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Abstract—Based on the 2030 carbon peak target, this paper

studies the top-down provincial carbon quota allocation in
China's iron and steel industry. Considering the principles of
fairness, efficiency, sustainability and development, three
provincial carbon quota allocation schemes are constructed
based on entropy method, three-stage DEA and ZSG-DEA
model respectively, which make up for the gap of carbon quota
allocation scheme with the total amount of carbon peak target
of the iron and steel industry. The allocation results show that
the allocation based on the entropy method can roughly solve
the problem of uneven distribution of carbon quota of the steel
industry in various provinces, and the carbon quota in the steel
industry decreases from the eastern region to the western
region. Considering the two environmental indicators of local
government competition and urbanization level, the initial
carbon quota allocation scheme can be effectively adjusted,
which is conducive to promote the enthusiasm of some
underdeveloped areas. The allocation scheme, which combines
the entropy method with the ZSG-DEA model, can enhance the
efficiency of carbon quota allocation among provinces while
ensuring fairness. However, this fairness is limited and more
advantageous to economically developed regions.

Index Terms—carbon peak, carbon quota, environmental
factors, three-stage DEA model, ZSG-DEA model.

I. INTRODUCTION

NTHROPOGENIC economic activities have
significantly increased the emission of greenhouse gases,

exacerbating the issue of haze pollution [1, 2]. The frequent
occurrence of extreme events underscores the imperative to
take decisive action towards achieving carbon dioxide net
zero emissions and adapting to climate change. During the
2020 Leaders' Climate Summit, China's leaders made a
global declaration that carbon dioxide emissions will reach
their peak by 2030 and committed to striving towards
achieving carbon neutrality by 2060. The steel industry, as a
crucial pillar of the national economy and a vital catalyst for
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the establishment of a modern power, has propelled China's
economic growth at an accelerated pace. However, the
exponential expansion of China's steel industry has posed
significant environmental challenge [3, 4]. According to a
report published by BP, China ranked as the top emitter of
greenhouse gases globally in 2006. The steel industry in
China accounted for approximately 15% of the total
emissions, establishing itself as one of the key contributors to
carbon emissions in the country [5, 6]. Therefore, developing
a scientifically sound provincial carbon quota allocation
scheme for the steel industry can effectively delineate the
carbon reduction responsibilities of each province's steel
sector. This endeavor holds immense significance in
attaining an early peak in carbon dioxide emissions from the
steel industry and facilitating China's achievement of its
carbon peak target.

Due to the diverse economic growth patterns, energy
consumption modes, and technological levels across different
provinces in China, it is impractical for each region to be
treated equally and assume a common responsibility for
reducing carbon emission targets, instead, they must embrace
a principle of "common but differentiated responsibility" [7].
Diverse carbon quota allocation schemes yield varying
impacts on economic development [8]. Addressing the
equitable and efficient distribution of carbon emission
reduction responsibilities among regions, in line with China's
overarching targets, constitutes a crucial pragmatic
undertaking for our government. In terms of allocation
methods, scholars commonly employ one or more indicators
to assign carbon quotas. Although the single index method is
user-friendly, its oversimplification of the problem may
result in skewed distribution outcomes [9]. When
formulating a carbon emission rights allocation plan, it is
essential to incorporate diverse allocation principles in order
to achieve a more rational and robust allocation strategy.

The novelty and significance of this paper reside in: Firstly,
the allocation of carbon quotas in the steel industry entails
calculating province-specific carbon emissions within the
sector, while national-level data only captures overall
industry emissions. Therefore, this paper obtain the
proportion of energy consumption of various energy sources
in the steel industry from the national level, and finally
converts it into provincial data in proportion. Furthermore, it
is imperative to incorporate the principles of sustainability
into those of fairness and efficiency, while simultaneously
considering environmental factors during economic
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development. The entropy method is employed to
incorporate multiple initial allocation principles, enhancing
the comprehensiveness and accuracy of the allocation
outcomes. Thirdly, considering the influence of
environmental factors on the basis of the principles of
fairness, efficiency and sustainability, the three-stage DEA
model is used to eliminate environmental factors and random
noise, so as to make the allocation scheme more equitable.
Fourthly, based on the initial allocation scheme, the
ZSG-DEA model is employed for continuous optimization
while maintaining a constant total amount of input variables.
After multiple iterations, the carbon quota allocation
efficiency of each province is at the forefront of efficiency.

II. LITERATURE REVIEW

Currently, the research on the allocation of responsibility
for carbon emission reduction primarily encompasses three
key dimensions.

Firstly, conduct research from the perspective of equity
and impartiality. Various principles such as egalitarianism,
economic efficiency, grandfathering, ability to pay, and
historical responsibility all embody the notion of fairness.
According to Zhou and Wang (2016), it is crucial to prioritize
the consideration of population factors. Subsequently,
scholars explored a range of equity principles in their
examination of the allocation of carbon quotas [10].

