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Abstract—This paper proposes an algorithm for solving
multiobjective optimization problems using the attack technique
of the Grey Wolf. It is a metaheuristic method called a
Multiobjective Optimizer based on Grey Wolf Attack Technique
(MOGWAT). In fact, it is inspired by the modified Hybrid Grey
Wolf Optimizer and Genetic Algorithm (HmGWOGA), which is
a single objective optimization algorithm specially designed for
positive objective functions. The MOGWAT method combines
the multiple objective functions of the initial problem into a sin-
gle objective function, and then penalizes constraint functions
to get an unconstrained single-objective optimization. The use
of an effective single-objective optimizer allows reaching the
optimal solutions. These solutions are also the Pareto optimal
solutions of the initial problem according to some parameters.
Through some theorems, we have established the theoretical
foundation and performance of our method. Furthermore, in
order to highlight the numerical performance of the method, we
have tackled three groups of problems: 16 test problems from
the Zitzler-Deb-Thiele benchmarks, 2 instances from the CEC
2009 benchmarks, and 2 real-world problems from literature.
Our numerical results have been compared to the ones obtained
with the NSGA-II method. This comparison was made using
some computed performance parameters. The outcomes of
the comparison have enabled us to prove the effectiveness
and efficiency of our new approach in terms of speed and
convergence.

Index Terms—Multiobjective optimization; Metaheuristic
methods; Pareto Optimality; Grey Wolf optimizer

I. INTRODUCTION

THE multiobjective optimization concept is extensively
employed for the modeling and resolution of real-life

problems. To solve a real-life problem using mathematical
tools, two important steps must be taken: the mathematical
formulation and the finding of an adapted method. Therefore,
it is essential to master the resolution of multiobjective
optimization problems. It should be noted that, there
are no universal methods for these kinds of problems
in literature. In these mathematical programs, several
conflicting objectives are considered simultaneously, and
this situation imposes that there is no optimal solution. The
resolution of these problems leads to a set of solutions
called Pareto optimal solutions [32]. In practice, the existing
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methods are predominanly methods for approximating
solutions [15], [16], [25], and are evaluated in terms of
performance on computational complexity, convergence,
and distribution. Nowadays, it is almost impossible to find
a method in the literature that can solve all multiobjective
optimization problems efficiently. This is the reason why
many researchers are always working on this topic.

The majority of existing methods for the solving of
multiobjective optimization attempt to convert the initial
problem into a single objective optimization problem
through an aggregation function. The literature contains
many aggregation functions [29], but in this work, we
have chosen the ϵ-constraint approach. It is one of the
best transformations that preserves the Pareto optimality of
solutions. It consists of selecting only one objective function
to optimize and converting the others into constraints. After
that, the Lagrangian penalty function has been used to
obtain an unconstrained single objective function. A good
optimizer method is required to achieve optimal solutions at
this time.

Many works in the literature propose methods for
solving single objective optimization problems. We are
especially interested in works that focus on the Grey
Wolf Optimizer (GWO). In 2019, Sawadogo et al. [17]
developed a modified Hybrid Grey Wolf optimizer and
genetic algorithm (HmGWOGA) for global optimization of
positive functions; Fu et al. [20] focused on dynamically
dimension Search Grey Wolf Optimizer Based on Positional
Interaction Information; Wen et al. [18] aimed to develop
on an efficient and robust Grey Wolf Optimizer algorithm
for large-scale numerical optimization; Muhammed et al.
[19] produced some results on Grey Wolf Optimizer-Based
Tuning of a hybrid LQR-PID controller for foot trajectory
control of a quadruped robot. In 2020, Shubham et al. [14]
presented their works on an enhanced leadership-inspired
Grey Wolf Optimizer for the global optimization problem; In
2021, Farshad et al. [10] have focused on an enhanced Grey
Wolf Optimizer with a velocity-aided global aided global
search mechanism; Wei et al. [9] are about path planning of
UAV based on Improved adaptive Grey Wolf Optimization
algorithm; Amir et al. [13] provided improving algorithms
of the Grey Wolf Optimizer to solve global optimization
problem; In 2022, Xinyang et al. [6] are focused on
dimensional learning strategy-based Grey Wold optimizer
for solving the global optimization problem; Safora et al.
[5] on a condition-based Grey Wolf Optimizer algorithm
for the global optimization problems; Eslan et al. [7] are
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focused on hybrid Grey Wolf Optimization-based Gaussian
process regression model for simulating deterioration
behavior of highway tunnel components; Zeynab et al. [4]
are focused on a new enhanced hybrid Grey Wolf Optimizer
combined with elephant herding optimization algorithm for
engineering optimization.

In all previous works, GWO was used to solve single
objective optimization problems. According to Sawadogo
et al. [17], the HmGWOGO method was built for positive
functions without constraints, and some excellent optimal
solutions were found. The challenge was to extend it in
order to solve optimization problems with several objectives.

