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Abstract—This paper introduces a method for determinant
computation in square matrices. Our approach utilized re-
cursion and the Schur formula to partition the matrix into
submatrices. Determinant calculations were performed using
the condensation method. To evaluate its computational ef-
ficiency, we conducted a floating-point operation per second
(FLOPS) analysis, using FLOPS to compare the efficiency of
all reduction methods. Pseudocode was provided to demonstrate
the computational efficiency of our method in terms of flops and
execution time for square matrix determinant calculations.

Index Terms—Determinant, Gaussian elimination method,
Floating-point operations per second, Execution time.

I. INTRODUCTION

THE determinant is a fundamental concept in linear
algebra and matrix theory, playing a pivotal role in

numerous scientific and engineering applications. It is widely
used in multivariate function integration, solving complex
linear systems, and calculating the area and volume of
geometric shapes. While Leibniz’s formula and the Laplace
expansion can frequently be used to evaluate the determinant
of small matrices, the situation drastically changes when
dealing with large matrices. In such cases, difficulties with
permutation selection and matrix multiplications, which are
necessary to identify determinants by conventional methods,
arise. These challenges result in increased computational
complexity. To address these issues, several determinant
computation methods have been extensively examined, as
documented in [1]. This includes the Cholesky decomposi-
tion method, the LU decomposition, the QR decomposition,
and the Gaussian elimination method.

Calculating the determinants of the matrix is made simpler
by the condensation method which reduces a large matrix
into smaller submatrices. The two most popular methods
are Chio’s condensation method and Dodgson’s condensation
method [2]–[5]. The main idea of these two methods is to
reduce the size of the original matrix to a matrix consisting of
a matrix of size 2×2. The benefit of this idea is that we do not
have to calculate the large size of a matrix. Recently, the new
method called generalized Dodgson’s condensation method
reduces the order of a matrix [2]. This method is based on
the basic idea of Chio’s condensation method and Dodgson’s
condensation method. The idea of generalized Dodgson’s
condensation method is to reduce the original matrix of size
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n×n to the 2×2 matrices whose elements are determinants
of matrices of size (n − 1) × (n − 1). However, Chio’s
condensation method and Dodgson’s condensation method
reduce the original matrix of size n×n to the (n−1)×(n−1)
matrix involving determinants of a matrix of size 2×2 while
the generalized Dodgson’s condensation method computes
the determinant of a matrix only size 2× 2.

Different methods can have different performance charac-
teristics. To determine the performance of the method finding
the determinant, one approach to evaluating the performance
is counting floating-point operations per second (FLOPS).
In computing, FLOPS is a computer performance measure
that is frequently used to compare the processing ability of
various systems by measuring the number of basic arithmetic
operations required to perform a calculation. In recent years,
researchers have used FLOPS as a metric to compare the
performance of algorithms and schemes presented in [6]–[9].
In the case of matrix determinant calculation, the traditional
method of finding the determinant of a matrix, known as
Gaussian elimination, requires O(n3) flops for an n×n ma-
trix. In 2007, Rezaifar introduced [1] the reduction method
to calculate the determinant of a matrix. In this approach, the
matrix is divided into four submatrices, and its determinant
is calculated by using the determinants of those submatrices.
This method is more effective than Laplace’s method since it
reduces the size of the matrix being considered, making the
calculation more manageable. However, Rezaifar’s method
might be less effective if it is applied to the large size of a
matrix.

In this paper, we present an adapted method for deter-
minant calculation, which involves reducing the matrix size
through a recursive procedure. This adaptation is inspired by
PN’s method [10] and is aimed at enhancing the performance
of Rezaifar’s method. The adapted method divides the matrix
into four submatrix blocks, with the initial main diagonal
consisting of a matrix of size 1 × 1. To calculate the
determinant, we employ Chio’s condensation method for
submatrix determinants within the Schur formula [11], [12].
We provide an analysis of the computational complexity,
particularly in terms of flops. Our findings indicated that
this method requires fewer flops than Gaussian elimination
but slightly more than Chio’s method, with only 2 flops,
regardless of the matrix size. Furthermore, we performed a
numerical example, measuring execution time and evaluating
determinant accuracy to verify the correctness and assess the
method’s efficiency.