Secondly, conduct research from an efficiency standpoint.
The efficiency principle underscores the potential for carbon
reduction, indicating that in situations with equal carbon
emissions, regions exhibiting higher efficiency values also
demonstrate greater output. In their subsequent investigation,
Kong et al. (2019) incorporated the costs associated with
emission reduction in each province, leading to more precise
allocation outcomes [11]. Miao et al. (2016) employed the
ZSG-DEA model to investigate the efficiency of regional
carbon quota allocation in China [12].

Thirdly, Integrating multiple principles of distribution,
including equity, efficiency, and sustainability. Allocating
carbon emission quotas based on regional economic levels,
development situations, and potential for carbon reduction
can facilitate a rational allocation of resources. Wang et al.
(2019) discovered that an optimal distribution plan, which
incorporates considerations of both fairness and efficiency,
can effectively minimize the national average cost of
emission reduction while mitigating regional disparities in
development [13]. There have been few articles in previous
literature that take sustainability principles into consideration.
The principle of sustainability enables the quantification of
carbon dioxide absorption capacity and elucidates the
intricate interplay between economic development and
environmental preservation. Zhou et al. (2021) implemented
an inter-provincial allocation of China's carbon quota based
on the principles of fairness, efficiency, and sustainability
while also evaluating the scheme's carbon intensity efficiency
[14].

In general, the research that comprehensively considers the
allocation principles to enhance the feasibility of carbon
quota allocation scheme has matured. However, there is
limited research specifically focusing on the steel industry in
different provinces of China, with 2030 carbon peak target as
the benchmark for calculation. Moreover, the efficiency of

measuring carbon quotas is significantly influenced by the
diverse environments in which provinces are situated.
Therefore, in this paper, we try to eliminate its influence
when constructing the carbon quota allocation model.

III. DATA AND METHODS

The main industrial product output of each province's steel
industry in this paper is identified as crude steel production.
Due to factors such as environmental conservation efforts
and limited population demand for steel, the production of
crude steel in Beijing, Hainan, and Tibet is relatively small,
therefore, it will not be analyzed. We selected 28 provincial
regions in mainland China for research.

A. Calculating method
1) Carbon emission calculation of iron and steel
industry in each province

The carbon emissions of the steel industry are quantified in
this paper, utilizing the methodology proposed by Shang et al.
(2010). The energy consumption data pertaining to the
"ferrous metal smelting and rolling processing industry"
serve as the foundational energy data for calculating carbon
dioxide emissions in China's iron and steel sector [15]. These
figures are then multiplied by the IPCC2006 carbon emission
factors corresponding to different types of energy, resulting
in the computation of final carbon emissions. It is expressed
as follows:

( )
2     

44          
12

Iron and steel industry CO emissions

carbon input carbon output= - ´
(1)

Among them, carbon input includes the consumption of
13 types of energy, such as washed coal, electricity, and other
coal washing. Carbon emissions encompass three categories
of carbonaceous products, namely crude steel, tar, and coarse
coal.

2) Forecast of relevant variables in 2030
Given the absence of official data on provincial crude steel

production, GDP, and other indicators for 2030, we employ
the GM(1,1) grey model to forecast these variables for all 28
provinces based on relevant data from 2014 to 2020 [16]. The
calculation process is as follows:

( ) ( ) ( ) ( ) ( )0 2014(0)ˆ 2014 1 a ka
m m

bg k g e e
a

- -= - - (2)

Among them, a is the development coefficient, b is the grey
input coefficient of GM (1,1), ( )0

mg is the original data of

( )1, 2, , 28m m =  province in 2014, ( ) ( )0ˆmg k

( )2014, , 2020k =  and ( ) ( )( )0ˆ 2021, , 2030mg k k = 
represent the fitted and predicted values of the relevant data
of m th- provinces, respectively.

Furthermore, following the utilization of the grey model
for predicting relevant variables in the steel industry across
28 provinces, a residual test is conducted on the GM(1,1)
model to assess the accuracy and reliability of the prediction

outcomes. ( ) ( ) ( ) ( ) ( )0 0ˆm mk g k g k = - , ( ) ( )
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the relative error of m th- province in the k th- year, and

( )2020
2014

1
2020 2013m mk k ==

- å is the average simulation

relative error of m th- province. When ( ) 0.1m k < and
0.1m < , it is considered to be a residual qualified model.

3) Determination of allocation target
The key to the allocation of carbon quotas for China's

provincial steel industry lies in determining the overall
carbon quota volume within this sector. Currently, due to the
limited availability of certain data pertaining to the provincial
steel industry, direct acquisition of accurate carbon emissions
for a specific region's steel industry is unattainable. Hence, it
is imperative to compute the overall carbon allocation for
China's steel industry in accordance with the carbon peak
objective. The 'carbon peak by 2030 action plan' proposed in
2021 aims to achieve a minimum reduction of 65% in carbon
intensity compared to the levels observed in 2005 by the year
2030. Consequently, in this paper, we postulate that the steel
industry in China has the potential to attain a 65% reduction
target in emissions by 2030.

