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Abstract—In this paper, by using the structure properties of
algebras and the technique of matrix operation, we investigate
the structure of local Lie triple derivations on triangular
algebras. Under some mild conditions, we prove that each local
Lie triple derivation of triangular algebras can be expressed as
the sum of a derivation and a linear map from the triangular
algebra to its center that vanishes at Lie triple products. Finally,
we apply the main result to the problem of characterizing local
Lie triple derivations on an upper triangular matrix algebra.

Index Terms—Triangular algebra, Derivation, Local Lie
triple derivation.

I. INTRODUCTION

LET U be an unital algebra over a commutative ring R,
Z(U) = {u ∈ U|uv = vu,∀v ∈ U} be the center of

U . Given u, v, w ∈ U , [u, v] = uv − vu indicates the Lie
product of u and v; the notation [[u, v], w] represents the Lie
triple product of u, v and w. Let d : U → U is an R-linear
map. d is called a derivation of U if

d(uv) = d(u)v + ud(v),∀u, v ∈ U .

d is called a Lie derivation of U if

d([u, v]) = [d(u), v] + [u, d(v)],∀u, v ∈ U .

d is called a Lie triple derivation of U if ∀u, v ∈ U ,

d([[u, v], w]) = [[d(u), v], w] + [[u, d(v)], w] + [[u, v], d(w)].

The derivation can be understood as an algebraic extension
of differentiation, and it holds significance in the analysis of
rings or algebraic structures. The renowned Posner’s theo-
rem [1] effectively illustrates the strong correlation between
derivations on prime rings and the commutativity of those
rings. Subsequently, many scholars studied the structures
of derivations on different algebras or rings [2–5,17]. The
investigation of local derivations originated from the ground-
breaking research conducted by R. Kadison, D. Larson and
A. Sourour [6,7]. In [6], Kadison initially introduced the
concept of local derivation. Recall that an R-linear mapping
d of U is called a local derivation if, for any u ∈ U ,
there exists a derivation du of U that depends on u satis-
fying d(u) = du(u). He proved that each local continuous
derivation from a von Neumann algebra to its dual bimodule
can be categorized as a derivation. In a subsequent study,
Larson and Sourour [7] conducted an examination of lo-
cal derivations on standard operator algebras B(X). Their
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findings demonstrated that each local derivation of B(X)
is a derivation. Johnson [8] considered this problem in C∗-
algebra and obtained the same result. Recently, Brešar [9]
extended this conclusion to the algebra generated by all their
idempotents.

Inspired by the study of local derivation, many researchers
have studied local Lie derivation. Recall that an R-linear
mapping d of U is called a local Lie derivation if, for any
u ∈ U , there exists a Lie derivation du of U that depends on u
satisfying d(u) = du(u). In [10], Chen et al. proved that each
local Lie derivation of operator algebras on a Banach space
may be classified as a Lie derivation. After that, the similar
conclusion has been obtained for nest algebras on Hilbert
spaces[11], for factor von Neumann algebras [12] and for one
particular kind of triangular algebras [13]. Liu studied local
Lie derivations on generalized matrix algebras in [14] and
shown that every local Lie derivation of generalized matrix
algebras is standard when certain conditions are met. This
means that each local Lie derivation takes the form d + τ ,
in which d is a derivation, τ is the central-valued mapping.

More generally, we say that d is a local Lie triple deriva-
tion of U if, for any u ∈ U , there exists a Lie triple derivation
du of U that depends on u satisfying d(u) = du(u). Xiao
and Wei [15] demonstrated that each Lie triple derivation
on triangular algebras is standard. It is natural to question
whether or not each local Lie triple derivation on triangular
algebras is standard. Based on these results, we investigate
local Lie triple derivations in triangular algebra and demon-
strate that they can be expressed in a standard form under
certain conditions.

II. PRELIMINARIES

This section will introduce the fundamental concepts and
lemmas used in the following sections.