This work proposes a metaheuristic method based
on Grey Wolf attack technique for catching prey to
solve a multiobjective optimization problem. We call it
Multiobjective Optimizer based on Grey Wolf Attack
Technique (MOGWAT). MOGWAT is an extension of the
HmGWOGA algorithm, which was originally designed
to solve single-objective optimization problems. It arises
from a combination of the ϵ-constraint approach and
the HmGWOGA algorithm. In order to demonstrate the
optimality of obtained solutions and the good complexity of
our algorithm, we have proposed three theorems and some
numerical results. We have computed the Pareto optimal
solutions of twenty test problems taken from the literature
[16], [31], [32], [34], [35]. This allows us to determine
the computational time of our method. Moreover, we have
computed some performance parameters about convergence
and distribution for the obtained solutions. Based on these
results, we have conducted a comparative study with
the NSGA-II method. According to this comparison, our
proposed method can be presented as the best choice for
solving multiobjective optimization problems when decision
makers need a fast and efficient convergence method.

This paper is organized around sections. After Section
I denoted to the introdactory paragraph, Section II, will
describe materials and methods. Section III, will provide
details on the MOGWAT method. Section IV-C, will present
results and discussion of this work. The conclusion of the
study will be drown in Section V.

II. MATERIALS AND METHODS

A. Multiobjective optimization concepts

Let us consider the multiobjective optimization problem
in the following formulation: min

(
f1(x), f2(x), · · · , fp(x)

)
; p ≥ 2

gj(x) ≤ 0, j = 1,m;
x ∈ Rn;

(P)

where f =
(
f1, f2, · · · , fp

)
is the vector which components

are objective functions that are subjected to the constraint
function g =

(
g1, g2, · · · , gm

)
. Let us set that χ = {x ∈

Rn : g(x) ≤ 0} and Y = f(χ) respectively the decision
space and objective space of the problem (P).

Definition 1. An objective vector f(x∗) ∈ Y is said non
dominated point if there is not another objective vector f(x)

such as fi(x) ≤ fi(x
∗) for all i = 1, p and fk(x) < fk(x

∗)
for at least one index k.

In this case, if x∗ ∈ χ, it is called Pareto optimal solution
of the problem (P) and the set of non dominated points of
problem (P) is called Pareto front.

Definition 2. The Pareto front is a direct representation of
Pareto optimal solutions by objective functions.

Throughout the rest of this paper, we are going to denote
by χE the Pareto optimal solutions set of the problem (P)
and YE the set of the non dominated points.

For the solutions of the problem (P), there are many meth-
ods using an aggregation function to transform the problem
into a single-objective optimization problem. Here, we have
used the ϵ-constraint approach. It gives way rewording the
initial problem (P) as follows:

min fk(x);
fi(x) ≤ ϵi, i ̸= k, i = 1, p;
gj(x) ≤ 0, j = 1,m
x ∈ Rn;

(Pϵ)

where ϵ ∈ Rp−1. Let us set Ω = {x ∈ R : fi(x) ≤ ϵi, i =
1, p, i ̸= k and gj(x) ≤ 0, j = 1,m}.

Let us consider the problem (P) with p = 1. That implies
that we must minimize a single-objective function. In the
literature review, most methods for solving this kind of prob-
lems proceed by transforming value into an unconstrained
optimization problem by using a penalty function [1], [11],
[12], [22]. One of the most commonly used is the Lagrangian
penalty function which combines the objective function and
all constraint functions as follows:

Lf (x, η) = f(x) +
m∑
j=1

ηjgj(x)

where ηj ≥ 0, j = {1, 2, · · · ,m} are Lagrangian penalty
parameters.

Various methods have been proposed today for obtaining
the optimal solutions to a single-objective function like Lf .
In the case of non-linearity, where the exact solution is
hard to find, we have to use the one that gives a good
approximation.

B. HmGWOGA method

In recent works, a modified hybrid Grey Wolf Optimizer
and genetic algorithm (HmGWOGA) [17] was proposed for
the optimal solutions of positive functions. This algorithm
is a combination of Grey Wolf Optimizer (GWO) [3], [18],
[19], [23] and Genetic Algorithm (GA) [2], [8], [20], [31],
[32]. Its principle is to use genetic operators to obtain a
population with high-performance before applying the steps
of hunting of grey wolves. The main steps of the Grey
Wolves hunting technique are to pursue, hunt, approach
prey, encircle and harass prey until it stops and finally
attacks.

Note that, the family of grey wolves is organized into four
levels, of which the first level is positioned by the appointed
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leader (α), who is assisted by the wolf (β) at the second
level. On the third level is the wolf (δ) and on the fourth
level, we have the rest of wolves called (ω). In hunting,
this hierarchy is respected, which makes wolves (α) the
best hunting solution, followed by wolf (β) and so on. The
wolves initiate the pursuit, encircle the prey, and torment
it until they immobilize it. At this moment, they can attack
the prey. Mathematically, encirclement is modeled as follows
[17], [19], [23]:{ −→

D(i) = |
−→
C .

