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Abstract—The discussion of this paper is to aim to examine
application of the notion of C∗-algebra valued fuzzy soft metric
to homotopy theory using common coupled fixed point results
from C∗-class functions. We also tried to provide an illustration
of our major findings. The results attained expand upon and
apply to many of the findings in the literature.

Index Terms—C∗-class function, ω-compatible mapping,
C∗-algebra valued fuzzy soft metric and coupled fixed points.

I. INTRODUCTION

NUMEROUS real-world issues deal with ambiguous
data and cannot be adequately described in classical

mathematics. Fuzzy set theory, developed by Zadeh [1], and
the theory of soft sets, developed by Molodstov [2], are two
types of mathematical tools that can be used to deal with
uncertainties and help with difficulties in a variety of fields.
Thangaraj Beaula et al. defined fuzzy soft metric space in
terms of fuzzy soft points in the cited work [3], and they
supported various claims. However, numerous authors have
established a great deal of findings regarding fuzzy soft sets
and fuzzy soft metric spaces (see [4] -[6]).

A concept of C∗- algebra valued metric space was pre-
sented in 2006 by Ma et al. in [7], and certain fixed and
coupled fixed point solutions for mapping under contraction
conditions in these spaces were established. This line of
inquiry was pursued in (see [8]-[14]). Recently, R.P.Agarwal
et al. introduced the idea of C∗-algebra valued fuzzy soft
metric spaces and demonstrated some associated fixed point
solutions on this space (see. [15]-[19]).

The purpose of this article is to establish two pairs of
ω-compatible mappings meeting generalised contractive re-
quirements as unique common coupled fixed point theorems
using C∗-class functions in the context of C∗-algebra valued
fuzzy soft metric spaces. Additionally, we may provide
pertinent examples and applications for homotopy.

II. PRELIMINARIES

In this section, we review several fundamental notations
and definitions.
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Definition II.1:([15]) Assume that C ⊆ Θ and Θ̃ are the
absolute fuzzy soft set and ψΘ(α) = 1̃ for all α ∈ Θ,
respectively. Let the C∗-algebra be represented by C̃. The
mapping d̃c∗ : Θ̃× Θ̃ → C̃ satisfying the given constraints is
known as the C∗-algebra valued fuzzy soft metric utilising
fuzzy soft points.
(i) 0̃C̃ ≼ d̃c∗(ψα1 , ψα2) for all ψα1 , ψα2 ∈ Θ̃,
(ii) d̃c∗(ψα1 , ψα2) = 0̃C̃ ⇔ ψα1 = ψα2 ,
(iii) d̃c∗(ψα1

, ψα2
) = d̃c∗(ψα2

, ψα1
),

(iv) d̃c∗(ψα1 , ψα3) ≼ d̃c∗(ψα1 , ψα2) + d̃c∗(ψα2 , ψα3)
∀ ψα1

, ψα2
, ψα3

∈ Θ̃.

The C∗-algebra valued fuzzy soft metric space is made up
of the fuzzy soft set Θ̃ and the fuzzy soft metric d̃c∗ . It is
represented by the symbol (Θ̃, C̃, d̃c∗).
Remark II.1: ([15]) It is clear that fuzzy soft metric spaces
with C∗-algebra valued fuzzy soft metrics generalise the idea
of fuzzy soft metric spaces by substituting the set of fuzzy
soft real numbers with C̃+. The idea of a fuzzy soft metric
space with C∗-algebra values is similar to the definition of
real metric spaces if we assume that C̃+ = R.
Example II.1:([15]) If C and Θ are subsets of R, then Θ̃ is
an absolute fuzzy soft set, where Θ̃(α) = 1̃ for every α in
Θ, and C̃ is defined as M2(R(C)∗).

Define d̃c∗ : Θ̃× Θ̃ → C̃ by d̃c∗(ψα1 , ψα2) =

[
κ 0
0 κ

]
,

where κ = inf{|µaψα1
(t)− µaψα2

(t)|/t ∈ C} and
ψα1 , ψα2 ∈ Θ̃. Then, by the completeness of R(C)∗,
(Θ̃, C̃, d̃c∗) is a complete C∗ algebra valued fuzzy soft metric
space and d̃c∗ is a C∗ - algebra valued fuzzy soft metric.
Definition II.2:([15]) Assume that (Θ̃, C̃, d̃c∗) is a
C∗-algebra valued fuzzy soft metric space. According to C̃
a sequence {ψαk

} in Θ̃ is defined as:
(1) C∗-algebra valued fuzzy soft Cauchy sequence if, for

each 0̃C̃ ≺ ϵ̃, there exist 0̃C̃ ≺ δ̃ and a positive
integer N = N(ϵ̃) such that ||d̃c∗(ψαk

, ψαl
)|| < δ̃ im-

plies that ||µaψαk
(t)−µaψαl

(s)|| < ϵ̃ whenever k, l ≥ N .
That is ||d̃c∗(ψαk

, ψαl
)||C̃ → 0̃C̃ as k, l → ∞.