Assume that A and B be unital algebras over a commuta-
tive ring R, M be a nonzero (A,B)-bimodule. Under matrix-
like addition and multiplication, the set

T =

{(
a m
0 b

) ∣∣∣∣∣a ∈ A,m ∈ M, b ∈ B

}
forms an algebra on R . This is referred to triangular
algebra. This algebra was first introduced by Chueung [16].
Furthermore, we assume that (A,B)-bimodule M is faithful,
that is, if aM = {0} implies a = 0 for every a ∈ A and if
Mb = {0} implies b = 0 for every b ∈ B.

Define the projections πA : T → A and πB : T → B by

πA

(
a m
0 b

)
= a, πB

(
a m
0 b

)
= b.

In the last section of the paper, the next lemma will be
used.
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Lemma 2.1.[15] Let T be a triangular algebra. Then

Z(T ) =

{(
a 0
0 b

) ∣∣∣∣∣am = mb,∀m ∈ M

}
.

Lemma 2.2.[14] Let T be a 2-torsion-free triangular algebra
(i.e. ∀x ∈ T , 2x = 0 implies x = 0). Suppose that

πA(Z(T )) = Z(A), πB(Z(T )) = Z(B) (C1)

and
Z(A) = {a|[[a, x], y] = 0, ∀x, y ∈ A}, or

Z(B) = {b|[[b, x], y] = 0,∀x, y ∈ B}
(C2)

hold. If ∆ is a Lie triple derivation of T , then ∆ is of
standard form. More precisely, there exists a derivation d
of T and a linear map τ : T → Z(T ) that vanishes at all
Lie triple products of T such that ∆ = d+ τ .

Throughout this article, J(A) be the subalgebra of A,
which is generated by all idempotents of A, 1A be the iden-

tity of A and 1B be the identity of B. Set p1 =

(
1A 0
0 0

)
,

p2 =

(
0 0
0 1B

)
, then I = p1 + p2 is the identity of T .

Set T11 = p1T p1, T12 = p1T p2 and T22 = p2T p2. Then
we can obtain T = T11+T12+T22, where T11 is a subalgebra
of T isomorphic to A, T22 is a subalgebra of T isomorphic to
B and T12 is a (T11, T22)-bimodule isomorphic to the (A,B)-
bimodule M. We can also see that πA(Z(T )) is isomorphic
to Z(T11) and πB(Z(T )) is isomorphic to Z(T22).

III. MAIN RESULTS

Theorem 3.1. Let T be a 2-torsion-free triangular algebra,
∆ be a local Lie triple derivation of T . Assume (C1) and
(C2) hold, further suppose

A = J(A) and B = J(B) (C3)

holds, then ∆ = d+ h, in which d : T → T is a derivation,
h : T → Z(T ) is a linear map that vanishes at Lie triple
products of T .

We will use a series of lemmas to prove Theorem 3.1.
Throughout the discussion, set ∆ be a local Lie triple
derivation of T . For every x ∈ T , the notation ∆x represents
a Lie triple derivation of T satisfying ∆(x) = ∆x(x). To
enhance convenience, we’ll use the notation xij to represent
the element in the set Tij which corresponds to an element
in A, B, or M.
Lemma 3.2. p1∆(p1)p1 + p2∆(p1)p2 ∈ Z(T ).
Proof. For every x12 ∈ T , there exists a Lie triple derivation
∆p1 of T satisfying

∆p1
(x12) = ∆p1

([[x12, p1], p1])

= [[∆p1
(x12), p1], p1] + [[x12,∆(p1)], p1]

+ [[x12, p1],∆(p1)]

= p1∆p1
(x12)p2

− 2(x12p2∆(p1)p2 − p1∆(p1)p1x12).

Multiply x on the left side of the equality and y on the right
side, we have

p1∆(p1)p1x12 = x12p2∆(p1)p2.