−→
X p(i)−

−→
X (i)|

−→
X (i+ 1) =

−→
X p(i)−

−→
A.

−→
D(i)

(1)

where i denote the number of current iteration,
−→
A = 2ar⃗1−

a,
−→
C = 2r⃗2, a is a coefficient which decreases relative to

iterations. It is defined by[17], [19], [23]:

a = 2

(
1− id

MaxInterd

)
(2)

where i is the current iteration, d the space dimension,
MaxInter is the maximal number of iterations.

−→
X p is the

vector given the position of the prey,
−→
X is the vector given

the position of green wolves, r⃗1 and r⃗2 are random vectors
belong in [0, 1].

When |
−→
A | < 1, then the wolf (α) converges toward the

prey to attack it as presented in the Fig. 1 (a) and when
|
−→
A | > 1 the wolf (α) is looking for a prey as shown in the

Fig. 1 (b) [13].
The position of wolves (α), (β) and (δ) are individually

adjusted according to prey and those of wolves (ω) follows
the principle of hierarchy. The mathematical modeling of
positions of these three wolves is [13], [17], [18], [19]:

−→
Dα(i) = |

−→
C 1.

−→
Xα(i)−

−→
X (i)|,

−→
Dβ(i) = |

−→
C 2.

−→
Xβ(i)−

−→
X (i)|,

−→
Dδ(i) = |

−→
C 3.

−→
X δ(i)−

−→
X (i)|,

(3)

where
−→
C 1,

−→
C 2 and

−→
C 3 are random vectors, Xα, Xβ , Xδ

are respectively the positions of (α), (β) and (δ). The new
best position of wolves, which is the optimal solution, is:

X(i+ 1) = 0.7×X1(i) + 0.2×X2(i) + 0.1×X3(i) (4)

where: 
−→
X 1(i) =

−→
Xα(i)−

−→
A 1.

−→
Dα(i),−→

X 2(i) =
−→
Xβ(i)−

−→
A 2.

−→
Dβ(i),−→

X 3(i) =
−→
X δ(i)−

−→
A 3.

−→
Dδ(i).

(5)

In practice, the HmGWOGA method has given better results
(it is faster and more convergent) than the initial GWO
method on single objective optimization problems [17].

C. Performance metrics

In the multiobjective optimization field, we have metrics
that allow us to evaluate the performance of a given method.
Some of these metrics evaluate the performance of a method
and others are used to compare directly two methods at
a time. For the first group we have used the generational
distance metrics (γ) [16], [29], [31], [32], spread metrics (∆)
[16], [29], [31], [32] and spacing metric (S) [34], [35]. For

Fig. 1. Search process by grey wolf for find a prey.

the second metrics group, we have used the contribution-
metric (Cont) and C-metric for a direct comparison of
MOGWAT and NSGA-II, this is a reference method, on some
multiobjective optimization test problems.

Generational distance (γ).
γ is a metric to evaluate the convergence of the
method toward the Pareto optimal solutions. It con-
sists is evaluating of the distance between obtained
solutions and analytic solutions. It is denoted by γ
and its compute formula is :

γ =
1

K
(

K∑
i=1

dli)
1
l (6)

where K is the number of obtained solutions; l is
an integer such that 1 ≤ l ≤ +∞; di, i = 1,K
the Euclidean distance between obtained solution
and the analytic solutions; the value of γ is always
between zero and one. When it is closed to zero,
the convergence of the used method is good.

Spread (∆).
∆ measures the degree of uniform distribution
achieved by the solutions obtained. A method has
good uniform distribution of solutions if the value
of this metric is close to zero. It is noted by ∆ and
is defined by:

∆ =

m∑
i=1

dei +

|Q|∑
i=1

|di − d|

m∑
i=1

dei + |Q|d
(7)

where di are Euclidean distances between
neighboring solutions with d their average value;
dei is the distance between the extreme solution of
analytic Pareto front with obtained Pareto front.

Spacing S.
The spacing metric S is also used to measure the
uniformity of the distribution of the Pareto optimal
solutions. For a bi-objective problem, it is defined
as follows:

S =

[
1

n− 1
×

n∑
i=1

(
di − d

)2] 1
2

(8)
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wheren is the number of the obtained solutions,
∀ i, j ∈ {1, ..., n} and i ̸= j,

di = min
j

(
|f i

1(x)− f j
1 (x)|+ |f i

2(x)− f j
2 (x)|

)
,

and d =
1

n

n∑
i=1

di. When the value of spacing S

is next to 0, the distribution of obtained solution
on the Pareto front is good. Indeed, if the Pareto
front is discontinuous, the value of the parameter
S will be very large.

Contribution (Cont).
The metric contribution is proposed by Zitzler and
allows quick evaluation of the improvement brought
by a method over to another. We can use it to
compare two sets of solutions obtained using two
different methods. It is given by:

Cont(A,B) =

|PX |
2

+ |WA|+ |NA|

|PX |+ |WA|+ |NA|+ |WB |+ |NB |
(9)

where A and B denote methods; PX denote
the set of identical solutions given by the two
methods; WA and NA denote respectively the
sets of solutions of A that dominate at least one
solution of B and the set of solution of A that
are not comparable to those of B. WB , NB are
defined in same logic[29], [30], [33].