The rest of the paper is organized as follows: First, a
method to calculate the determinant of a matrix is described
in the next section. In section 3, the approaches to mea-
sure calculating performance are discussed in the sense of
counting the number of operations. Next, we prove the main
theorems showing the closed form of FLOPS for computing
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the determinant of a matrix. Also, the efficiency of deter-
minant computation methods is compared. The summary of
this work is discussed in the conclusion section.

II. METHODS OF MATRIX DETERMINANTS

In this section, determinant calculation methods are de-
scribed. Let A = [aij ] be a square matrix, and its determi-
nant, denoted by det(A) or |A|, is a constant determined by
the definition found in [13].

The conventional approach to compute the determinant is
the Gaussian elimination method, which involves a series of
operations on the coefficient matrix. For determinant com-
putation, the matrix reduction method has been widely used.
Also, Chio’s condensation method, Dodgson’s condensation
method, PN’s method, and Rezaifar’s method are all included
in the methods.

A. Gaussian elimination method

Gaussian elimination is a widely recognized technique
for determinant calculation in square matrices. This method
transforms the matrix into a triangular form through row
operations and derives the determinant from the product of
the diagonal elements of the triangular matrix.

Algorithm 1: An algorithm of Gaussian elimination
method

input : Matrix A
output: detA

Step 1: Determine a size of A. If the matrix is
2× 2, calculate its determinant directly.

Step 2: Performing elementary row operations to
transform the matrix into an upper triangular form

Step 2.1: Finding the pivot element in the i-th
column. If it is zero, the determinant is zero. If the
pivot element is not in the i-th row, swap the row
containing the pivot element with the i-th row.

Step 2.2: For each row below the pivot row,
subtract a multiple of the pivot row from the current
row to eliminate the element below the pivot in the
same column. Set all elements below the pivot
element in the same column to zero.

Step 3: Multiply the diagonal elements of the
upper triangular matrix, the determinant of A.

B. Chio’s condensation method

In 1853, Chio [3] proposed an interesting recursive
method to evaluate the determinant of a square matrix. This
approach reduces the size of the matrix to an (n−1)×(n−1)
matrix composed of the determinants of 2× 2 matrix as its
entries.

Theorem 2.1: Let A = [aij ] be an n× n matrix. Without
loss of generality, suppose a11 ̸= 0. If B is an (n−1)×(n−1)

matrix produced from A by

B =



∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣
∣∣∣∣∣a11 a13

a21 a23

∣∣∣∣∣ ...

∣∣∣∣∣a11 a1n

a21 a2n

∣∣∣∣∣
∣∣∣∣∣a11 a12

a31 a32

∣∣∣∣∣
∣∣∣∣∣a11 a13

a31 a33

∣∣∣∣∣ ...

∣∣∣∣∣a11 a1n

a31 a3n

∣∣∣∣∣
...

...
. . .

...∣∣∣∣∣a11 a12

an1 an2

∣∣∣∣∣
∣∣∣∣∣a11 a13

an1 an3

∣∣∣∣∣ ...

∣∣∣∣∣a11 a1n

an1 ann

∣∣∣∣∣


, (1)

then the determinant of matrix A by Chio’s condensation
method is

det(A) =
1

an−2
11

det(B). (2)

Algorithm 2: An algorithm of Chio’s condensation
method

input : Matrix A
output: detA

Step 1: Determine a size of A. If the matrix is
2× 2, calculate its determinant directly.

Step 2: Exchange rows if A(1, 1) = 0 to find
nonzero elements.

Step 3: Calculate a submatrix B = [bij ] where

bi,j = A(1, 1)A(i+1, j+1)−A(1, j+1)A(i+1, 1).

Step 4: Calculate the determinant in step 3 using
with the formula (2), while det(B) can be a
recursive function obtained from Step 1 - Step 4.

