

(
x
3

)
ktα

Γ(α+ 1)

+
1

162

√
486k − 6 cosh

(
x
3

)
k2t2α

Γ(2α+ 1)
(100)

The classical solution is obtained when α = 1 in equation
(100) and the close solution becomes;

u(x, t) =

√
(81k − 1)

54
cosh

(
kt− x

3

)
. (101)
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V. RESULTS

(a) (b)

(c) (d)

(e) (f)

Fig. 1. The soliton solution of equation (16) when k = 0.5, (a) plot of α = 1.0, (b) plot of α = 0.9, (c) plot for α = 0.7, (d) plot for α = 0.5, (e)
plot for α = 0.3, (f) plot for α = 0.1.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. The soliton solution of equation (42) when k = 0.5, (a) plot of α = 1.0, (b) plot of α = 0.9, (c) plot for α = 0.7, (d) plot for α = 0.5, (e)
plot for α = 0.3, (f) plot for α = 0.1.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. The soliton solution of equation (62) when k = 0.5, (a) plot of α = 1.0, (b) plot of α = 0.9, (c) plot for α = 0.7, (d) plot for α = 0.5, (e)
plot for α = 0.3, (f) plot for α = 0.1.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. The soliton solution of equation (95) when k = 0.5, (a) plot of α = 1.0, (b) plot of α = 0.9, (c) plot for α = 0.7, (d) plot for α = 0.5, (e)
plot for α = 0.3, (f) plot for α = 0.1.
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TABLE I
THE COUPLED KAMAL TRANSFORM AND ADOMIAN POLYNOMIAL SOLUTION OF DIFFERENTIAL FRACTIONAL-ORDER α OF K(2, 2) EQUATION GIVEN

IN PROBLEM 1

(x, t) u(x, t) at α = 0.5 u(x, t) at α = 0.7 u(x, t) at α = 1.0 Exact solution Absolute error at α = 1.0

(0.1, 0.1) 0.0010373 0.0001778 0.0001050 0.00010417 0.0000012

(0.2, 0.2) 0.0017171 0.0004949 0.00042638 0.00041656 0.0000098

(0.3, 0.3) 0.0024597 0.0010324 0.00096910 0.00093706 0.0000320

(0.4, 0.4) 0.0034097 0.0018381 0.0017380 0.0016653 0.0000727

(0.5, 0.5) 0.004649 0.0029448 0.0027382 0.0026007 0.0001375

(0.6, 0.6) 0.006229 0.0043758 0.0039715 0.0037430 0.0002285

(0.7, 0.7) 0.008183 0.006145 0.0054378 0.0050911 0.0003464

(0.8, 0.8) 0.010534 0.008263 0.0071413 0.0066443 0.0004973

(0.9, 0.9) 0.013303 0.010734 0.0090765 0.0084012 0.0006755

(1.0, 1.0) 0.016506 0.013563 0.011241 0.010362 0.0008790

TABLE II
THE COUPLED KAMAL TRANSFORM AND ADOMIAN POLYNOMIAL SOLUTION OF DIFFERENTIAL FRACTIONAL-ORDER α OF K(3, 3) EQUATION GIVEN

IN PROBLEM 2

(x, t) u(x, t) at α = 0.5 u(x, t) at α = 0.7 u(x, t) at α = 1.0 Exact solution Absolute error at α = 1.0

(0.1, 0.1) -0.022693 -0.002840 0.014433 0.014433 0.00000

(0.2, 0.2) -0.015302 0.006185 0.028859 0.028864 0.000005

(0.3, 0.3) -0.003021 0.018056 0.043267 0.043284 0.000017

(0.4, 0.4) 0.01175 0.031518 0.057656 0.057691 0.000035

(0.5, 0.5) 0.02811 0.046030 0.072010 0.072091 0.000081

(0.6, 0.6) 0.04554 0.06129 0.086321 0.086460 0.000139

(0.7, 0.7) 0.06377 0.07712 0.10059 0.10081 0.000222

(0.8, 0.8) 0.08262 0.09341 0.11480 0.11514 0.00034

(0.9, 0.9) 0.10193 0.11003 0.12895 0.12942 0.00047

(1.0, 1.0) 0.12158 0.12691 0.14303 0.14369 0.00064
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TABLE III
THE COUPLED KAMAL TRANSFORM AND ADOMIAN POLYNOMIAL SOLUTION OF DIFFERENTIAL FRACTIONAL-ORDER α OF K(3, 3, 1) EQUATION

GIVEN IN PROBLEM 3

(x, t) u(x, t) at α = 0.5 u(x, t) at α = 0.7 u(x, t) at α = 1.0 Exact solution Absolute error at α = 1.0