( ) 2005
2030 2030

2005

1
C

C g
g

= ´ - ´ (3)

where 65% = , 2005C and 2030C represent the 2CO
emissions of China's steel industry in 2005 and 2030
respectively, 2005g and 2030g are China's crude steel
production in 2005 and 2030 respectively. The crude steel
production data in 2030 are predicted according to the
GM(1,1) model.

B. Carbon quota allocation model
A carbon quota allocation model is constructed and

optimized with carbon peak as the total target. Firstly, it is
imperative to categorize the commonly employed indicators
in current research on carbon quotas. Additionally,
employing the multi-index decision-making method, the
entropy weight technique is utilized to establish the initial
carbon quota allocation scheme based on the evaluation
index system. The allocation scheme is subsequently
adjusted using a three-stage DEA model to eliminate the
influence of environmental factors and random noise. Finally,
the ZSG-DEA model is employed to refine the initial carbon
quota allocation scheme with the aim of enhancing
distribution efficiency.

1) Initial allocation of carbon quotas based on a
multi-index approach

a．Index screening. A clear delineation of
responsibilities for emission reduction is a pivotal component
of the government's equitable distribution policy. In practical
terms, the allocation of quotas is commonly perceived to be a
reflection of fairness through the consideration of population
size and per capita GDP. Simultaneously, Regions with
higher carbon emissions should bear greater responsibility
for emission reduction [17, 18]. The principle of efficiency
highlights the importance of prioritizing cost-effectiveness in
the allocation of limited emission quotas. The carbon

intensity of the steel industry is used in this paper as a metric
to measure its energy efficiency. Furthermore, the focus of
this paper is on the steel industry across 28 provinces in
China. The assessment of environmental pollution resulting
from the production process also serves as a crucial criterion
for carbon quota allocation. Consequently, we incorporated
the intensity of air pollutant emissions from the steel industry
in each province into the comprehensive evaluation index
system [19, 20]. Finally, the measurement index incorporates
the crude steel production of each province. The
measurement indicators of carbon quota allocation are shown
in Table Ⅰ.

b．Determination of index weight and initial carbon
quota. The entropy method is employed to ascertain the
weights of the aforementioned six indicators and amalgamate
them into a comprehensive indicator [21].

( )6
1 ,  1, , 28m jj mj

Q q m== =å  (4)

where mQ is the comprehensive carbon emission index of
m th- province; mjq is the standardized value of the j th-

carbon emission related index in m th- province; jw is the
weight of the j th- carbon emission related index, and the
index with large dispersion should be given higher weight.
GDP per capita, population, and crude steel production serve
as positive indicators, while historical cumulative carbon
emissions, carbon intensity, and air pollutant emission
intensity act as negative indicators.

The calculation formula of the initial carbon quota of
m th- province is

203028

1

m
m

m
k

Q
C C

Q
=

=

å (5)

TABLE I
THE MEASUREMENT INDEX OF CARBON QUOTA ALLOCATION

Index Indicator description Allotment
principle

Per capita GDP The average per capita GDP of each
province during the period from

2014 to 2020

Fairness

Population Average population of provinces
from 2014 to 2020

Fairness

Crude steel
capacity

The annual average crude steel
production of the iron and steel

industry in each province from 2014
to 2020

Fairness

Accumulated
carbon emissions

Cumulative carbon emissions
attributed to the steel industry across

provinces during the period
spanning from 2014 to 2020

Fairness

Carbon intensity The steel sector in each province
produces 10,000 tons of crude steel,
resulting in the production of carbon

dioxide.

Efficiency

Air pollutant
emission intensity

Emissions of air pollutants (sulfur
dioxide, nitrogen oxides, soot)

resulting from the production of
10,000 tons of crude steel by the

steel sector in each province

Sustainability

IAENG International Journal of Applied Mathematics

Volume 54, Issue 3, March 2024, Pages 465-474

 
______________________________________________________________________________________ 



2) Adjustment of initial carbon quota scheme
considering environmental factors

The carbon quota allocation plan of each province will be
significantly influenced by variations in policies and
environmental conditions across different provinces. Taking
into account environmental factors may enhance the equity of
carbon quota allocation, but its impact on the efficiency of
inter-provincial allocation remains to be empirically tested.
Therefore, we employ the three-stage DEA model to account
for the impact of environmental factors on the initial
allocation scheme, subsequently facilitating optimization and
adjustment of the carbon quota scheme.

a．The first stage: opt for the input-oriented DEA-BBC
model to conduct an analysis on initial efficiency.