C. Dodgson’s condensation method

In 1866, Dodgson [14] developed a method for calculat-
ing the determinant of an n×n matrix based on the concept
of Chio’s condensation method. Let A = [aij ] be an n × n
matrix and denote the original matrix A = A(n). Define
A(n−1) is an (n− 1)× (n− 1) matrix produced from A by

A(n−1) =



∣∣∣∣a11 a12

a21 a22

∣∣∣∣ ...

∣∣∣∣a1(n−1) a1n

a2(n−1) a2n

∣∣∣∣
∣∣∣∣a21 a2,2

a31 a32

∣∣∣∣ . . .
∣∣∣∣a2(n−1) a,n

a3(n−1) a3n

∣∣∣∣
...

...∣∣∣∣a(n−1)1 a(n−1)2

an1 an2

∣∣∣∣ ...

∣∣∣∣a(n−1)(n−1) a(n−1)n

an ann

∣∣∣∣


(3)

and intA(n) is an (n − 2) × (n − 2) matrix produced from

A by

intA(n) =


a22 a23 ... a2(n−1)

a32 a33 ... a3(n−1)

...
...

. . .
...

a(n−1)2 a(n−1)3 ... a(n−1)(n−1)

 . (4)
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In other words, intA(n) is obtained by deleting the first
and last row and column of the matrix A. Without loss of
generality, we assume that intA(n) is a non-zero matrix.

Algorithm 3: An algorithm of Dodgson’s condensa-
tion method

input : Matrix A
output: detA

Step 1: Determine a size of A. If the matrix is
2× 2, calculate its determinant directly.

Step 2: Reduce matrix A of size n× n to matrix
A(n−1) of size (n− 1)× (n− 1) composing of the
2× 2 determinant for every four adjacent terms by
using (3).

Step 3: Find a matrix intA(n) of size
(n− 2)× (n− 2) by (4).

Step 4: Construct B(n−2), an (n− 2)× (n− 2)
matrix, from the matrix A(n−1) by (3).

Step 5: Construct the matrix A(n−2) by dividing
the matrix B(n−2) by intA(n) in Step 3
component-wise.

Step 6: Repeat Step 3 – 5 to find matrices
A(n−k) where 3 ≤ k ≤ n− 1 by using previous
results A(n−k+2) and A(n−k+1) until we obtain A(1),
a determinant of A.

Theorem 2.2: Let A = [aij ] be an n× n matrix, then the
determinant of matrix A by Dodgson’s condensation method
is

det(A) = A(1), (5)

where A(1) is obtained by the above Dodgson’s condensation
process.

D. Rezaifar’s method

The determinant based on Rezaifar’s approach [1] for a
square matrix is given by

det(A) =
1

|A11,nn|
· det

[
|A11| |A1n|
|An1| |Ann|

]
, (6)

where Aij and Aii,jj are given by

Aij =


∗ ∗ ... ∗ | ∗ ... ∗
∗ ∗ ... ∗ | ∗ ... ∗
− − − − ⊕ij − − −
∗ ∗ ... ∗ | ∗ ... ∗
∗ ∗ ... ∗ | ∗ ... ∗

 , (7)

Aii,jj =


∗ | ∗ ... ∗ | ∗ ∗
− ⊕ii ∗ − − | − −
∗ | ∗ ... ∗ | ∗ ∗
− − − − − ⊕jj − −
∗ | ∗ ... ∗ | ∗ ∗

 . (8)

Remark Aij is a matrix obtained by deleting the i−th row
and j−th column and Aii,jj is a matrix obtained by deleting
i−th row, i−th column, j−th row and j−th column. It can be
seen that the right-hand side of (6) involves a scalar number

involving determinants of an (N−2)×(N−2) matrix and a
2×2 matrix. The 2×2 matrix on the right side of (6) consists
of the determinant of the (N − 1)× (N − 1) matrices.

Algorithm 4: An algorithm of Rezaifar’s method
input : Matrix A
output: detA

Step 1: Determine a size of A.
Step 2: Construct A11, A1n, An1, Ann and

A11,nn using (7) and (8).
Step 3: Calculation determinants of matrices in

Step 2 using Gaussian elimination method.
Step 4: Calculating determinant using (6).