By Lemma 2.1, p1∆(p1)p1 + p2∆(p1)p2 ∈ Z(T ). □
Define the linear map δ : T → T as δ(x) = ∆(x) −

[x, p1∆(p1)p2]. It’s not difficult to confirm that δ is a local
Lie triple derivation and δ(p1) = p1∆(p1)p1 + p2∆(p1)p2.
According to Lemma 3.2, we obtain δ(p1) ∈ Z(T ).
Lemma 3.3. δ(x12) ∈ T12 for any x12 ∈ T12.
Proof. For every x12 ∈ T12, we have

δ(x12) = δx12(x12) = δx12([[x12, p1], p1])

= [[δ(x12), p1], p1] + [[x12, δx12(p1)], p1]

+ [[x12, p1], δx12(p1)]

= p1δ(x12)p2

− 2(x12p2δx12(p1)p2 − p1δx12(p1)p1x12).

Multiply x on the left side of the equality and y on the right
side, we get

2(x12p2δx12
(p1)p2 − p1δx12

(p1)p1x12) = 0.

Thus δ(x12) = p1δ(x12)p2 ∈ T12. □
Lemma 3.4. Assume that e and f be idempotents of T . Let
e⊥ denotes I − e, f⊥ denotes I − f . Then for any x ∈ T ,
there exist linear mappings τ1, τ2, τ3, τ4 : T → Z(T ) that
vanishe at Lie triple products such that

δ(exf) = δ(ex)f − eδ(x)f + eδ(xf) + e⊥τ1(exf)f
⊥

− eτ2(e
⊥xf)f⊥ + eτ3(e

⊥xf⊥)f − e⊥τ4(exf
⊥)f.

Proof. For every idempotents e, f ∈ T and x ∈ T , by
Lemma 2.2, there exist derivations di : T → T (i =
1, 2, 3, 4) and linear mappings τi : T → Z(T )(i = 1, 2, 3, 4)
that vanishe at Lie triple products such that

δ(exf) = δexf (exf) = d1(exf) + τ1(exf). (1)

δ(e⊥xf) = δe⊥xf (e
⊥xf) = d2(e

⊥xf) + τ2(e
⊥xf). (2)

δ(e⊥xf⊥) = δe⊥xf⊥(e⊥xf⊥)

= d3(e
⊥xf⊥) + τ3(e

⊥xf⊥). (3)

δ(exf⊥) = δexf⊥(exf⊥) = d4(exf
⊥) + τ4(exf

⊥). (4)

Since d1(exf) = d1(e)xf + ed1(x)f + exd1(f) and the
fact e⊥e = 0, ff⊥ = 0, then e⊥d1(exf)f

⊥ = 0. By the
equality (1),we have

e⊥δ(exf)f⊥ = e⊥τ1(exf)f
⊥.

Similarly, from the equality (2)-(4), we get

eδ(e⊥xf)f⊥ = eτ2(e
⊥xf)f⊥,

eδ(e⊥xf⊥)f = eτ3(e
⊥xf⊥)f,

e⊥δ(exf⊥)f = e⊥τ4(exf
⊥)f,

then

e⊥δ(exf) = e⊥δ(exf)f + e⊥δ(exf)f⊥

= e⊥δ(ex)f − e⊥δ(exf⊥)f + e⊥δ(exf)f⊥

= e⊥δ(ex)f − e⊥τ4(exf
⊥)f + e⊥τ1(exf)f

⊥,

and

eδ(e⊥xf) = eδ(e⊥xf)f + eδ(e⊥xf)f⊥

= eδ(e⊥x)f − eδ(e⊥xf⊥)f + eδ(e⊥xf)f⊥

= eδ(e⊥x)f − eτ3(e
⊥xf⊥)f + eτ2(e

⊥xf)f⊥

= eδ(x)f − eδ(ex)f

− eτ3(e
⊥xf⊥)f + eτ2(e

⊥xf)f⊥.
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From e⊥δ(ex)f + eδ(ex)f = δ(ex)f , we have

δ(exf) = e⊥δ(exf) + eδ(exf)

= e⊥δ(exf) + eδ(xf)− eδ(e⊥xf)

= δ(ex)f − eδ(x)f + eδ(xf) + e⊥τ1(exf)f
⊥

− eτ2(e
⊥xf)f⊥ + eτ3(e

⊥xf⊥)f − e⊥τ4(exf
⊥)f.