28

0
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28

0
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ˆmin ( )
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where ( )1 28m = ， ， denotes m th- decision making units
(DMU); Y is the output variable, that is, the GDP of each
province in 2030; X is the input variable, that is, the crude
steel output of each province in 2030 and the initial carbon
quota. If + -= S =S =01 ， , the decision-making unit DEA is
effective; if +=1 S 0 ¹， or -S 0¹ , the DMU is weak DEA
efficient; if 1 < , the DMU is not DEA efficient.

b．The second stage: the performance of DMU is
influenced by management inefficiency, environmental
factors, and statistical noise; thus, it becomes imperative to
disentangle these three effects. The following input-oriented
SFA-like regression function is constructed

( ; ) , m 1, , 28;  1, 2nm m n nm nmS f Z n  = + + = = (7)

Among them, nmS is the slack variable; mZ is the
environment variable, n is the coefficient of the

environment variable; ( );m nf Z  represents the influence
of external environment variables on the input slack variable
nmS ; nm nm + is a mixed error term, nm denotes random

interference, and nm denotes management inefficiency.
2~ (0, )vN  ;  is management inefficiency;

2~ (0, )N  + , nm is independent of nm .
Reconfigure the input parameters for each province

( )( ) ( )
( )

ˆ ˆmax ; ;

      max ,  m=1, , 28;  1, 2, ,

A
nm nm m n m n

nm nm

X X f Z f Z

v v n N

 = + -

+ - = 
(8)

Among them, A
nmX is the adjusted input; nmX is the input

before adjustment; ( )( ) ( )ˆ ˆmax ; ;m n m nf Z f Z - is to

adjust the external environmental factors; ( )max nm nmv v- is
to put all decision-making units to the same luck level.

c．The third stage: the adjusted input data of the second
stage is utilized as the new input variable, while keeping the
output variable unchanged. Subsequently, a reevaluation of
each decision-making unit's efficiency is conducted.

3) The adjustment of initial carbon quota scheme based
on efficiency optimization

The principle of efficiency primarily focuses on
safeguarding the interests of provinces with high production
efficiency and significant potential for emission reduction,
thereby predominantly benefiting developed provinces.
Three-stage DEA models may alter the total input quantity,
while ZSG-DEA model enables continuous optimization
without changing the total input quantity, by constantly
adjusting the inputs of each DMU to achieve optimal
allocation results [22]. It is extensively employed in the
efficiency optimization scheme for allocating provincial
carbon quotas in China [23]. Therefore, considering the
limited disposability, we employ the input-oriented
ZSG-DEA model to adjust resource allocation efficiency
values and achieve effective distribution of carbon quotas.
The input variable represents the initial carbon emission
quota of each province in 2030, while the output variables
encompass the GDP and crude steel production of each
province in 2030. The carbon emission quotas for each
province in 2030 are determined through the ZSG-DEA
model.
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Among them, 0 is the allocation efficiency of the DMU
under evaluation when the sum of carbon quotas is fixed; m
is the weight of the m th- DMU in the whole system; N and
R represent the number of input variables and output
variables, respectively; 0nx is the initial carbon quota of
m th- province.

After adjustment, the carbon quota allocation value of
m th- province is

( )
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Among them, nmX ¢ refers to the carbon quota adjustment of
the m th- DMU after each iteration; nmX refers to the
carbon emission quota of m th- province at the beginning of
each iteration; 0m is the average efficiency value. When

0 1m = , the province is at the forefront of efficiency and the
allocation scheme with the best efficiency is obtained.

IV. RESULT ANALYSIS

A. Outcomes of initial carbon quota allocation grounded
on the principles of equity, efficiency, and sustainability

In this paper, we employ six indicators, namely per capita
GDP, population, crude steel production, historical
cumulative carbon emissions, carbon intensity, and air
pollutant emission intensity to establish an initial allocation
index system for carbon quotas. The weights of the
aforementioned six indicators were determined using the
entropy method, yielding values of 22.23%, 17.87%, 45.23%,
4.40%, 4.26%, and 6.02% correspondingly. It can be seen
that the production of crude steel is the main factor
influencing carbon emissions in the steel industry across
provinces, while the weights of the latter three indicators are
relatively small.

The initial carbon quota of each province is determined
based on the total carbon quota in 2030 and the
corresponding allocation weight assigned to each province.
The GM(1,1) model is utilized to predict the total GDP and
crude steel production data for 2030. The simulation relative
error and average simulation relative error of most provinces
are found to be below 0.1, indicating a high level of accuracy
in the predictions within an acceptable range. The estimated
total carbon emissions of the steel industry in 2030, based on
the overarching objective of achieving carbon peaking,
amount to approximately 1,656,711.438 thousand tons as
calculated by using (3). Therefore, based on (4) and (5), the
initial allocation of carbon quotas for each province can be
derived as presented in the second column of Table Ⅱ. The
distribution of initial carbon quotas among provinces is
illustrated in Fig. 1, revealing a gradual decline from
southeastern to northwestern regions. Notably, Hebei and
Jiangsu exhibit the highest initial carbon quotas, surpassing
100 million tons each, aligning with their status as major
annual crude steel producers. In order to ensure the stability
of future economic development in economically developed
areas (such as Guangdong, Shanghai, Zhejiang) and densely
populated regions (such as Shandong, Henan), a relatively
higher proportion of carbon quotas is allocated. Conversely,
sparsely populated areas like Ningxia and Qinghai with lower
steel demand and crude steel output receive fewer carbon
quotas.