(2) C∗-algebra valued fuzzy soft convergent to a point
ψα′ ∈ Θ̃ if, for each 0̃C̃ ≺ ϵ̃, there exist
0̃C̃ ≺ δ̃ and a positive integer N = N(ϵ̃) such that
||d̃c∗(ψαk

, ψα′)|| < δ̃ ⇒ ||µaψαk
(t)− µaψα′ (t)|| < ϵ̃

whenever k ≥ N . It is usually denoted as
limk→∞ ψαk

= ψα′ .
(3) It is referred to as being complete when a C∗-algebra

valued fuzzy soft metric space (Θ̃, C̃, d̃c∗) is present.
If each Cauchy sequence in Θ̃ converges to a fuzzy
soft point in Θ̃.

Lemma II.1:([15]) Let C̃ be a C∗-algebra with the identity
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element ĨC̃ and θ̃ be a positive element of C̃. If λ̃ ∈ C̃ is
such that ||λ̃|| < 1 then for p < q, we have

(a) limq→∞
∑q
k=p(λ̃

∗)kθ̃(λ̃)k = ĨC̃ ||
˜

(θ)
1
2 ||2

(
||λ̃||p

1−||λ̃||

)
.

(b)
∑q
k=p(λ̃

∗)kθ̃(λ̃)k → 0̃C̃ as q → ∞.

Definition II.2: ([15]) Suppose that C̃ is a unital C∗-algebra
with unit 1̃.
(i) If κ̃ ∈ C̃+ with ||κ̃|| < 1

2 then Ĩ − κ̃ is invertible and
||κ̃(Ĩ − κ̃)−1|| < 1,

(ii) Suppose that κ̃, λ̃ ∈ C̃ with κ̃, λ̃ ≽ 0̃C̃ and κ̃λ̃ = λ̃κ̃
then κ̃λ̃ ≽ 0̃C̃ ,

(iii) Let C̃ ′ = {κ̃ ∈ C̃/κ̃λ̃ = λ̃κ̃ ∀ λ̃ ∈ C̃}. Let κ̃ ∈ C̃ ′,
if λ̃, θ̃ ∈ C̃ with λ̃ ≽ θ̃ ≽ 0̃ and Ĩ − κ̃ ∈ C̃ ′

+ is an
invertible operator, then (Ĩ − κ̃)−1λ̃ ≽ (Ĩ − κ̃)−1θ̃,
where C̃+

′
= C̃+ ∩ C̃ ′

Notice that in c∗-algebra , if 0̃ ≼ κ̃, λ̃, one can’t conclude
that 0̃ ≼ κ̃λ̃. Indeed, consider the c∗-algebra M2(R(C)∗)
and set
κ̃ =

[
ψα1(a) ψα2(a)
ψα2(a) ψα1(b)

]
=

[
0.3 0.1
0.1 0.2

]
and λ̃ =

[
ψα1(c) ψα2(c)
ψα2

(c) ψα1
(d)

]
=

[
0.4 0.5
0.5 0.6

]
then clearly κ̃ ≽ 0̃ and λ̃ ≽ 0̃ but κ̃, λ̃ ∈ M2(R(C)∗)+
while κ̃λ̃ is not.
For more properties of a C∗-algebra valued fuzzy soft metric
and C∗ -algebra we refer the reader to ([15], [20]).

III. MAIN RESULTS

For C∗-class functions in C∗-algebra valued fuzzy soft
metric spaces, we will demonstrate various coupled fixed
point theorems in this section.
Definition III.1: Let (Θ̃, C̃, d̃c∗) be a C∗-algebra valued
fuzzy soft metric space. Let S : Θ̃× Θ̃ → Θ̃ be a mapping.
Then an element (ψα1 , ϕα1) ∈ Θ̃×Θ̃ is called coupled fixed
point of S if S(ψα1 , ϕα1) = ψα1 and S(ϕα1 , ψα1) = ϕα1

Definition III.2: Let Θ̃ be absolute fuzzy soft set and
S : Θ̃ × Θ̃ → Θ̃ and f : Θ̃ → Θ̃ be two mappings. An
element (ψα1 , ϕα1) ∈ Θ̃× Θ̃ is called
(i) a coupled coincidence point of S and f

if fψα1 = S(ψα1 , ϕα1) and fϕα1 = S(ϕα1 , ψα1)
(ii) a common coupled fixed point of S and f

if ψα1 = fψα1 = S(ψα1 , ϕα1) and
ϕα1 = fϕα1 = S(ϕα1 , ψα1).