E. PN’s method

The method to evaluate the determinant introduced in [10]
involves reducing the size of the n×n matrix, A, by dividing
the original matrix into four blocks

A =

[
P Q

R S

]
, (9)

where P,Q,R, and S are block matrices having sizes k ×
k, k × (n− k), (n− k)× k, (n− k)× (n− k), respectively.
The determinant of the matrix A is calculated by using the
formula of Schur [12]

det(A) = det(P ) det(S −RP−1Q), (10)

where the Gauss elimination method is utilized to compute
the determinants of submatrices on the right side (10).

Algorithm 5: An algorithm of PN’s method
input : Matrix A
output: detA

Step 1: Determine a size of A and a size of the
submatrices defined in (9).

Step 2: Create a loop for calculating a submatrix
S −RP−1Q.

Step 3: Applying Gaussian elimination method
to calculate det(S −RP−1Q) and det(P ).

Step 4: Calculating determinant using (10).

III. EVALUATION OF THE QUANTITY OF OPERATIONS
OVER THE MATRIX ELEMENTS

This section presents the methodology used to evaluate
the effectiveness of a determinant calculation method.

A. Floating-point operations per second (FLOPS)

A floating-point operation per second (FLOPS) serves
as a metric to measure the computer performance based on
the number of floating-point arithmetic calculations that the
processor can perform within a second. In essence, FLOPS
quantifies the number of operations required to execute a
command in a program. Fewer flops correspond to reduced
computation time. The approach for counting flops in math-
ematical operations involves considering basic arithmetic
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operations such as addition, subtraction, multiplication, and
division. Each of these operations is counted as one flops. For
instance, 2+3 is equivalent to 1 flops, while 4(5+2) accounts
for 2 flops. When it comes to matrix algebra, the flops count
is usually higher because a single matrix operation involves
multiple entries. More examples of FLOPS related to vector
and matrix operations can be found in [15].

B. Closed form of FLOPS.

In this section, the closed-form FLOPS is determined
for the methods described in the previous section using the
principle of counting operations.

Theorem 3.1: Let A be an n × n matrix. The number of
flops required for the Gaussian elimination method can be
defined by

FLOPSGau(n) =
1

6
(4n3 − 3n2 + 5n− 6). (11)

Proof: See [13].

Theorem 3.2: Let A be an n × n matrix. The number of
flops required for Chio’s condensation method can be defined
by

FLOPSChio(n) =
n−1∑
k=1

2(n− k)2 + (n− k). (12)

Proof: We prove this theorem using mathematical in-
duction on the size of a square matrix A. Without loss of
generality, let’s assume a11 ̸= 0. To begin, for a matrix
of size 2 × 2, the number of flops required to compute the
determinant is 3 flops. We can express this as:

FLOPSChio(2) =
1∑

k=1

2(2− k)2 + (2− k) = 3.

Next, Let n be a positive integer where n ≥ 2 and assume
that the number of flops required to compute the determinant
of an n×n matrix is denoted as FLOPSChio(n). For a square
matrix A of size (n+ 1)× (n+ 1), the process of reducing
A to B, which is of size n × n, using Chio’s condensation
method involves the following steps:

1) Scaling the entry a11 in the first row of A to 1, which
requires n flops.

2) Calculating the determinants of n2 submatrices of size
2× 2, which requires 2n2 flops.

Therefore, the total number of flops is 2n2+n. According to
the mathematical induction hypothesis, the number of flops
required to compute the determinant of B is FLOPSChio(n).
Consequently, the number of flops needed to compute the
determinant of A is

2n2 + n+
n−1∑
k=1

(
2(n− k)2 + (n− k)

)
. (13)

By (13), we have

2n2 + n+
n−1∑
k=1

(
2(n− k)2 + (n− k)

)
=

n∑
k=1

2(n+ 1− k)2 + (n+ 1− k)

= FLOPSChio(n+ 1).

By mathematical induction, we obtain the number of flops for
calculating the determinant by Chio’s condensation method
satisfies (12).