B. Revising the initial carbon quota allocation through a
three-stage DEA model
1) The first stage involves utilizing the traditional DEA
model to analyze the initial allocation efficiency

In order to ensure a more equitable distribution of
carbon quotas among provinces, we employ a
three-stage DEA model to mitigate the influence of
environmental factors and random noise on carbon
emission efficiency, thereby establishing a level
playing field for all provinces within the same external
context. initial efficiency values for carbon quota
allocation in the first stage across 28 provinces are
presented in Table III. According to Table III, only
three provinces in China-Zhejiang, Guangdong, and
Guizhou - exhibit an initial carbon quota allocation
efficiency value of 1. These provinces are positioned on
the technological efficiency frontier. The inefficiency
of comprehensive technology in various provinces
primarily arises from pure technical inefficiencies,
while the issue of scale inefficiency is relatively
moderate.

2) The second stage involves a SFA-like regression
analysis to eliminate confounding environmental factors
and statistical noise

The competition among local governments has been
recognized as a significant factor in fostering China's
economy for long-term, sustained, and rapid growth. The
local government's emphasis on the ecological environment
during the process of economic development also determines
whether China can achieve its goal of carbon peak. In
addition, The development trend of urbanization in China's
provinces holds significant practical implications for
advancing socialist modernization. Hence, we selected local
government competition and urbanization level as
environmental variable indicators. Among them, the
urbanization rate of each province serves as an indicator of
the degree of urban development. Additionally, drawing on
the research conducted by Miao et al. (2017), the level of
economic catch-up is considered a proxy variable for local
government competition, implying that provinces strive to
surpass neighboring regions and those with higher levels of
national economic advancement [24]. The calculation
method of the province's economic catch-up level is as
follows:

1 2GDP GDP
LGC

GDP GDP
= ´ (11)

Among them, LGC represents the level of economic catch-up;
1GDP represents the highest per capita GDP of neighboring

provinces except for this province; 2GDP represents the
maximum per capita GDP among provinces in China; GDP
represents the per capita GDP of the province.
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TABLE II
RESULTS OF THREE CARBON QUOTA ALLOCATION SCHEMES

Province Initial carbon
quota

Carbon quota adjustment
based on three-stage DEA

Initial allocation
efficiency

Allocation efficiency
after three iterations

Carbon quotas adjustment
based on ZSG-DEA model

Tianjin 7039.37 8027.58 0.3098 0.9999 2921.48
Hebei 13000.20 14056.66 1 1 17949.95
Shanxi 5644.78 6383.63 1 1 7793.99

Inner Mongolia 4953.41 5454.31 0.6907 0.9999 4679.56
Liaoning 7287.82 7942.36 0.5519 0.9999 5441.27

Jilin 4332.43 4633.57 0.4608 0.9999 2717.36
Heilongjiang 3316.52 4042.50 0.7827 0.9999 3568.20

Shanghai 8016.44 9127.92 0.4865 0.9999 5247.82
Jiangsu 12066.25 12993.00 0.7388 0.9999 12061.67

Zhejiang 7014.53 7930.45 0.8197 0.9999 7876.27
Anhui 5848.25 6576.99 0.7816 0.9999 6261.60
Fujian 6561.79 7180.56 0.7629 0.9999 6845.30
Jiangxi 5186.09 6147.49 0.6301 0.9999 4458.33

Shandong 9239.02 9617.34 0.5979 0.9999 7450.61
Henan 6792.93 7365.90 0.7412 0.9999 6876.08
Hubei 6587.09 6897.50 0.6483 0.9999 5811.39
Hunan 5858.68 6504.04 0.6931 0.9999 5544.51

Guangdong 8713.23 9465.30 1 1 12030.73
Guangxi 5045.39 5335.81 0.6952 0.9999 4797.38

Chongqing 4609.85 5713.67 0.6874 0.9999 4336.28
Sichuan 6107.30 6755.19 0.8484 0.9999 7113.01
Guizhou 2985.49 3936.79 0.9746 0.9999 4015.75
Yunnan 4487.43 4487.43 0.8081 0.9999 4980.61
Shaanxi 4730.11 5497.87 0.6676 0.9999 4317.88
Gansu 3094.43 3899.19 0.6239 0.9999 2646.88

Qinghai 1940.61 2679.47 0.8663 0.9999 2317.53
Ningxia 1678.47 2649.65 1 1 2317.53
Xinjiang 3533.23 3965.89 0.6796 0.9999 3292.19

Total 165671.14 185268.09 / / 165671.14
Note: The unit of carbon quota is ten thousand tons.

