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Abstract—In this paper, a modulus-based Shamanskii-Like
Levenberg-Marquardt method is proposed for solving nonlinear
complementarity problems (NCPs). First, the NCP is refor-
mulated in the form of an equivalent non-smooth system of
equations. Then, a non-smooth Shamanskii-Like Levenberg-
Marquardt method using a non-monotone r-order Armijo
line search is developed by generalizing a smooth Levenberg-
Marquardt method to solve the resulting system. Global conver-
gence of the proposed method is achieved under some suitable
assumptions. Numerical experiments verify the feasibility and
efficiency of the proposed method.

Index Terms—Armijo line search, Levenberg-Marquardt
method, modulus-based manipulation, nonlinear complemen-
tarity problem.

I. INTRODUCTION

FOR a given smooth mapping F : Rn → Rn, the
nonlinear complementarity problem (NCP) is finding a

vector z ∈ Rn that satisfies the following conditions:

z ≥ 0, F (z) ≥ 0, zTF (z) = 0, (1)

where F : Rn → Rn is continuously differentiable.
If F (z) = Mz + q, the NCP degenerates to a linear
complementarity problem (LCP). Assume that a solution set
to (1) denoted by Z∗ is nonempty, and ∥ · ∥ represents a
two-norm in all cases.

The NCP has been widely used in engineering, economics,
and mechanics. Many problems in scientific computing and
engineering applications, such as elastic contact, economic
equilibrium, and free boundary problems in fluid dynamics,
can be categorized as nonlinear complementary problems [1],
[2], [3]. Many numerical algorithms have been developed
to solve the NCPs, including Fixed point iterative meth-
ods, Newton methods, Conjugate gradient methods, and
Levenberg-Marquardt methods [4], [5], [6], [7], [8], [9],
[10]. Semi-smooth equations methods that use nonlinear
complementarity functions have been popular methods in
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recent years. Common forms of a complementary function
ψ are as follows:

ψmin(s, t) = min{s, t},

ψFB(s, t) =
√
s2 + t2 − s− t,

which are called the minimum function [11] and the Fis-
cher Burmeister function [12], respectively. Recently, Bai
Zhongzhi proposed a modulus-based iteration method for
solving the LCP and analyzed the global convergence of
the proposed method [13]. By applying modulus-based ma-
nipulations to solving the other complementary problems,
various modulus-based methods have been developed [14],
[15], [16]. This study considers the Levenberg-Marquardt
(LM) method, which computes the search direction by:

dk = −
(
JT
k Jk + tkI

)−1
JT
k Fk, (2)

where Fk = F (xk), Jk = F ′ (xk) is the Jacobian matrix
of F at xk, and tk is a non-negative regularized parameter
used to prevent the iteration point from moving in wrong
directions when approaching the saddle point.
Hu Yaning, Peng Zheng, et al. [16] proposed a modulus-
based adaptive multi-step LM method for NCPs. In this
method, at each iteration, dk is obtained by performing
approximate LM steps in addition to the classical LM step
(2) as follows:

dk, i = −
(
JT
k Jk + tkI

)−1
JT
k F (xk, i) ,

xk, i = xk, i−1 + dk, i−1,
(3)

where i is a positive integer, and i = 1, 2, · · · , r;
xk, 0 = xk; dk, 0 = dk.
Further, global convergence of the modulus-based non-
smooth LM method has been proven using the trust region
techniques. However, instead of using the trust region tech-
niques, Chen Liang and Ma Yanfang [17] presented a smooth
Shamanskii-Like Levenberg-Marquardt (SLM) method using
a non-monotone r-order Armijo line search for solving
nonlinear equations, which is expressed by:

∥F (xk + αksk)∥2 ≤ (1 + ωk) ∥Fk∥2 − ξ0α
2
k ∥sk∥

2

− ξ1α
2
k ∥Fk∥2 ,

where ξ0 and ξ1 are positive constants, and {ωk} is a
sequence that satisfies the conditions of:

∞∑
k=0

ωk <∞, ωk > 0,

and,

sk =

{ ∑r−1
i=0 dk, i, FT

k Jk
∑r−1

i=0 dk, i ≤ −λ,
dk, 0, else,
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where λ is a small positive constant, and dk, i, i =
1, 2, · · · , (r − 1) satisfies (3). The LM parameter of the
method tk is computed by:

tk = µ ∥Fk∥ ,

where µ > 0 is a constant.
The method’s convergence rate is proven to be (r +
1). By generalizing the method presented in [17] to the
non-smooth case, this study proposes a modulus-based
non-smooth Shamanskii-Like Levenberg-Marquardt (NSLM)
method with r-order Armijo line search for NCPs. The LM
parameter of the proposed method tk is computed by:

tk = µ ∥Fk∥δ ,

where δ ∈ [1, 2] and µ > 0 are constants.
Under suitable conditions, global convergence of the pro-
posed method is proven.