□
Lemma 3.5. For every x11 ∈ T11, x22 ∈ T22, we get

(1)δ(x11) ∈ T11 ⊕ T22 and p2δ(x11)p2 ∈ Z(T22);
(2)δ(x22) ∈ T11 ⊕ T22 and p1δ(x22)p1 ∈ Z(T11).

Proof. Let x11 ∈ T11 and e1 be any idempotent of T11.
Putting e = e1, x = x11 and f = p1 in Lemma 3.4, from the
facts exf⊥ = e1x11p2 = 0 and e⊥xf⊥ = e⊥1 x11p2 = 0, we
have τ3(exf

⊥) = 0, τ4(e⊥xf⊥) = 0. Then

δ(e1x11) = δ(e1x11)p1 − e1δ(x11)p1 + e1δ(x11)

+ e⊥1 τ1(e1x11)p2 − e1τ2(e
⊥
1 x11)p2

= δ(e1x11)p1 + e1δ(x11)p2 + τ1(e1x11)p2,

where we have used the facts e1τ1(e1x11)p2 = 0 and
e1τ2(e

⊥
1 x11)p2 = 0 in the second equality.

This implies that

p1δ(e1x11)p2 = e1δ(x11)p2 (5)

and

p2δ(e1x11)p2 = p2τ1(e1x11)p2 ∈ p2Z(T )p2 = Z(T22).

In particular,

p2δ(x11)p2 = p2τ1(x11)p2 ∈ Z(T22). (6)

By the equality (5) and the fact p1δ(p1)p2 = 0, we have

p1δ(e1e2 · · · en)p2 = p1δ(e1e2 · · · enp1)p2
= e1δ(e2 · · · enp1)p2
= e1e2 · · · en · p1δ(p1)p2
= 0

for any idempotents e1, e2, · · · , en ∈ T11.
From the fact A = J(A), we can represent x11 as a linear

combination of idempotents. Thus, p1δ(x11)p2 = 0 for all
x11 ∈ T11. So

δ(x11) ∈ T11 ⊕ T22 and p2δ(x11)p2 ∈ Z(T22).

With the similar argument, we can prove that δ(x22) ∈
T11 ⊕ T22 and

p1δ(x22)p1 = p1τ2(x22)p1 ∈ Z(T11) (7)

for all x22 ∈ T22. □
For any x11 ∈ T11 and x22 ∈ T22, let us define

h1(x11) = p2δ(x11)p2 and h2(x22) = p2δ(x22)p2. It follows
from (6) that h1 : T11 → Z(T22) is a linear mapping such
that h1([[a11, b11], c11]) = 0 for any a11, b11, c11 ∈ T11. It
follows from (7) that h2 : T22 → Z(T11) is a linear mapping
such that h2([[a22, b22], c22]) = 0 for any a22, b22, c22 ∈ T22.
For any x = x11 + x12 + x22 ∈ T , by the hypothesis (2) of
Theorem 3.1 and Lemma 2.1, we can define h : T → T by
h(x) = η−1(h1(x11)) + h1(x11) + h2(x22) + η(h2(x22)). It
can be easily proved that h(x) ∈ Z(T ) and h([[x, y], z]) = 0
for any x, y, z ∈ T .

Define a linear map β : T → T by β(x) = δ(x) − h(x)

for any x ∈ T . As a result of Lemmas 3.3 and 3.5, we have
Lemma 3.6. For any x11 ∈ T11, x12 ∈ T12, x22 ∈ T22, we
have

(1) β(p1) = 0;
(2) β(x11) = δ(x11)− h(x11) ∈ T11;
(3) β(x12) = δ(x12) ∈ T12;
(4) β(x22) = δ(x22)− h(x22) ∈ T22.