The total number of operations for calculating the deter-
minant using Chio’s condensation method, as presented in
Theorem 3.2, aligns with the results obtained by Habgood
in [16]. Furthermore, we can express the flops as follows:

FLOPSChio(n) =
n−1∑
k=1

2(n− k)2 + (n− k)

=
2n3

3
− n2

2
− n

6
. (14)

Theorem 3.3: Let A be an n × n matrix. The number of
flops required for Dodgson’s condensation method can be
defined by

FLOPSDodg(n) =
n−1∑
k=1

3(n− k)2 + (n− k − 1)2. (15)

Proof: The proof of this theorem may be followed by
the concept of the proof of Theorem 3.2 using mathematical
induction.

The number of floating-point operations (flops) as de-
scribed in Theorem 3.3 corresponds to the results presented
by Malaschonok in [17].

Theorem 3.4: Let A be an n × n matrix. The number of
flops required for the method in (6) is given by

FLOPSRezaifar(n) =
1

6

(
20n3 − 87n2 + 157n− 108

)
. (16)

Proof: First, we calculate the number of flops of
computing determinants of submatrices, A11, A1n, An1 and
Ann, by using Gaussian elimination method. From (11), the
determinant of each submatrix of size (n − 1) × (n − 1)
requires 2

3 (n − 1)3 − 1
2 (n − 1)2 + 5

6 (n − 1) − 1 flops and
the submatrix A11,nn of size (n − 2) × (n − 2) requires
2
3 (n − 2)3 − 1

2 (n − 2)2 + 5
6 (n − 2) − 1 flops. Moreover,

it requires 3 flops for calculating the determinant of 2 × 2
matrix and 1 flops for the product between the determinant
of 2 × 2 matrix and the scalar. Therefore, the total number
of flops for Rezaifar’s method satisfies (16).

Theorem 3.5: Let A be an n×n matrix. Suppose that the
matrix P in (9) of size k × k is invertible. The number of
flops required for the method in [10] is given by

FLOPSPN(n) =


1

6
α if k = 1

1

6
(−6 + 18k3 − 6k + α) if 2 ≤ k ≤ n.

(17)
where α = 5n− 3n2 + 4n3.

Proof: See in [10].

IV. MAIN RESULTS

In this section, we present and analyze a new approach to
evaluate the determinant of a square matrix. This method is
based on an adaptation of the PN’s method [10]. As shown in
Section 2, Chio’s condensation method requires a relatively
low number of floating-point operations to calculate the
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determinant. We also note that when the submatrix P , as
mentioned in Algorithm 5 of PN’s method, has a size
of 1 × 1, it requires the minimum number of operations
to compute the determinant using the PN’s method [10].
Building upon this observation, we have extended these
advantages by incorporating Chio’s condensation method for
determinant computation using the Schur formula instead
of the Gaussian elimination method. The algorithm for this
method is presented in Algorithm 6.

Algorithm 6: An algorithm of adapted PN’s method
input : Matrix A
output: detA

Step 1: Determine a size of A and a size of the
submatrices defined in (9) where a submatrix on the
first main diagonal, P , of size 1× 1.

Step 2: Create a loop for calculating a submatrix
S −RP−1Q .

Step 3: Applying Chio’s condesation method to
calculate det(S −RP−1Q) and det(P ).

Step 4: Calculating determinant using (10).

Theorem 4.1: Let A be an n×n matrix. Suppose that the
matrix P in (9) of size 1 × 1 is invertible. The number of
flops of the adapted method is given by

FLOPSAdaptedPN(n) =
1

6
(12− n− 3n2 + 4n3). (18)

Proof: In order to calculate the total number of flops in
this approach, we divide the process into the following steps:

• Step 1: As P is of size 1 × 1, it takes 1 flops to find
the inverse of P .

• Step 2: Calculating the matrix S −RP−1Q consists of
three steps:

– Calculation P−1Q requires n− 1 flops.
– Calculation RP−1Q requires (n− 1)2 flops.
– Calculation S −RP−1Q requires (n− 1)2 flops.

In this process, (n − 1)(2n − 1) flops are utilized
altogether.