C-metric.
The C metric is also a proposition of Zitzler to
calculate the ratio of solutions from a method that
dominate another method. It is defined by:

C(A,B) =
|{b ∈ B/∃a ∈ A : a ⪯ b}|

|B|
(10)

Where a ⪯ b means that the solution a is preferred
to solution b.

D. Test problems

For us to evaluate the performance of our method, we have
chosen some test problems to be solved[16], [32], [34], [35]
from the literature review.

1) Test problems of Zitzler-Deb-Thiele:
We have dealt with eighteen test problems shared out into
two groups. The Table I gives the test problems of which we
know the analytic front and Table II gives the test problems
of which we do not know the analytic front.

2) Test problems from CEC 2009:
We have selected two test problems from the CEC 2009
test problems to evaluate our method in relation to NSGA-II.

3) Test problems from Engineering area:
Two problems have been dealt with : Four-bar truss design
problem and Cantilever beam design problem.

Example 1. The four-bar truss design problem is a well-
known problem in the structural optimization field[34], [35],
in which structural volume (f1) and displacement (f2) of
a 4-bar truss should be minimized. As can be seen in the

TABLE I
PROBLEMS WHICH ANALYTIC PARETO FRONT ARE KNOWN.

PL1


min f1(x) = x1

min f2(x) =
1 + x2

x1

0.1 ≤ x1 ≤ 1

0 ≤ x2 ≤ 5

PL2


max f1(x) = 1.1− x1

max f2(x) = 60−
1 + x2

x1
,

0, 1 ≤ x1 ≤ 1

0 ≤ x2 ≤ 5

PL3


min f1(x) = x2

min f2(x) = (x− 2)2

−5 ≤ x ≤ 5

PL4



min f1(x) = 1− exp

(
−

n∑
i=1

(xi −
1
√
n
)2
)

min f2(x) = 1− exp

(
−

n∑
i=1

(xi +
1
√
n
)2
)

−4 ≤ xi ≤ 4, i = 1, 10

PL5



min f1(x) = x1

min f2(x) = g(x)×
(
1−

√
f1(x)

g(x)

)
g(x) = 1 +

9

n− 1
×

n∑
i=2

xi

0 ≤ xi ≤ 1, i = 1, 30

PL6



min f1(x) = x1

min f2(x) = g(x)×
(√

1−
f1(x)

g(x)

)
g(x) = 1 +

9

n− 1
×

n∑
i=2

xi

0 ≤ xi ≤ 1, i = 1, 30

PL7



min f1(x) = x1

min f2(x) = g(x)×
(
1−

(
f1(x)

g(x)

)2)
g(x) = 1 +

9

n− 1
×

n∑
i=2

xi

0 ≤ xi ≤ 1, i = 1, 30

PL8



min f1(x) = x1

min f2(x) = g(x)× h(x)

g(x) = 1 +
9

n− 1
×

n∑
i=2

xi

h(x) = 1−

√
f1(x)

g(x)
−

f1(x)

g(x)
sin

(
10πf1(x)

)
0 ≤ xi ≤ 1, i = 1, 30

following equations, there are four design variables (x1−x4)
related to cross sectional area of members 1, 2, 3, and 4.

min f1(x) = 200× (2× x1) +
√
2× x2 +

√
x3 + x4

min f2(x) = 0, 01× ( 2
x1

+ 2
√
2

x2
− (

2
√
2

x3
+ 2

x1
))

1 ≤ x1 ≤ 3

1, 4142 ≤ x2 ≤ 3

1, 4142 ≤ x3 ≤ 3

1 ≤ x4 ≤ 3
(11)

Example 2. The cantilever beam design problem is another
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TABLE II
PROBLEMS WHICH ANALYTIC PARETO FRONT ARE NOT KNOWN

PL9



min f1(x) = x2
1

min f2(x) =
1 + x2

2

x2
1√

0, 1 ≤ x1 ≤ 1

0 ≤ x2 ≤
√
5

PL10


min f1(x) = x1

min f2(x) = 1 + x2
2 − x1 − 0.2 sin

(
πx1

)
0 ≤ x1 ≤ 1

−2 ≤ x2 ≤ 2

PL11



min f1(x) = 1− exp(−4x1 sin
4(5πx1))

min f2(x) = g(x)×
(
1−

( f(x)
g(x)

)4)
g(x) = 1 + 9x2

2

0 ≤ x1 ≤ 1

−1 ≤ x2 ≤ 1

PL12



min f1(x) = 4x2
1 + 4x2

2

min f2(x) = (x1 − 5)2 + (x2 − 5)2

(x1 − 5)2 + x2 ≤ 25

(x1 − 8)2 + (x2 + 3)2 ≥ 7.7

x1, x2 ≥ 0

PL13



min f1(x) =

2∑
i=1

(
− 10 exp

(
− 0.2

√
x2
i + x2

i+1

))
min f2(x) =

3∑
i=1

(
|xi|0.8 + 5 sin(x3

i )