Lemma 3.7. For every x11 ∈ T11, x12 ∈ T12, x22 ∈ T22, we
get

(1) β(x11x12) = β(x11)x12 + x11β(x12);
(2) β(x12x22) = β(x12)x22 + x12β(x22).

Proof. Let x11 ∈ T11, x12 ∈ T12 and e1 ∈ T11 be any
idempotent of T11. Take e = e1, x = x11 and f = p2 + x12

in Lemma 3.4.
For any y12 ∈ T12, since y12 can be written as Lie triple

product y12 = [[y12, p1], p1], thus we have

τi(y12) = 0, i = 1, 2, 3, 4. (8)

From the facts exf ∈ T12 and e⊥xf ∈ T12, we have
τ1(exf) = 0, τ2(e

⊥xf) = 0, τ3(e
⊥xf⊥) = τ3(e

⊥x),
τ4(exf

⊥) = τ4(ex).
Using Lemma 3.3 and 3.5 into Lemma 3.4, one can deduce

δ(e1x11x12)

= δ(e1x11(p2 + x12))

= δ(e1x11)(p2 + x12)− e1δ(x11)x12 + e1δ(x11x12)

+ e1τ3(x11 − e1x11)(p2 + x12)− e⊥1 τ4(e1x11)(p2 + x12)

= δ(e1x11)p2 + δ(e1x11)x12 − e1δ(x11)x12

+ e1δ(x11x12) + e1τ3(x11 − e1x11)x12

− τ4(e1x11)p2 − τ4(e1x11)x12 + e1τ4(e1x11)x12.

This implies that

p2δ(e1x11)p2 = p2τ4(e1x11)p2 (9)

and

δ(e1x11x12) = δ(e1x11)x12 − e1δ(x11)x12

+ e1δ(x11x12) + e1τ3(x11 − e1x11)x12

− τ4(e1x11)x12 + e1τ4(e1x11)x12. (10)

From (3), δ(e⊥xf⊥) = d3(e
⊥xf⊥)+τ3(e

⊥xf⊥). By (8),
we can obtain

δ(x11 − e1x11 − x11x12 + e1x11x12)

= d3(x11 − e1x11 − x11x12 + e1x11x12)

+ τ3(x11 − e1x11).

According to [11, Lemma 5], we get

d3(T11) ⊆ T11 ⊕ T12, d3(T12) ⊆ T12.

Since δ(T12) ⊆ T12, we have

p2δ(x11 − e1x11)p2 = p2τ3(x11 − e1x11)p2.

Then by Lemma 3.6, we have

τ3(x11 − e1x11)x12

= x12τ3(x11 − e1x11) = x12δ(x11 − e1x11)

= x12(β(x11 − e1x11) + h(x11 − e1x11))

= x12h(x11 − e1x11)

= x12h(x11)− x12h(e1x11)

= h(x11)x12 − h(e1x11)x12. (11)
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From (9) and Lemma 3.6, we have

τ4(e1x11)x12 = x12τ4(e1x11)

= x12δ(e1x11)

= x12(β(e1x11) + h(e1x11))

= x12h(e1x11)

= h(e1x11)x12. (12)

Using (11) and (12) into (10), we can obtain

β(e1x11x12) = δ(e1x11x12)

= δ(e1x11)x12 − e1δ(x11)x12 + e1δ(x11x12)

+ e1h(x11)x12 − h(e1x11)x12

= β(e1x11)x12 − e1β(x11)x12 + e1β(x11x12). (13)

In particular, putting x11 = p1, we have

β(e1x12) = β(e1)x12 + e1β(x12).