• Step 3: Calculating the determinant S−RP−1Q of size
(n − 1) × (n − 1) by using the Chio’s condensation

method (14) requires
1

6
(4n3 − 15n2 + 17n− 6) flops.

• Step 4: Applying the formula of Schur (10) needs 1
flops to calculate the product.

Therefore, the total number of flops from the above-
mentioned steps satisfies (18).

V. EXPERIMENTS

In this section, we demonstrate the performance of a
method for calculating determinants. We begin by presenting
a numerical example to provide an initial assessment of
the method. To further evaluate our approach, we will use
both flops and execution time to compute determinants for
randomly chosen matrices varying in size from 3 × 3 to
15× 15. Additionally, we will illustrate the accuracy of our
proposed method.

A. Numerical example

In this section, we provide a numerical example to
demonstrate the usage of our method. Let’s assume that a
matrix A is given as:

A =


2 1 −1 0

1 2 3 4

2 1 −1 1

3 1 4 1

 .

The common method for finding the determinant can be
applied as follows: det(A) = 1 · 2 · 10 + (−1) · 1 · 42 +
1 · (−1) · (−2) + 1 · 0 · (−20) = −20.

The determinant of A was calculated using the adapted
PN’s method as follows:

• Step 1: We obtain the four submatrices P =
[
2
]
,

Q =
[
1 −1 0

]
, R =

12
3

 , and S =

2 3 4

1 −1 1

1 4 1

.

• Step 2: We have S −RP−1Q =

 3/2 7/2 4

0 0 1

−1/2 11/2 1

.

• Step 3: By Chio’s condensation method, we obtain

det(S−RP−1Q) =
1

3/2

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣3/2 7/2

0 0

∣∣∣∣∣
∣∣∣∣∣3/2 4

0 1

∣∣∣∣∣∣∣∣∣∣ 3/2 7/2

−1/2 11/2

∣∣∣∣∣
∣∣∣∣∣ 3/2 4

−1/2 1

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
=

2

3

∣∣∣∣∣ 0 3/2

10 7

∣∣∣∣∣ = −10.

• Step 4: det(A) = 2 · (−10) = −20.

Both methods provided the same value.

B. FLOPS comparison

In this section, a comparative analysis is performed to
assess the computational efficiency of different determinant
calculation methods. Initially, we investigated the number of
flops required for determining the determinant of matrices.

Table I shows that FLOPS for determinant calculation for
square matrices of size n× n where n ≤ 6 have a relatively
similar trend.

TABLE I: Flops of the methods to calculate the determinant
of an n× n matrix with n = 3 to n = 6

Methods
Flops of a matrix of size n× n

n = 3 n = 4 n = 5 n = 6

Gaussian 15 37 74 130
Chio 13 34 70 125
Dodgson 16 47 104 195
Rezaifar 20 68 167 337
PN with P is 1× 1 16 38 75 131
Adapted PN 15 36 72 127

However, for larger matrices, both our approach and Chio’s
condensation method demonstrated comparable and lower
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flops compared to other methods. This observation highlights
the efficiency advantages provided by our method and Chio’s
condensation method, which are especially noticeable with
larger matrices.

Next, the performance of a large-sized square matrix was
examined. As shown in Figure 1, Rezaifar’s method requires
the highest number of flops for determinant calculation. Nev-
ertheless, the flops decreased when we employed Dodgson’s
condensation method, PN’s method with a submatrix block
of size 1×1, the Gaussian elimination method, adapted PN’s
method, and Chio’s condensation method.

2 4 6 8 10 12 14 16

Size of matrix

101

102

103

104

F
lo

p
s
 (

L
o
g
-s

c
a
le

)

Chio

Dodgson

Gaussian Elimation

Rezaifar

PN with P is 1 x 1

Adapted PN

Fig. 1: Semi-logarithmic graph shows the relationship be-
tween flops of each method and sizes of matrices

C. Execution time comparison

Time complexity analysis offers an estimation of how the
computational time for determinant calculation scales with
the matrix size. Various determinant calculation methods
exhibited different time complexities. This analysis enables
us to discern the efficiency levels among these methods.