)
−5 ≤ x1, x2, x3 ≤ 5

PL14



min f1(x) = x1

min f2(x) = 1−

√
f1(x)

g(x)

g(x) = 1 + 10(n− 1) +

n∑
i=2

(x2
i − 10 cos

(
4πxi)

)
0 ≤ x1 ≤ 1

−5 ≤ xi ≤ 5, i = 2, 10

PL15



min f1(x) = x1

min f2(x) = x2

x2
1 + x2

2 − 1− 0, 1 cos
(
16 arctan(x1

x2
)
)
≥ 0

(x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5

0 ≤ x1, x2 ≤ π

PL16



min f1(x) = 0.5(x2
1 + x2

2) + sin
(
x2
1 + x2

2

)
min f2(x) =

(3x1 − 2x2 + 4)2

8
+

(x1 − x2 + 1)2

27
+ 15

min f1(x) =
1

x2
1 + x2

2 + 1
− 1.1 ∗ exp

[
− (x2

1 + x2
2)
]

−3 ≤ x1, x2 ≤ 3

well known problem in the field of concrete engineering
[34], [35], in which weight (f1) and end deflection (f2) of a
cantilever beam should be minimized. There are two design
variables: diameter (x1) and length (x2).

min f1(x) = 0, 25× ρ× π × x2 × x2
1

min f2(x) =
64× P × x3

2

3× E × π × x4
1

−S + (32× P × x2)/π × x3
1 ≤ 0

−δ + (64× P × x3
2)/(3× E × π × x4

1)

0, 01 ≤ x1 ≤ 0, 05

0, 20 ≤ x2 ≤ 1

(12)

with P = 1, E = 207000000, S = 300000, δ = 0, 005,

TABLE III
CEC 2009 TEST PROBLEMS

uf1



min f1(x) = x1 +
2

|J1|
∑
j∈J1

[
xj − sin(6πx1 +

jπ

n
)
]2

min f2(x) = 1 − √
x1 +

2

|J2|
∑
j∈J2

[
xj − sin(6πx1

+
jπ

n
)
]2

J1 = {j/j is odd and 2 ≤ j ≤ n}
J2 = {j/j is even and 2 ≤ j ≤ n}
0 ≤ x1 ≤ 1

−1 ≤ xj ≤ 1; j = 2 : n, n = 30

uf2



min f1(x) = x1 +
2

|J1|
∑
j∈J1

y
2
j

min f2(x) = 1 − √
x1 +

2

|J2|
∑
j∈J2

y
2
j

J1 = {j/j is odd and 2 ≤ j ≤ n}
J2 = {j/j is even and 2 ≤ j ≤ n}

yj = xj − [0, 3x2
1 cos(24πx1 +

4jπ

n
) + 0, 6x1]×

cos(6πx1 +
jπ

n
)

0 ≤ x1 ≤ 1

−1 ≤ xj ≤ 1; j = 2 : n, n = 30

ρ = 7800.

III. MOGWAT METHOD

A. Description

The principle of MOGWAT method is to transform any
multiobjective optimization problem into an unconstrained
single objective optimization problem before its complete
resolution. The main steps are described below.

Step 1: aggregation. It consists in using the ϵ-constraint
approach to transform multiple objective functions
into single objective functions. Indeed, we choose
one of the objective functions to minimize, while
the others are transformed into constraint functions.
This allows us to reword the initial problem (P ) as
follows: 

min fk(x);
fi(x) ≤ ϵi, i ̸= k, i = 1, p;
gj(x) ≤ 0, j = 1,m
x ∈ Rn;

(Pϵ)

where ϵ ∈ Rp−1. Let us set Ω = {x ∈ R : fi(x) ≤
ϵi, i = 1, p, i ̸= k and gj(x) ≤ 0, j = 1,m}. The
component ϵi, i ̸= k, i = 1, p is irrelevant for (Pϵ),
but the convention to include it will be convenient
in the following theorems.

Step 2:: penalization. It aims to transform the problem
(Pϵ) into an unconstrained problem by using a
Lagrangian penalty function [16], [25], [27]. With
which, the new formulation of (Pϵ) as follows:{

Global.minL(f, ϵ, η)
x ∈ Rn;

(Pη
ϵ )

where L(f, ϵ, η) = fk(x)+η

m+p∑
j=1,j ̸=k

(
fj(x)−ϵj+

gj(x) + |fj(x) − ϵj + gj(x)|
)

; and η a large real

number.
Step 3: resolution. It aims to propose solutions to the

initial problem by solving the last formulation
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(P η
ϵ ). With the using of HmGWOGA algorithm,

we can write :

χϵ
E = HmGWOGA{L(f, ϵ, η)}.

B. Algorithm
Then, the algorithm of MOGWAT method can be

summarize as follows.