The rest of this paper is organized as follows. In Section
II, a modulus-based manipulation is used to translate the
NCP into a non-smooth system of nonlinear equations, and
several common lemmas and definitions in the non-smooth
case are introduced. In Section III, the proposed NSLM
method is described. In Section IV, the global convergence of
the proposed method is proven under suitable conditions. In
Section IV, the preliminary numerical results are presented
and discussed. Finally, the main conclusions and remarks are
given in Section V.

II. PRELIMINARIES

In this paper, absolute value |·| is component-wise,
Clarke’s subdifferential of F at x is denoted by ∂F (x), and
the identity matrix is denoted by I .

Consider a vector x = (x1, x2, · · · , xn)T ∈ Rn and
denote |x| = (|x1| , |x2| , · · · , |xn|)T ∈ Rn

+. Next, let

z = |x|+ x, F (z) = |x| − x, (4)

then, it can be obtained that:

z ≥ 0, F (z) ≥ 0, zTF (z) = 0,

which is called the modulus-base manipulation.
Further, consider the following non-smooth nonlinear sys-

tem of equations

H(x) = 0, (5)

where H(x) = F (x+ |x|) + x− |x|,
Theorem 1: If x ∈ Rn is a solution to (5), then z dedined

by z = |x|+x is the solution to (1). In other words, solving
(1) is equivalent to solving the non-smooth nonlinear system
of equations (5).
Proof. Suppose that x ∈ Rn is a solution of (5); then,
H(x) = F (x + |x|) + x − |x| = 0. Based on (4), z is the
solution to (1). □

Definition 1: [18] Suppose H : Rn → Rn is locally
Lipschitz continuous. Assume ΩH represents a set of points
at which H is differentiable. Then Clarke’s generalized
Jacobian matrix of H in the neighborhood of x is expressed
by:

∂H(x) = co {limH ′ (xk) : xk → x, xi ∈ ΩH} ,

where H ′ (xk) is Jaccobian matrix of H (x) at xk, and co
denotes the convex hull of a collection.

Clearly, |x| is locally Lipschitz continuous. According to
Definition 1, Clarke’s generalized Jacobian matrix of |x| is
given by:

∂ |x| = diag (∂ |x1| , ∂ |x2| , · · · , ∂ |xn|) ,

where,

∂ |xi| =


−1, xi < 0,

α, xi = 0,

1, xi > 0,

where α ∈ [−1, 1], and i = 1, 2, · · · , n.
Then, Vk ∈ ∂Hk, and the Jacobian matrix of H at xk is
given by:

Vk = F ′ (zk) (∂ |xk|+ I) + (I − ∂ |xk|) . (6)

Further, let f (x) = 1
2 ∥H(x)∥2; then,

∂f (x) =
{
V TH(x) : V ∈ ∂H (x)

}
For convenience, denote ∂Hk = ∂H (xk), Hk = H (xk),
fk = f (xk), and set Vk ∈ ∂Hk.

Definition 2: [19] For any non-zero vector x ∈ Rn, if
there is a component xj ̸= 0 such that xj (Mx)j > 0, then
M ∈ Rn×n is called a P-matrix.

Definition 3: [19] Suppose D ⊂ Rn is nonempty,
g = (g1, g2, · · · , gn)T : D → Rn. If there is a constant
α > 0, for any x, y ∈ D, x ̸= y, there is a subscript
k = k (x, y) , 1 ≤ k ≤ n satisfying the condition of:

(xk − yk) (gk (x)− gk (y)) ≥ α ∥x− y∥2 ,

then, g is called a uniformly P-mapping on D.
Lemma 1: [20] If H : Rn → Rn is locally Lipschitz

continuous at x ∈ Rn, then the following statements hold:
1) ∂H(x) ⊂ Rn is a convex compact subset;
2) A set-valued mapping x → ∂H(x) is upper continu-

ous, that is, for any ω > 0, there is κ > 0 such that

∂H (y) ⊂ ∂H (x)+ωBn×n, ∀y ∈ x+κBn×n (0, 1) ,

where Bn×n (0, 1) is the unit ball in space Rn×n;
3) Let lH denote the Lipschitz constant of H (x) in the

neighborhood of x; then, ∂H(x) ⊂ lHBn×n (0, 1).
Lemma 2: [8] Suppose H : Rn → Rn is locally Lipschitz

continuous; then, the following statements hold:
1) H is semismooth at x;
2) For any V ∈ ∂H (x+ h) , h→ 0,

∥V h−H ′(x;h)∥ = o (∥h∥) ;

3) For any V ∈ ∂H(x+ h), h→ 0,

∥H (x+ h)−H (x)− V h∥ = o (∥h∥) .

III. NSLM METHOD

In this section, an NSLM method is proposed. For con-
venience, the proposed method is denoted as the NSLM
algorithm.

Assumption 1: The following statement holds:
1) The nonlinear mapping F is a uniformly continuous

P-mapping;
2) Suppose x∗ is a stationary point of

f (x) = 1
2 ∥H(x)∥2. If z∗ = |x∗| + x∗, then

the Jaccobian matrix of F at z∗, F ′(z∗), is a P-matrix.
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Algorithm NSLM
Input The starting point x0 ∈ Rn,
µ > 0, λ > 0, ξ0, ξ1 > 0, ρ, υ ∈ (0, 1), δ ∈ [1, 2];
Step 1 Compute Hk = H (xk) and select Vk ∈ ∂Hk; set
k = 0;
Step 2 If ∥V T

k Fk∥ = 0, stop; otherwise, set xk, 0 =
xk, dk, 0 = dk and compute

dk, i = −
(
V T
k Vk + tkI

)−1
V T
k Hk, i, (7)

with xk, i = xk, i−1+dk, i−1, tk = µ ∥Fk∥δ to obtain dk, i,
where i = 1, 2, · · · , r − 1, Hk, i = H(xk, i).
Set,

sk =
r−1∑
i=0

dk, i ;

Step 3 If it holds that:

∥H (xk, i) ∥ ≤ ρ∥H (xk) ∥, (8)

then, set αk = 1 and go to Step 5;
Step 4 Set

sk =

{∑r−1
i=0 dk, i HT

k Vk
∑r−1

i=0 dk, i ≤ −λ,
dk, 0, else.

(9)

Solve αk = max
{
1, υ, υ2, · · ·

}
with αk = υj , j ∈ N

such that

∥H (xk + αksk) ∥2 ≤ (1 + ωk) ∥Hk∥2 − ξ0α
2
k ∥sk∥

2

− ξ1α
2
k ∥Hk∥2 , (10)

where ωk > 0 satisfies
∞∑
k=0

ωk <∞, ωk > 0; (11)

Step 5 Let xk+1 = xk + αksk, k = k + 1, go to step 2.

IV. NSLM METHOD AND GLOBAL CONVERGENCE

This section explains the global convergence of the pro-
posed NSLM algorithm. First, the definitions and lemmas
are introduced.

Lemma 3: [21] If F (F1, F2, · · · , Fn) is a uniformly
continuous P-mapping, then the level set

L (x0) = {x ∈ Rn : f (x) ≤ f (x0)} (12)

is bounded.
Assumption 2: Suppose the level set L (x0) is bounded,

and H (x) is semismooth. For a given x ∈ ∂H (x+ d) , h ∈
Rn, W ∈ ∂H (x+ d), define

Φ (x, h, W ) = H (x) +Wh−H (x+ d) .

Then, let:

β1 = max ∥H (x) ∥, x ∈ L (x0),

β2 = max ∥V ∥, V ∈ ∂H (x) , x ∈ L (x0),

β3 = max ∥V TV ∥, V ∈ ∂H (x) , x ∈ L (x0),

Lemma 4: Suppose Assumption 1 is satisfied. For any
ω > 0, if there exists a constant δ0 > 0 such that for all
x ∈ L (x0) and ∥h∥ ≤ δ0 satisfying x+h ∈ L (x0), it holds

that:

max
W∈∂H(x+h)

∥Φ (x, h, W ) ∥ ≤ min

[√
ω∥h∥
4
√
2

,
ω

32η (ω)
∥h∥

]
,

(13)

where η(ω) = β1 + β−1
3 β2ω.