In this section, we utilize the software detailed in Table II
to compare the execution time of determinant computation,
and Table III presents the computer hardware used for this
simulation.

TABLE II: Computer software used for evaluating execution
time

OS Windows 10 Education Version 21H1 OS
build 19043.1706

Software MATLAB, Version 9.3.0.713579 (R2017b),
64- bit (win64)

In Table IV and Figure 2, we present a comprehensive
overview of the computational costs associated with our
determinant calculation approach. Through extensive com-
putational testing, we systematically compare the perfor-
mance of each algorithm, including the Gaussian elimination
method, Chio’s condensation method, Dodgson’s conden-
sation method, Rezaifar’s method, PN’s method with P is
1 × 1 (PN1) , and the Adapted PN’s method (APN). These
comparisons are performed on randomly generated square

TABLE III: Computer hardware used to evaluating the
determinant

Name HP

Model Prodesk 400 G7 Microtower PC

CPU Intel(R) Core(TM) i5-10600 CPU @
3.30GHz 3.31 GHz

RAM 8.00 GB

HDD SSD 512GB M.2 2280 PCIe NVMe

matrices ranging in sizes from 3×3 to 15×15. The elapsed
time taken to calculate the determinant for each method is
measured using Matlab.

TABLE IV: Execution time using MATLAB functions to
calculate determinants of a square matrix of size from 3× 3
to 15× 15 presented in seconds.

Execution time of determinant calculation (seconds)

Size Gaussian Chio Dodgson Rezaifar PN1 APN

3× 3 0.001417 0.000964 0.002823 0.002949 0.001244 0.001071

4× 4 0.001894 0.001089 0.004345 0.003514 0.001306 0.001053

5× 5 0.002008 0.001277 0.004996 0.005811 0.001628 0.001239

6× 6 0.002228 0.001956 0.005302 0.007043 0.002220 0.001978

7× 7 0.002324 0.002110 0.006105 0.007835 0.002202 0.002353

8× 8 0.002223 0.002098 0.007154 0.008337 0.002239 0.002210

9× 9 0.002293 0.002566 0.007130 0.008756 0.002232 0.002288

10×10 0.002633 0.002155 0.007977 0.008916 0.002693 0.002616

11×11 0.002905 0.002223 0.007988 0.009079 0.002796 0.002529

12×12 0.002651 0.002285 0.008471 0.009292 0.002715 0.002596

13×13 0.002745 0.002302 0.008857 0.009451 0.002766 0.002630

14×14 0.002482 0.002464 0.008089 0.009162 0.002588 0.002437

15×15 0.002589 0.002502 0.008115 0.009240 0.002655 0.002512

In this comparison, it is evident that all methods ex-
hibit a consistent trend where the execution time for all
methods is directly linked to the matrix size. Specifically,
Chio’s method, Gaussian method, PN1 method, and APN
method show similar execution times. On the other hand,
Dodgson and Rezaifar methods take longer compared to
the previously mentioned ones. Given that each operation in
determinant calculation demands computation time, methods
with a higher number of operations naturally require more
computation time. This observation is consistent with the
results obtained from the number of flops in Section V(B),
providing additional confirmation.

D. Methods’ accuracy

In this section, we will evaluate and compare the accuracy
of each method. This evaluation aims to confirm the relia-
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Fig. 2: Execution time using MATLAB function

bility and precision of our approach, ensuring its consistent
performance across a range of matrices.

We conducted accuracy tests to calculate the determinants
of randomly generated square matrices ranging in sizes from
3 × 3 to 15 × 15. Each determinant method was applied to
compute the determinant of these matrices, and the results
were compared with the determinant values obtained from
the MATLAB det() function. Specifically, we evaluated
the accuracy of determining the determinant of matrix A by
measuring the relative error with the formula:

Relative Error =
∣∣∣∣1− NumDet

det(A)

∣∣∣∣, (19)

where NumDet signifies the determinant value obtained
from each method, and det(A) denotes the determinant value
acquired through the det() function.