Algorithm for MOGWAT
Data :min

x∈χ
f(x);

Step 1
• Choose one objective fk;
• Estimate ϵj by solving min

x∈χ
fj(x), max

x∈χ
fj(x);

• and build problem (Pϵ) : min
x∈Ω

fk(x);

Step 2 : Fix η value and build L(fk, ϵ, η)
Step 3

• Choose 100 different values of ϵ
• for each value of ϵ Find xϵ

E :

L(fk(x
ϵ
E), ϵ, η) = Global. min

x∈Rn
L(fk(x), ϵ, η)

• Compute f(xϵ
E)

IV. RESULTS AND DISCUSSION

A. Theoretical performance results
The theoretical performance study of the MOGWAT

method has been done on the complexity of its algorithm
and the optimality of obtained solutions.

The following two theorems guarantees the optimality of
the solutions obtained by the using of MOGWAT method.

Theorem 1. Let ϵi ∈ [min
x∈χ

fi(x),max
x∈χ

fi(x)], i = 1, p, i ̸=
K be some fixed parameters. Let χϵ

E be a global optimal
solutions set of (Pϵ). Then χE ∖ χϵ

E = ∅.

Proof of Theorem 1: Let x∗ ∈ χ such as x∗ ∈ χE∖χϵ
E

then, x∗ ∈ χE and x∗ /∈ χϵ
E . As x∗ /∈ χϵ

E , then there exists
at least one x ∈ χϵ

E such as fk(x) < fk(x
∗) and for all

i ∈ {1, 2, · · · , p} with i ̸= k, we have fi(x) ≤ ϵi. Let us
set ϵi = fi(x

∗) with i ∈ {1, 2, · · · , p} and i ̸= k, we obtain
fk(x) < fk(x

∗) and fi(x) ≤ fi(x
∗). That is a contradiction

with the assumption in which x∗ ∈ χE . Hence the result of
the theorem.

The following theorem is a sufficient condition proving
that the formulation (P η

ϵ ) conserves the optimality of its
solutions for the initial problem:

Theorem 2. Let ϵi ∈ [min
x∈χ

fi(x),max
x∈χ

fi(x)], i = 1, p, i ̸=
k be some fixed parameters and η a fixed large real number.
Let x∗ be the global optimal solution of (P η

ϵ ). Then, x∗ is
also the global optimal solution of problem (Pϵ).

Proof of Theorem 2: Let x∗ be a global optimal solution
of the problem (Pη

ϵ ). Then, for all x ∈ Rn, L(f(x∗), ϵ, η) ≤
L(f(x), ϵ, η). That is equivalent to

fk(x
∗
) + η

m+p∑
j=1
j ̸=k

(
fj(x

∗
) − ϵj + gj(x

∗
) + |fj(x∗

) − ϵj + gj(x
∗
)|
)

≤ fk(x) + η

m+p∑
j=1
j ̸=k

(
fj(x) − ϵj + gj(x) + |fj(x) − ϵj + gj(x)|

)
.

Let us suppose that x and x∗ are taken in χ then, fj(x)−
ϵj + |fj(x)− ϵj | = 0 and gj(x) + |gj(x)| = 0. In this case,
fk(x

∗) ≤ fk(x). Hence, x∗ ∈ χϵ
E .

As the problem 2 is unconstrained single-objective
optimization problem, then any good global numerical
optimization method can be use to achieve the solutions.

The following Theorem 3 guarantees that the computa-
tional complexity of MOGWAT method is polynomial.

Theorem 3. Let M , n and MaxInt be respectively the
sizes of the population of solutions, the number of variables,
and the number of iterations. Therefore, the computational
complexity of the MOGWAT method is O(M.n.MaxIter).

Proof of Theorem 3: The computational complexity
of the aggregation stage is O(1) because it only consists
of selecting one objective function. The complexity of the
penalty operation is O(m+p−1) because there are m+p−1
constraint functions. HmGWOGA method initialization stage
requires O(M.N) as the computational time, where M is
the size of the population of solutions and n is the number
of variables. In order to compute the control parameters
of HmGWGA and the update of the position of the grey
wolf, the computational complexity is O(M.n)[32]. The
complexity of the operations for the computation of the
fitness value of each grey wolf is also O(M.n). Hence, the
sum of these complexities gives O(M.n.MaxIter) as the
computational complexity of MOGWAT.

As the computational complexity of the NSGA-II method
is O(p.n2) with p the number of objective functions and n
the number of decision variables[31], we can conclude that
MOGWAT is the best option.

B. Numerical performance results

The numerical performance study of the MOGWAT
method has been done on the computational time, the
convergence of the obtained solutions and the distribution
of the obtained solutions. All of these parameters have
been evaluated by using some test problems taken into the
literature. In this work, these test problems have been shared
out into three groups.