Fig. 1. The proportion of initial carbon quotas in each province (Utilize
acronyms to represent the names of each province)

An SFA model is established, with the crude steel
production and relaxation variables of initial carbon quotas
in 2030 as dependent variables, and local government
competition levels and urbanization levels as independent
variables. The local government competition levels for each.
province in 2030 are calculated based on the average values
of this indicator from 2014 to 2020. The urbanization levels
are predicted using a GM(1,1) model based on the
urbanization rates from 2014 to 2020 for each province. All

prediction results have successfully passed residual
tests.The verification results of environmental indicators in
the second stage SFA model are presented in Table Ⅳ,
incorporating adjustments to input factors such as crude
steel production and carbon emission quotas. Table Ⅳ
shows that the regression coefficients of the two slack
variables of crude steel production and initial carbon quota
are significant with the two environmental variables of local
government competition and urbanization level. The LR
values of the two models are greater than the critical value of
the unilateral generalized likelihood ratio test at the 1% level
(8.273). These two environmental variables should be
considered when adjusting the input value.

Further analysis of the impact of various environmental
factors on the coefficients of two types of input redundancy
reveals that an increase in urbanization levels and local
governments' implementation of policies to outperform
neighboring cities in terms of GDP competition will result in
an augmentation in crude steel production inputs, while
initial carbon quota inputs decrease. This enables provinces
to swiftly achieve emission reduction targets while
sustaining the development of the steel industry, thereby
attaining carbon peak levels.

According to the separation formula proposed by Luo
(2012), we have derived the adjusted crude steel output and
carbon quota allocation value [25]. The adjusted allocation
of carbon quotas can be found in the third column of Table Ⅱ.
The distribution results altered the total amount of original
crude steel production and carbon quota.
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TABLE III
CARBON QUOTA ALLOCATION EFFICIENCY BASED ON THREE-STAGE DEA MODEL

Province
The frist stage The third stage

TE PTE SE RS TE PTE SE RS
Tianjin 0.153 0.329 0.465 ris 0.15 0.438 0.343 ris
Hebei 0.181 0.259 0.696 ris 0.182 0.305 0.595 ris
Shanxi 0.27 0.475 0.568 ris 0.259 0.567 0.457 ris

Inner Mongolia 0.226 0.473 0.478 ris 0.223 0.604 0.37 ris
Liaoning 0.197 0.358 0.55 ris 0.196 0.447 0.439 ris

Jilin 0.151 0.473 0.319 ris 0.146 0.624 0.235 ris
Heilongjiang 0.201 0.591 0.34 ris 0.179 0.723 0.248 ris

Shanghai 0.515 0.531 0.968 ris 0.603 0.627 0.962 ris
Jiangsu 0.622 0.638 0.974 ris 0.678 0.68 0.997 ris

Zhejiang 1 1 1 — 1 1 1 —
Anhui 0.603 0.748 0.806 ris 0.618 0.804 0.769 ris
Fujian 0.661 0.756 0.874 ris 0.636 0.808 0.787 ris
Jiangxi 0.475 0.632 0.752 ris 0.515 0.688 0.749 ris

Shandong 0.511 0.557 0.917 ris 0.504 0.624 0.807 ris
Henan 0.704 0.741 0.95 ris 0.684 0.8 0.856 ris
Hubei 0.553 0.645 0.858 ris 0.527 0.74 0.712 ris
Hunan 0.569 0.692 0.823 ris 0.536 0.761 0.704 ris

Guangdong 1 1 1 — 1 1 1 —
Guangxi 0.349 0.571 0.611 ris 0.358 0.714 0.501 ris

Chongqing 0.51 0.692 0.737 ris 0.463 0.722 0.641 ris
Sichuan 0.756 0.848 0.892 ris 0.719 0.893 0.804 ris
Guizhou 1 1 1 — 0.915 1 0.915 ris
Yunnan 0.533 0.761 0.7 ris 0.579 0.964 0.6 ris
Shaanxi 0.481 0.67 0.717 ris 0.414 0.744 0.556 ris
Gansu 0.228 0.68 0.335 ris 0.36 1 0.36 ris

Qinghai 0.159 1 0.159 ris 0.096 1 0.096 ris
Ningxia 0.196 1 0.196 ris 0.135 1 0.135 ris
Xinjiang 0.343 0.684 0.502 ris 0.321 0.841 0.382 ris

Mean 0.470 0.672 0.685 / 0.464 0.754 0.608 /
Note: TE, PTE, SE and SR represent the comprehensive efficiency, pure technical efficiency, scale efficiency and scale return of carbon quota allocation,
respectively. TE PTE SE= * . ‘—’ represents constant returns to scale, ‘ris’ represents increasing returns to scale.

TABLE IV
THE REGRESSION RESULTS OF THE SECOND STAGE SFA MODEL

Relaxation variable of input index
The output of crude

steel
Initial allocated carbon

allowance
Intercept -13475.534**

(-249.870)
1043.4423**

(76.142)
LGC 12128.572**

(21.477)
-800.50628**

(-38.107)
Urbanization level 9352.3531**

(90.556)
-1416.6628**

(-179.362)
Sigma-squared 154464480**

(154449390)
3763210.7**
(3763168.3)

Gamma 0.99999999**
(357626.71)

0.99999999**
(19830771)

Log likelihood -283.06466 -236.62032
LR test 15.739 8.736
** denote statistical significance at the 5% levels.