TABLE V: Assessment of determinant calculation accuracy
for square matrices of sizes ranging from 3× 3 to 7× 7

Relative error (×10−16)

Size Gaussian Chio Dodgson Rezaifar PN1 APN

3× 3 1.1102 0 3.3307 4.4409 2.2204 1.1102
4× 4 2.2204 2.2204 1.1102 2.2204 0 2.2204
5× 5 3.3307 5.5511 1.7764 1.7764 0 2.2204
6× 6 48.849 102.14 22.204 442.98 24.424 11.102
7× 7 21.094 26.645 6.6613 328.63 5.5511 17.764

From Table V and Figure 3, it is evident that the discrep-
ancies in determining the determinant using each method
exhibit a consistent trend and are very small, on the order
of 10−16 to 10−10, which is close to zero. However, it’s
important to note that these errors do not impact the size
of the matrices but can influence the precision of floating-
point calculations and the performance of the computer.
This implies that our proposed method provides accuracy
comparable to conventional approaches.

VI. DISCUSSION AND CONCLUSION

A. Efficiency of the method

1. Asymptotic analysis. In comparing the efficiency of
determinant calculation methods with the general approach,

Fig. 3: Semi-logarithmic plot of the methods’ accuracy

we utilized asymptotic analysis to derive the explicit FLOPS
formula for each method. We can quantify the operations
involved in determining determinants of any square matri-
ces using the explicit FLOPS formula. The advantage of
asymptotic analysis lies in its ability to clarify the limiting
behavior of determinant calculation methods as the matrix
size increases.

While the flops for Gaussian, Chio, PN1, and APN
methods are O(n3), the analysis from the results in Section
III and Section IV revealed that our APN method requires
fewer flops compared to PN1 and Gaussian. Specifically,
the APN method incurs significantly fewer flops as the
matrix size increases. However, when compared to the Chio
method, our APN method adds only an additional 2 flops,
regardless of the matrix size.

2. Elapsed time computation. As outlined in the asymptotic
analysis section, our method demands fewer flops than the
PN1 and Gaussian methods, particularly for larger matrix
sizes. This results in a decreased computation time for
determinant calculations. However, the method’s time
complexity aligns with the Chio method, with only
a marginal 2-flop difference which is not considered
significant in computation time.

3. Accuracy. Our method also yields determinants’
results consistent with the general method for determinant
calculation. The experimental results presented in Section
IV confirm the accuracy and correctness of the proposed
method.

4. Simplicity. The method involves calculating determinants
by employing the reduced PN1 method in conjunction with
Chio’s technique. This can be manually computed with rela-
tive ease as it involves matrix size reduction and determinant
calculation of submatrices using 2 × 2 determinants. This
stands as another viable option for computing matrices of
larger sizes beyond the traditional method.

B. Conclusion and future works

This paper introduces a recursive procedure for determi-
nant calculation, utilizing Schur’s formula and a condensed
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technique on submatrices. We derive and establish the closed-
form expression for the flops of the adapted method, compar-
ing its performance with other existing methods in terms of
flops, execution time, and accuracy. The findings demonstrate
consistent results across all methods, with larger matrices
demanding more flops and execution time. Notably, our
approach and Chio’s condensation method exhibit improved
performance for larger matrices, despite the O(n3) complex-
ity associated with calculating determinants of n×n matrices.

It’s worth noting that our method, based on Schur’s
formula and Chio’s condensation, simplifies determinant
calculations using 2 × 2 matrices without compromising
correctness compared to other methods. However, the entries
of the matrix influence determinant computation, particularly
when encountering zero elements or a zero determinant dur-
ing Chio’s condensation method. In such cases, rearranging
the matrix using elementary row operations slightly affects
execution time but has no impact on flops.

In future research, we could consider the possibility of di-
viding the matrix into more than four submatrices to achieve
a greater reduction in the size of the original matrix. This
would allow us to apply the APN method for determinant
calculation on smaller matrices. Furthermore, we can expand
our methodology to develop a technique for determining
determinants for matrices of any size, employing matrix
partitioning or matrix decomposition methods.
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