Proof. See Lemma 3.2 in [8]. □
Lemma 5: Suppose Assumption 1 is satisfied. For any

ω > 0, there exists a constant δ1 > 0 such that for all
x, x+ h ∈ L (x0), ∥h∥ ≤ δ1 satisfying

∥W − V ∥ ≤ min

[ √
ω

4
√
2
,

ω

32η(ω)

]
, (14)

where W ∈ ∂H(x + h), V ∈ ∂H (x) , and η (ω) = β1 +
β−1
3 β2ω.

Proof. See Lemma 1 (2) in this paper. □
Lemma 6: [20] Let {αk} and {υk} be two positive se-

quences, where αk+1 ≤ (1 + υk)αk + υk and
∑∞

k=0 υk <
∞; then, {αk} is convergent.

Lemma 7: Suppose {xk} is updated by the NSLM algo-
rithm.

1) For any xk ∈ L (x0) , k ≥ 0, {∥Hk∥} is convergent;
2) For any xk ∈ L (x0) |, {∥Hk∥} is bounded, that is,

there is a positive constant M > 0 satisfying

∥Hk∥ ≤M, ∀k ≥ 0; (15)

3) If ∥H (xk + sk)∥ ≤ ρ ∥Hk∥ is satisfied for all k > 0;
then, {∥Hk∥} will converge to zero.

Proof. See Lemma 3.2 in [22] for the proof of (1) and
Lemma 3.3 in [23] for the proof of (2). □

Theorem 2: Suppose Assumption 2 is satisfied and {xk}
is obtained by the NSLM algorithm; then, the NSLM algo-
rithm terminates after a finite number of iteration steps, or
there is lim

k→∞

∥∥V T
k Hk

∥∥ = 0, ∀Vk ∈ ∂Hk.
Proof. Proceed with the proof by contradiction. Suppose
that there exists τ > 0 and a larger integer k′ such that∥∥V T

k Hk

∥∥ ≥ τ, ∀k > k′. (16)

Denote K = {k ∈ N+ : ∥H (xk + sk)∥ ≤ ρ ∥Hk∥}. If
K is an infinite set of integers, then ∥Hk∥ → 0, which
contradicts (16). Therefore, K is a finite set of integers.
Based on (7), (12), and (15), it can be obtained that∑∞

k=0 α
2
k ∥Hk∥2 <∞; then, it holds that:

lim
k→∞

αk = 0. (17)

Further, let ᾱk = αk/υ. If HT
k Vk

∑r−1
i=0 d

i
k ≤ −λ,

according to (7), it holds that:

∥H (xk + ᾱksk)∥2 − ∥Hk∥2

> −ᾱ2
k

(
ξ0 ∥sk∥2 + ξ1 ∥Hk∥2

)
+ ωk ∥Hk∥2

≥ −ᾱ2
k

(
ξ0 ∥sk∥2 + ξ1 ∥Hk∥2

)
,

which means,

ᾱ2
k

(
ξ0 ∥sk∥2 + ξ1 ∥Hk∥2

)
≥ −

(
∥H (xk + ᾱksk)∥2 − ∥Hk∥2

)
≥ −2HT

k (H (xk + ᾱksk)−Hk)

− ∥H (xk + ᾱksk)−Hk∥2 .
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Consider the right side of the above equation; one element
is

HT
k (H (xk + ᾱksk)−Hk)

= HT
k (Wkᾱksk − Φ (x, ᾱksk, W ))

= HT
k Vkᾱksk +HT

k (Wk − Vk) ᾱksk

−HT
k Φ (x, ᾱksk, W )

≤ −ᾱkλ+
ω

16η(ω)
β1ᾱk ∥sk∥ ,

and another element is

∥H (xk + ᾱksk)−Hk∥2

= ∥Wᾱksk − Φ (x, ᾱksk, W )∥2

≤ ∥V ᾱksk∥2 + ∥(W − V )ᾱksk∥2

+ ∥Φ (x, ᾱksk, W )∥2

+ 2 ∥V ᾱksk∥ ∥(W − V )ᾱksk∥
+ 2 ∥V ᾱksk∥ ∥Φ (x, ᾱksk, W )∥
+ 2 ∥(W − V )ᾱksk∥ ∥Φ (x, ᾱksk, W )∥

≤

(
β2
2 +

(
ω

16η(ω)

)2

+
β2ω

8η(ω)

)
∥ᾱksk∥2

= Cᾱ2
k ∥sk∥

2
,

where C = β2
2 +

(
ω

16η(ω)

)2
+ β2ω

8η(ω) .