3) The third stage involves conducting a DEA efficiency
analysis on the adjusted input variables

Conducting an input-oriented BBC model analysis,
utilizing adjusted crude steel production and carbon quota
allocation values as independent variables while
maintaining a constant dependent variable. Environmental
and random factors are eliminated to ensure equal external
conditions and luck among all provinces. The results are
presented in Table Ⅲ. Following adjustment, only Zhejiang
and Guangdong remain on the efficiency frontier when

compared to the DEA efficiency in the first stage. Guizhou's
scale efficiency has experienced a slight decline, resulting in
its comprehensive efficiency falling short of reaching the
efficiency frontier. From the perspective of other provinces,
it is commonly observed that there is an increase in pure
technical efficiency and a decrease in scale efficiency. This
indicates that the pure technical efficiency values of
provinces are often underestimated, while the scale
efficiency values are frequently overestimated.

C. The efficiency optimization results of ZSG-DEA model
Utilizing (9), we computed the initial carbon quota

allocation efficiency for each province employing the
entropy method. The provinces of Hebei, Shanxi,
Guangdong, and Ningxia have been identified as the leading
regions in terms of DEA efficiency, exhibiting an allocation
efficiency score of 1. The initial distribution efficiency of
most provinces is relatively low, with Tianjin, Jilin, and
Shanghai exhibiting an efficiency level below 0.5. The
ZSG-DEA model is employed in this paper to adjust carbon
quotas for 28 provinces and regions, aiming to enhance the
allocation efficiency of each province towards a value close
to 1 while maintaining the total amount of carbon quotas
unchanged throughout the iterative process. After three
iterations, the carbon quota allocation results for 28
provinces have reached a relatively optimal state, as
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evidenced in the sixth column of Table Ⅱ. According to the
findings presented in Table Ⅱ, there has been an increase in
the carbon quota allocation for the steel industry in 13
regions with higher initial efficiency of allocation, such as
Hebei, Shanxi, and Heilongjiang. Conversely, a decrease in
the carbon quota allocation has been observed for 15 regions
with lower initial efficiency of allocation, including Tianjin,
Inner Mongolia, and Liaoning. The ZSG-DEA model
enhances allocation efficiency by allocating more carbon
quotas to regions with higher initial allocation efficiency,
particularly the four regions with an initial allocation
efficiency of 1, which receive additional increments in
carbon quotas. Conversely, regions with lower initial
allocation efficiency experience a reduction in their carbon
quotas.

D. The outcomes of three carbon quota allocation
schemes
According to the findings from Table Ⅱ, the carbon quota

allocation schemes reveal that steel industries in Hebei,
Jiangsu, and Guangdong regions have been allocated a
larger proportion of carbon quotas compared to Qinghai,
Ningxia, and other regions. Hebei and Jiangsu provinces, as
the largest steel producers in China, have been allocated a
larger carbon quota. However, their steel industry also ranks
high in terms of carbon dioxide emissions, which inevitably
places greater responsibility on them for reducing carbon
emissions. The average carbon quotas for the steel industry
in the eastern, central, and western regions under the three
scenarios are illustrated in Fig. 2. It is evident that there is a
gradual decrease in carbon quotas for the steel industry from
east to west. In addition, the distribution results of Qinghai
and Ningxia under the three schemes are similar.

Fig. 2. The average carbon quotas under the three allocation schemes in the
eastern, central, and western regions

The target carbon emission reductions for the steel
industry in each province under three different carbon quota
allocation schemes are presented in Table Ⅴ. Additionally, a
GM(1,1) model is employed to predict the carbon emissions
of the steel industry in each province for 2030, with residual
tests confirming the accuracy of these predictions. If the
target carbon emission reduction in Table Ⅴ is a positive
value, it indicates the necessity to mitigate an equivalent
amount of carbon emissions; conversely, if the target carbon

emission reduction is a negative value, it implies the
potential for increasing the corresponding amount of carbon
emissions. The three allocation schemes collectively
indicate that the steel industry of Hebei and Inner Mongolia
exhibits the highest target carbon emission reductions,
followed by Jiangsu, Shandong, and Guangdong. In the
event that these provinces' steel industry fails to attain a
harmonious balance between economy and environment,
they may need to procure carbon quotas from other
provinces with surplus quotas, thereby assuming the role of
buyers in the carbon trading market. Conversely, regions
such as Shanghai and Henan, which possess negative target
values for carbon reduction, indicate that their steel industry
is more likely to easily accomplish the 2030 emission
reduction target and potentially become sellers of carbon
quotas in the carbon trading market.