1) Results of Zitzler-Deb-Thiele test problems: this
is the representation of optimal Pareto solutions of each
test problem (see Fig. 2 and Fig. 3), the computational
time of the used methods (see Table IV, Table V, Table X
and Table XI), the convergence parameters (see Table VI
and Table VII) and distribution parameters (see Table VIII
and Table IX). As MOGWAT is a stochastic algorithm, we
computed for each problem one hundred solutions in ten
times. This allows us to calculate the average and variance
of the performance parameters for all these ten times. We
compare our results to those of NSGA-II because all of
these test problems have been solved by this method [31],
[32].
In the following we will sometimes set A=MOGWAT and
B=NSGA-II.

Here are the results for the problems with analytic Pareto
front. For them, we have plotted in the same figure the
analytic Pareto front and those given by MOGWAT method.
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Fig. 2. Pareto front obtained by MOGWAT on problems with analytic front
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TABLE IV
COMPUTATIONAL TIME FOR ONE HUNDRED SOLUTIONS

PL1 PL2 PL3 PL4

A τ 31.7 39.2 29.9 54.5
σ2
τ 00.0 00.0 00.00 00.1

B τ 50.8 59.5 49.7 94.9
σ2
τ 00,2 05.8 04.2 05.8

TABLE V
COMPUTATIONAL TIME FOR ONE HUNDRED SOLUTIONS

PL5 PL6 PL7 PL8

A τ 174.4 150.9 176.0 193.8
σ2
τ 000.0 000.0 000.0 000.2

B τ 217.1 173.5 224.1 220.6
σ2
τ 001.4 007.3 001.5 005.5

TABLE VI
GENERATIONAL DISTANCE FOR CONVERGENCE PERFORMANCE

PL1 PL2 PL3 PL4

A γ(e− 4) 01.5 01.8 00.2 44.0
σ2
γ(e− 10) 00.5 00.0 01.3 00.0

B γ(e− 4) 93.0 02.2 75.0 45.0
σ2
γ(e− 5) 00.0 50.0 00.0 0.00

TABLE VII
GENERATIONAL DISTANCE FOR CONVERGENCE PERFORMANCE

PL5 PL6 PL7 PL8

A γ(e− 4) 04.3 11.0 06.0 14.0
σ2
γ(e− 10) 01.5 00.0 00.6 20.2

B γ(e− 4) 09.5 40.0 07.6 27.0
σ2
γ(e− 6) 00.0 00.0 58.4 00.0

TABLE VIII
SPREAD INDEX FOR DISTRIBUTION PERFORMANCE

PL1 PL2 PL3 PL4

A ∆(e− 4) 7776 9815 4998 9145
σ2
∆(e− 5) 5560 0000 0000 0000

B ∆(e− 4) 6775 6207 5825 6765
σ2
∆(e− 6) 1000 0900 0075 0700

TABLE IX
SPREAD INDEX FOR DISTRIBUTION PERFORMANCE

PL5 PL6 PL7 PL8

A ∆(e− 4) 2540.0 2999.0 2633.0 1280.0
σ2
∆(e− 7) 0008.8 0000.0 0006.0 0044.2

B ∆(e− 4) 6178.0 6715.0 6087.0 5909.0
σ2
∆(e− 6) 0800.0 0700.0 2800.0 1100.0

Here are the results for the problem without analytic Pareto
front.
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Fig. 3. Pareto front obtained by MOGWAT on problems without analytic
front

TABLE X
COMPUTATIONAL TIME FOR ONE HUNDRED SOLUTIONS

PL9 PL10 PL11 PL12

A τ 40.5 37.0 47.8 46.2
σ2
τ 00.0 13.0 00.0 01.7

B τ 74.8 60.8 68.3 68.1
σ2
τ 04.5 17.1 00.6 00.0

TABLE XI
COMPUTATIONAL TIME FOR ONE HUNDRED SOLUTIONS

PL13 PL14 PL15 PL16

A τ 039.4 122.7 051.1 078.2
σ2
τ 000.2 000.5 002.9 000.4

B τ 061.6 161.4 065.3 098.5
σ2
τ 009.3 001.1 001.7 008.2

TABLE XII
VALUE OF CONTRIBUTION METRIC

PL9 PL10 PL11 PL12

A Cont(A,B) 0.5102 0.5127 0.4867 0.6120
σ2
Cont(A,B)

0.0000 0.0000 0.0015 0.0007

B Cont(B,A) 0.4898 0.4873 0.5133 0.3817
σ2
Cont(B,A)

0.0000 0.0000 0.0015 0.0011

TABLE XIII
VALUE OF CONTRIBUTION METRIC

PL13 PL14 PL15 PL16

A Cont(A,B) 0.6507 0.9529 0.5795 0.3664
σ2
Cont(A,B)

0.0169 0.0001 0.0018 0.0000

B Cont(B,A) 0.3493 0.0471 0.4205 0.6336
σ2
Cont(B,A)

0.0169 0.0001 0.0067 0.0000

TABLE XIV
VALUES OF C-METRIC

PL9 PL10 PL11 PL12

A C(A,B) 0.0533 0.0004 0.0003 0.3567
σ2
C(A,B)

0.0006 0.0000 0.0005 0.0048

B C(B,A) 0.0000 0.0000 0.0825 0.0000
σ2
C(B,A)