Combining the above two elements yields:

ᾱ2
k

(
ξ0 ∥sk∥2 + ξ1 ∥Hk∥2

)
≥ −

(
∥H (xk + ᾱksk)∥2 − ∥Hk∥2

)
≥ −2HT

k (H (xk + ᾱksk)−Hk)

− ∥H (xk + ᾱksk)−Hk∥2

≥ 2ᾱkλ− ω

8η(ω)
β1ᾱk ∥sk∥ − Cᾱ2

k ∥sk∥
2
,

which means that:(
2λ− ω

8η(ω)
β1 ∥sk∥

)
ᾱk

≤
(
C ∥sk∥2 + ξ0 ∥sk∥2 + ξ1 ∥Hk∥2

)
ᾱ2
k;

then, it holds that:

ᾱk ≥

(
C ∥sk∥2 + ξ0 ∥sk∥2 + ξ1 ∥Hk∥2

)
ᾱ2
k(

2λ− ω
8η(ω)β1 ∥sk∥

) . (18)

Similarly, if HT
k Vk

∑r−1
i=0 dk, i > −λ, there exists

ᾱ2
k

(
ξ0 ∥dk,0∥2 + ξ1 ∥Hk∥2

)
≥ −

(
∥H (xk + ᾱkdk,0)∥2 − ∥Hk∥2

)
≥ −2HT

k (H (xk + ᾱkdk,0)−Hk)

− ∥H (xk + ᾱkdk,0)−Hk∥2

≥ −2HT
k Vkᾱkdk,0 − 2HT

k (Wk − Vk) ᾱkdk,0

+ 2HT
k Φ (x, ᾱkdk,0, W )− Cᾱ2

k ∥dk,0∥
2

≥ −2ᾱkH
T
k Vkdk, 0 −

ω

8η(ω)
β1ᾱk ∥dk,0∥ − Cᾱ2

k ∥dk,0∥
2

= 2ᾱkdk, 0

(
V T
k Vk + tkI

)
dk, 0 −

ω

8η(ω)
β1ᾱk ∥dk,0∥

− Cᾱ2
k ∥dk,0∥

and then, it holds that:

ᾱk

(
ξ0 ∥dk,0∥2 + ξ1 ∥Hk∥2 + C ∥dk,0∥2

)
≥ 2dk, 0

(
V T
k Vk + tkI

)
dk, 0 −

ω

8η(ω)
β1 ∥dk,0∥ ,

that is,

ᾱk ≥
2tkd

2
k, 0 − ω

16η(ω)β1 ∥dk∥

(C + ξ0) ∥dk∥2 + ξ1 ∥Hk∥2
. (19)

Further, suppose the singular value decomposition (SVD) of
Vk is Vk = PkΣkQk, where Pk and Qk are orthogonal
matrices, and Σk = diag (σ1, σ2, · · · , σn), σi ≥ 0, i =
1, 2, · · · , n is the singular value of vk. Then, it can be
written that:∥∥∥(V T

k Vk + tkI
)−1
∥∥∥ =

∥∥∥Qk

(
Σ2

k + tkI
)−1

QT
k

∥∥∥
=
∥∥∥(Σ2

k + tkI
)−1
∥∥∥

= max
i={1, 2, ··· , n}

(
σ2
i + tk

)−1 ≤ t−1
k ,

which means that:

∥dk, 0∥ =
∥∥∥− (V T

k Vk + tkI
)−1

VkHk

∥∥∥
≤
∥∥∥(V T

k Vk + tkI
)−1
∥∥∥ ∥Vk∥ ∥Hk∥ ≤ β2

µt
δ−1
δ

k

and,

∥dk, i∥ =
∥∥∥− (V T

k Vk + tkI
)−1

VkHk, i

∥∥∥
≤

i∑
j=1

∥∥∥(V T
k Vk + tkI

)−1
Vk (Hk, j −Hk, j−1)

∥∥∥
+
∥∥∥(V T

k Vk + tkI
)−1

VkHk, 0

∥∥∥
≤ β2t

−1
k

i∑
j=1

∥dk, j−1∥+ ∥dk, 0∥ ,

where i = 1, 2, · · · , r − 1.
Thus, for any k large enough, it holds that:

∥dk, i∥ ≤ ∥dk, 0∥
i∑

j=0

(
β2t

−1
k

)j ≤ C1 ∥dk, 0∥ ,

where C1 is a positive constant.
If lim inf

k→∞
∥dk, 0∥ = 0, then lim inf

k→∞
∥VkTHk∥ =

lim inf
k→∞

∥∥(V T
k Vk + tkI

)
dk, 0

∥∥ = 0. This contradicts (16), so
there exists a constant τ1 > 0 such that lim

k→∞
∥dk, 0∥ ≥ τ1.