(0.1, 0.1) 0.58421 0.58347 0.58341 0.58345 0.000045886

(0.2, 0.2) -0.58482 0.58378 0.58376 0.58368 0.00007452

(0.3, 0.3) -0.58535 0.58415 0.58414 0.58415 0.00001381

(0.4, 0.4) 0.58612 0.58480 0.58478 0.58485 0.0000707

(0.5, 0.5) 0.58719 0.58574 0.58563 0.58566 0.0000287

(0.6, 0.6) 0.58859 0.58689 0.58668 0.58660 0.0000758

(0.7, 0.7) 0.59037 0.58854 0.58792 0.58776 0.0001629

(0.8, 0.8) 0.59256 0.59041 0.58937 0.58916 0.0002037

(0.9, 0.9) 0.59508 0.59260 0.59092 0.59068 0.0002402

(1.0, 1.0) 0. 59823 0.59528 0.59283 0.59249 0.0003404

TABLE IV
THE COUPLED KAMAL TRANSFORM AND ADOMIAN POLYNOMIAL SOLUTION OF DIFFERENTIAL FRACTIONAL-ORDER α OF K(3, 3, 1) EQUATION

GIVEN IN PROBLEM 4

(x, t) u(x, t) at α = 0.5 u(x, t) at α = 0.7 u(x, t) at α = 1.0 Exact solution Absolute error at α = 1.0

(0.1, 0.1) 0.85647 0.85536 0.85543 0.85536 0.00007475

(0.2, 0.2) 0.85712 0.85579 0.85574 0.85578 0.0000420

(0.3, 0.3) 0.85790 0.85634 0.85635 0.85638 0.0000336

(0.4, 0.4) 0.85888 0.85719 0.85718 0.85715 0.0000350

(0.5, 0.5) 0.86016 0.85835 0.85825 0.85826 0.000014

(0.6, 0.6) 0.86194 0.85992 0.85962 0.85955 0.000070

(0.7, 0.7) 0.86402 0.86178 0.86112 0.86109 0.000027

(0.8, 0.8) 0.86677 0.86418 0.86300 0.86288 0.000117

(0.9, 0.9) 0.86990 0.86690 0.86501 0.86493 0.000083

(1.0, 1.0) 0. 87374 0.87019 0.86741 0.86716 0.000249

The mean absolute errors for Figures I-IV were calculated as 0.00028799, 0.00019491, 0.00012566, and 0.00007454,
respectively.
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VI. DISCUSSION OF RESULTS
A new scheme for solving nonlinear K(p, q) and

K(p, q, 1) equations has been derived from the basic princi-
ples of the Kamal transform and the Adomian polynomial.
Four applications were considered to validate the efficiency
of the scheme, and the results were obtained in series form in
equations (40), (60), (80), and (100) for applications (4.1),
(4.2), (4.3), and (4.4), respectively. At α = 1, which is
the classical form of the fractional problems considered,
the series solutions converge to the exact solution, which
indicates the reliability of the method used. Figures 1(a−f)
showed that varying the fractional order α does not have
effect on the shape of the soliton considered in equation
(16); however, figures 2(a−f), which depicts a 3D graph of
equation (42), revealed that there is a corresponding change
in the shape of the soliton as α changes from 0.1 to 1.0,
which showed the hidden effect of α in this soliton and also
gave credence to the non-local feature of fractional calculus.
Figures 3(a−f) also present results of equation (82), which
revealed that the v-shape of the soliton was maintained for
different α; however, the value decreased with reduced value
of α from 1.0 through 0.9, 0.7, 0.5, 0.3, to 0.1, while figures
4(a− f) also behave in the same manner as 3(a− f).

In addition, Tables I, II, III, and IV show the numerical
results of u(x, t) at different values of α (fractional order)
for the four problems considered in sections A, B, C,
and D, respectively. There are six columns in each table;
column six depicts the errors obtained when the approximate
solution is compared with the closed form solution of each
problem considered, as each problem has an exact solution
at α = 1. These errors for all four problems are very
negligible, demonstrating the efficiency of the method used.
In order to account for all the errors within the domain, the
mean absolute errors were calculated for each problem at
classical order α = 1, and they are 0.00028799, 0.00019491,
0.00012566, and 0.00007454, respectively, for problems 1
to 4. These errors are very small and also demonstrate the
cumulative efficiency of the method across the points of the
problem. Columns two and three also depict the solutions
at α = 0.5 and 0.7, and these show the change in the
values of u(x, t) from fractional order to classical order. This
phenomenon also supports the existence of a hidden effect
of α in the fractional order differential equations.

VII. CONCLUSION
The nonlinear dispersive K(p, q) and K(p, q, 1) equations

with Caputo time fractional derivatives were successfully
solved with the formulated coupled Kamal transform and
Adomian polynomial scheme. The approximate series so-
lutions obtained converge to the exact solution at α = 1
for all the problems considered. 3D graphs were plotted to
demonstrate the effect of fractional order α as well as the
physical behavior of each soliton considered, and therefore,
the results obtained showed that the coupled Kamal transform
and Adomian polynomial are useful mathematical tools for
solving any nonlinear time-fractional differential equations.
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