0,0000 0,0000 0.0136 0.0000

TABLE XV
VALUES OF C-METRIC

PL13 PL14 PL15 PL16

A C(A,B) 0.5167 0.9300 0.6307 0.0600
σ2
C(A,B)

0.0748 0.0001 0.0009 0.0009

B C(B,A) 0.1716 0.0000 0.0234 0.4389
σ2
C(B,A)

0.0016 0.0000 0.0011 0.0001

2) Results of CEC 2009 test problems:
The Pareto optimal solutions obtained by applying the MOG-
WAT method are given in the Fig. 4
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Fig. 4. Pareto front obtained by MOGWAT and NSGA-II for uf1 and uf2

TABLE XVI
VALUE OF METRIC GD FOR UF1, UF2

MOGWAT NSGA-II
GD mean std mean std

Four-bar 0,0097 0,4056 0,0256 0,0256
Cantilever 0,0105 0,1210 0,0135 0,0100

TABLE XVII
VALUE OF METRIC ∆ FOR UF1, UF2

MOGWAT NSGA-II
∆ mean std mean std
uf1 0,0367 0,3006 0,2010 0,0034
uf2 0,0502 0,1101 0,12075 0,0219

3) Results of Engineering problems:
For the Example 1, we have obtained the Pareto optimal
solutions with MOGWAT and NSGA-II that we have given
in the Fig. 5.

Fig. 5. Pareto front obtained by MOGWAT and NSGA-II on Four-bar truss
design problem

For the Example 2, MOGWAT and NSGA-II methods have
been applied and the Pareto optimal solutions are given in
the Fig. 6.

Fig. 6. Pareto front obtained by MOGWAT and NSGA-II on Cantilever
beam design problem

TABLE XVIII
VALUE OF SPACING S ON ENGINEERING PROBLEMS

MOGWAT NSGA-II
S mean std mean std

Four-bar 0,0402 0,3646 0,8261 0,0256
Cantilever 0,0135 0,0010 0,0335 0,0099

C. Discussions
According to the test problems with analytic Pareto front,

we have the following results: the Table IV and Table V

IAENG International Journal of Applied Mathematics

Volume 54, Issue 3, March 2024, Pages 495-506

 
______________________________________________________________________________________ 



show that the MOGWAT method works faster than NSGA-II
on all of these eight test problems; the Table VI and Table
VII show that the MOGWAT method outperforms NSGA-II
on all of these eight test problems in terms of converge;
and the Table VIII and Table IX show that the MOGWAT
method is better than NSGA-II on five test problems, namely
PL3, PL5, PL6, PL7 and PL8 in terms of distribution.

According to the test problems without analytic Pareto
front, we have the following results: the Table X and Table
XI show that the MOGWAT method works faster than
NSGA-II on all of these eight test problems; the Table
XII and Table XIII show that the MOGWAT method
is the better than NSGA-II on only five test problems,
namely PL11, PL13, PL14, PL15 and PL16 in terms of
contribution; and the Table XIV and Table XV show that
the MOGWAT method outperforms NSGA-II on all of these
eight test problems in terms of the number of dominated
solutions ratio.

According to the CEC 2009 test problems, we have the
following results: the Table XVI shows that the MOGWAT
method converges better than NSGA-II; and the Table XVII
shows MOGWAT method has a better distribution than
NSGA-II.

According to the engineering problems, the Table XVIII
shows that the MOGWAT method has a best distribution
than NSGA-II.

Finally, with this combination of the ϵ-constraint approach
and the HmGWOGA algorithm, we have created a method
that is effective and efficient for solving multiobjective
optimization problems. This is better than NSGA-II in terms
of computational time and convergence of the obtained
solutions. However, in terms of distribution, it is better than
NSGA-II on some problems but not all. Then, improving
the distribution of the solutions using the MOGWAT method
will be a topic for future research.

V. CONCLUSION

A metaheuristic method for solving a nonlinear multiob-
jective optimization problem was proposed by this work.
We named it MOGWAT. It is a combination of the ϵ-
constraint approach and the HmGWOGA algorithm. On the
one hand, we have demonstrated the theoretical foundation
of our algorithm and its good computational complexity
by proposing three theorems. On the other hand, we have
substantiated its numerical performances by successfully re-
solving 20 test problems. The results have been compared to
those of NSGA-II about the computational time, convergence
of solutions, and distribution of solutions. Out of these 16
test problems of Zitler-Deb-Thiele, MOGWAT is faster on
the 100%, converges better on also the 100%, and has a
better distribution on the 62.5%. Therefore, MOGWAT is
better than NSGA-II at 87% of these performance param-
eters. For the CEC 2009 test problems and Engineering
problem, MOWGAT outperforms NSGA-II on convergence
and distribution of Pareto optimal solutions. According to

these theoretical and numerical results, MOGWAT is the best
choice for solving multiobjective optimization problems.

Our future study will focus on enhancing the distribution
of our approach.
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