Due to the arbitrariness of ω, (18) and (19), αk > 0 has
a non-zero lower bound if an appropriate µ, λ value is
selected, which contradicts (17). Thus, the assumption is
false. □

V. NUMERICAL RESULTS

To assess the effectiveness of the improved algorithm, the
proposed NSLM algorithm was evaluated on five numerical
problems constructed based on [24] and compared with
Algorithm 1 of [16].
Let g(z) = 0 be a differentiable system of nonlinear

IAENG International Journal of Applied Mathematics

Volume 54, Issue 3, March 2024, Pages 411-416

 
______________________________________________________________________________________ 



equations [24] and denote z∗ = (1, 0, 1, 0, · · · )T ∈ Rn.
For all i = 1, · · · , n, set

Gi(z) =

{
gi(z)− gi (z

∗) , if i odd or i > 1
2n,

gi(z)− gi (z
∗) + 1, else .

Obviously, z∗ is a solution to the corresponding nonlinear
complementarity problems.

The proposed algorithm was developed in
MatlabR2021a and ran on a PC with the 11th generation
Intel(R)Core(TM)i5-11300H@3. 10GHz3. 11GHz
RAM16G). The stopping criterion was ∥H (xk)∥ ≤ 10−5 or
the number of iteration exceeded 100. When the iteration
number exceeded 100, the test was regarded as “failed”
and denoted by “F”. It was set that: α = 0, r = 4, and
ωk = 0.01k/10, and Vk was computed by (2.3). The
parameters of the NSLM algorithm were set as follows:
µ0 = 1e − 5, δ = 1.8, λ = 1e − 5, ξ0 = ξ1 = 0.05, ρ =
0.9, υ = 0.5; x0 is selected according to the initial
point suggested in [24]. The parameters of Algorithm 1
were consistent with those used in [16]. The algorithms’
numerical performances were tested in solving the problems
with 600, 1,500, 5,000, and 10,000 dimensions, in turn.
Further details of the symbol descriptions are provided in
Table I. The numerical results are presented in Table II.

TABLE I: Description of Symbols

Symbol Symbol description

Dim The dimension of a function
NI The number of iterations
NF The function calculations
NJ The function’s Jacobian calculations
Tcpu The running time of the problem, expressed in seconds
Problem1 Extended Rosenbrock function
Problem2 Extended Powell singular function
Problem3 Extended Cragg and Levy function
Problem4 Broyden banded problem
Problem5 Broyden tridiagonal problem

Based on the numerical results presented in Table II, the
NI, NF, and ∥Hk∥ values of the proposed NSLM were overall
lower than those of Algorithm 1. The NJ and Tcpu values

of the proposed NSLM were significantly lower than those
of Algorithm 1. This difference was even more obvious
for n=5,000 and n=10,000. Generally, the algorithm mainly
spent the most time solving the Jacobian matrices. Therefore,
although the proposed NSLM might require performing more
function calculations and iterations to converge than Algo-
rithm 1, its total computational time is shorter, especially for
high-dimensional test problems.

VI. CONCLUSIONS

Translating the considered problems into a system of
nonlinear equations has been a common strategy for solving
the NCPs. In this paper, modulus-based manipulation is used
to complete the aforementioned conversion. A Levenberg–
Marquardt method with the standard r-order Amijio line
search technique is developed to solve the resulting non-
smooth equations. Numerical results demonstrate that, in
comparison to Algorithm 1, the proposed NSLM method has
fewer calculations of Jacobian matrices and a shorter run-
ning time. The proposed NSLM method can be considered
competitive in solving large-scale nonlinear complementarity
problems with the existing methods. However, in practical
applications, the efficiency of the proposed NSLM method
depends on the parameters’ values, which could be challeng-
ing to select appropriately.
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