By induction based on (13), we can prove that

β(e1e2 · · · enx12) = β(e1e2 · · · en)x12 + e1e2 · · · enβ(x12)

for any idempotents e1, e2, · · · , en ∈ T11 and x12 ∈ T12.
From A = J(A), we obtain

β(x11x12) = β(x11)x12 + x11β(x12)

for all x11 ∈ T11, x12 ∈ T12.
With the similar argument, we can show that

β(x12x22) = β(x12)x22 + x12β(x22)

for all x12 ∈ T12, x22 ∈ T22. □
Lemma 3.8. β(x11y11) = β(x11)y11 + x11β(y11) for any
x11, y11 ∈ T11; β(x22y22) = β(x22)y22 + x22β(y22) for any
x22, y22 ∈ T22.
Proof. For any x11, y11 ∈ T11 and x12 ∈ T12, by Lemma
3.7, we have

β(x11y11x12) = β((x11y11)x12)

= β(x11y11)x12 + x11y11β(x12). (14)

On the other hand,

β(x11y11x12)

= β(x11(y11x12))

= β(x11)y11x12 + x11β(y11x12)

= β(x11)y11x12 + x11(β(y11)x12 + y11β(x12)). (15)

Combining (14) with (15), we take

β(x11y11)x12 = (β(x11)y11 + x11β(y11))x12

for any x12 ∈ T12. Since T12 is a (T11, T22)-bimodule, we get
β(x11y11) = β(x11)y11 + x11β(y11) for all x11, y11 ∈ T11.

With the similar argument, by considering β(x12x22y22),
we can prove that β(x22y22) = β(x22)y22 + x22β(y22) for
all x22, y22 ∈ T22. □
Lemma 3.9. β is a derivation of T .
Proof. For any x = x11 + x12 + x22 ∈ T , y = y11 + y12 +
y22 ∈ T . By Lemmas 3.6-3.8, we have

β(xy) = β(x11y11 + x11y12 + x12y22 + x22y22)

= β(x11)y11 + x11β(y11) + β(x11)y12 + x11β(y12)

+ β(x12)y22 + x12β(y22) + β(x22)y22 + x22β(y22)

= β(x)y + xβ(y),

then β is a derivation of T . □
Proof of Theorem 3.1. Set d(x) = [x, p1∆(p1)p2] + β(x)
for any x ∈ T . Then based on the definitions of ∆ and δ,
we obtain

∆(x) = [x, p1∆(p1)p2] + β(x) + h(x) = d(x) + h(x)

holds for all x ∈ T . From Lemma 3.9, one can show that d
is a derivation of T . This ends the proof. □

Theorem 3.1 is then used to investigate upper triangular
matrix algebra.
Corollary 3.10. Assume that R be a 2-torsion free commuta-
tive ring with identity, Tn(R)(n ≥ 4) be the upper triangular
matrix algebra over R. If ∆ is a local Lie triple derivation
of Tn(R), then ∆ = d + h, in which d is a derivation of
Tn(R), h : T → Z(R) · In is a linear map that vanishes at
Lie triple products, where In is the unit of Tn(R).
Proof. Given n ≥ 4, the expression Tn(R) may also be

written as a triangular algebra
(
Tl(R) Ml×(n−l)(R)
0 Tn−l(R)

)
for

2 ≤ l < n − 1. Tl(R) and Tn−l(R) are generated by their
idempotents as shown in example (iii) of [7]. As a result,
condition (C1) is met. Since Z(Tk(R)) = Z(R) · Ik for any
positive integer k, the condition (C2) has been met. Tl(R)
satisfies the condition (C3), according to the finding of [15].
By using Theorem 3.1, we get the conclusion of Corollary
3.10. □

IV. CONCLUSION

This study aims to examine the characteristics of local Lie
triple derivations within a category of triangular algebras.
Under certain conditions, it is demonstrated that each local
Lie triple derivation of a triangular algebra may be written as
the combination of a derivation and a linear central-valued
map that vanishes for Lie triple products. As an application of
the main results, we describe the structure of upper triangular
matrix algebra.
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