TABLE V
THE TARGET CARBON EMISSION REDUCTIONS OF PROVINCES IN THE

THREE ALLOCATION SCHEMES

Province
Carbon

emissions
in 2030

Target carbon emissions reduction

Initial
carbon
quota

Carbon quota
adjustment
based on

three-stage
DEA

Carbon
quotas

adjustment
based on

ZSG-DEA
model

Tianjin 3206.53 -3832.74 -4820.96 285.15
Hebei 43349.32 30349.11 29292.66 25399.37
Shanxi 11890.57 6245.79 5506.94 4096.59
Inner

Mongolia 39825.99 34872.58 34371.68 35146.43

Liaoning 15372.04 8084.21 7429.67 9930.77
Jilin 2373.05 -1959.39 -2260.52 -344.32

Heilongjiang 5119.77 1803.24 1077.26 1551.57
Shanghai 2312.19 -5704.25 -6815.73 -2935.63
Jiangsu 25941.23 13874.97 12948.23 13879.56

Zhejiang 5748.81 -1265.71 -2181.64 -2127.46
Anhui 7540.04 1691.79 963.05 1278.45
Fujian 7208.57 646.79 28.01 363.27
Jiangxi 4989.93 -196.16 -1157.56 531.60

Shandong 22317.52 13078.51 12700.18 14866.91
Henan 3522.96 -3269.97 -3842.94 -3353.12
Hubei 4610.29 -1976.80 -2287.22 -1201.10
Hunan 4449.52 -1409.16 -2054.53 -1095.00

Guangdong 21925.60 13212.37 12460.30 9894.87
Guangxi 8892.62 3847.23 3556.81 4095.24

Chongqing 2401.05 -2208.80 -3312.61 -1935.23
Sichuan 4653.41 -1453.90 -2101.79 -2459.60
Guizhou 2814.57 -170.92 -1122.22 -1201.18
Yunnan 10613.12 6125.69 6125.69 5632.51
Shaanxi 3722.58 -1007.53 -1775.30 -595.30
Gansu 2718.69 -375.74 -1180.50 71.82

Qinghai 1399.57 -541.05 -1279.91 -917.97
Ningxia 10336.58 8658.11 7686.93 8019.05
Xinjiang 11013.33 7480.10 7047.44 7721.13

Note: The unit of carbon quota is ten thousand tons.

V. CONCLUSION AND SUGGESTIONS

In this paper,We address the research gap by proposing
three carbon quota allocation schemes for the steel industry
in different provinces of China, aligned with the 2030
carbon peak target. Firstly, an initial carbon quota allocation
scheme is derived using the entropy method, considering
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fairness, efficiency, and sustainability principles. Secondly,
a three-stage DEA model is employed to eliminate
environmental factors and random noise from the initial
allocation scheme. Lastly, by utilizing the ZSG-DEA model,
each province's steel industry can improve its carbon quota
allocation efficiency to reach the efficiency frontier based on
the initial allocation scheme. The study found that：
1) The initial carbon quota allocation scheme assigns the

initial carbon quotas for each province based primarily
on crude steel production. The allocation of carbon
quotas is higher for the steel industry in economically
developed and densely populated regions. Carbon
quotas gradually decreased from the southeast to the
northwest.

2) Considering the competition among local governments
and the level of urbanization can effectively optimize
the initial allocation scheme for carbon quotas. The
level of urbanization and the improvement of
provinces' awareness of competition for neighboring
provinces will lead to an increase in crude steel
production input, while the initial carbon quota input
will be reduced.

3) The allocation scheme based on the ZSG-DEA model
can be summarized as follows: regions with higher
initial allocation efficiency in the steel industry will
receive a greater number of carbon quotas, while
regions with lower initial allocation efficiency will
receive a reduced number of carbon quotas.

4) The three allocation schemes all demonstrate a
decreasing trend in the average carbon quota of the
steel industry from the eastern region to the western
region. This suggests that in the process of carbon
quota allocation in each province, crude steel
production, economic development trend, historical
emission responsibility and so on will have an
appropriate impact.

5) The results of the three allocation schemes indicate that
provinces with larger carbon reduction targets, such as
Hebei, Inner Mongolia, and Jiangsu, may purchase
carbon quotas from other provinces that have a surplus.
On the other hand, industries like steel in Shanghai and
Henan are predicted to have lower carbon emissions
than their allocated quotas, potentially becoming
sources of carbon quota outflow in the future.

The three allocation schemes each possess their own
respective advantages in general. Although the initial
allocation scheme can equitably distribute carbon quotas for
China's steel industry among provinces, it rigidly constrains
their economic development trajectories and capacities,
thereby impeding the impetus for growth in certain
underdeveloped regions. Moreover, a majority of regions
have not yet attained the efficiency frontier with regards to
allocation effectiveness. By excluding environmental
variables and random noise from the initial allocation
schemes, it is shown that the carbon quota allocation results
for each province no longer solely depend on their current
level of development. This encourages provinces to strive
for economic catch-up. However, the allocation scheme
based on the three-stage DEA model will modify the initial
input of crude steel production and carbon quotas for each
province, potentially leading to an increase in costs

associated with emission reduction. The allocation scheme
based on the ZSG-DEA model can enhance the efficiency of
carbon quota distribution among provinces while
maintaining the total amount of crude steel production and
carbon quotas unchanged. However, this distribution plan
exhibits greater advantages for regions with higher levels of
economic development. Therefore, the Chinese government
can promptly adjust the carbon quota allocation scheme for
the steel industry based on factors such as the anticipated
development trends of each province.
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