Definition III.3: Let Θ̃ be absolute fuzzy soft set and
S : Θ̃ × Θ̃ → Θ̃ and f : Θ̃ → Θ̃. Then {S, f} is said to
be ω-compatible pairs if f (S(ψα1 , ϕα1)) = S(fψα1 , fϕα1)
and f (S(ϕα1 , ψα1)) = S(fϕα1 , fψα1)
Definition III.4: Let C̃ is a unital C∗-algebra. Then a
continuous function Γ : C̃+ × C̃+ → C̃+ is called a
C∗-class function if for all A,B ∈ C̃+,
(a) Γ(Ã, B̃) ≼ Ã;
(b) Γ(Ã, B̃) = Ã⇒ Ã = 0̃C̃ or B̃ = 0̃C̃ .

We denote C∗ as the family of all C∗-class functions.
Definition III.5: A function η : C̃+ → C̃+ is called an
altering distance function if the following properties are
satisfied:
(a) η is nondecreasing and continuous,
(b) η(Ã) = 0̃C̃ if and only if Ã = 0̃C̃ .

The family of all altering distance functions is denoted by Ω.

Theorem III.1: Assume that C∗-algebra valued fuzzy
soft metric space (Θ̃, C̃, d̃c∗) and suppose two mappings
S: Θ̃× Θ̃ → Θ̃ and f : Θ̃ → Θ̃ be satisfying

η
(
d̃c∗ (S(ψα1 , ϕα1), S(ψα2 , ϕα2))

)
≼

Γ
(
η
(
κ̃∗d̃c∗(fψα1 , fψα2)κ̃

)
, θ
(
κ̃∗d̃c∗(fϕα1 , fϕα2)κ̃

))
(1)

for all ψα1 , ψα2 , ϕα1 , ϕα2 ∈ Θ̃, where κ̃ ∈ C̃ with ||κ̃|| < 1
and η, θ ∈ Ω and Γ ∈ C∗.
(i) S(Θ̃× Θ̃) ⊆ f(Θ̃),
(ii) {S, f} is ω-compatible pairs,
(iii) f(Θ̃) is complete C∗-algebra valued fuzzy soft metrics

of Θ̃.
Then, in Θ̃, S and f have a unique common coupled fixed
point.
Proof: Let ψα0 , ϕα0 ∈ Θ̃. From (i) we can construct the
sequences {ψαn}∞n=1, {φαn}∞n=1, {ξαn}∞n=1, {ζαn}∞n=1 such
that
S(ψαn , ϕαn) = fψαn+1 = ξαn , S(ϕαn , ψαn) = fϕαn+1 = ζαn

for n = 0, 1, 2, . . .

Observes that in C∗-algebra, if κ̃, b̃ ∈ C̃+ and κ̃ ≼ b̃, then
for any x̃ ∈ C̃+ both x̃∗κ̃x̃ and x̃∗b̃x̃ are positive. We
conveniently refer to the element d̃c∗(ξα0 , ξα1) in C̃ as Q.
From (1 ), we get

η
(
d̃c∗
(
ξαn , ξαn+1

))
= η

(
d̃c∗
(
S(ψαn , ϕαn), S(ψαn+1 , ϕαn+1)

))
≼ Γ

 η
(
κ̃∗d̃c∗(fψαn , fψαn+1)κ̃

)
,

θ
(
κ̃∗d̃c∗(fϕαn , fϕαn+1)κ̃

) 
≼ η

(
κ̃∗d̃c∗(fψαn , fψαn+1)κ̃

)
≼ η

(
κ̃∗d̃c∗(ξαn−1 , ξαn)κ̃

)
.

By the definition of η, we have

d̃c∗
(
ξαn

, ξαn+1

)
≼ κ̃∗d̃c∗(ξαn−1

, ξαn
)κ̃

≼ (κ̃∗)2d̃c∗(ξαn−2 , ξαn−1)κ̃
2

≼ · · ·
≼ (κ̃∗)nd̃c∗(ξα0 , ξα1)κ̃

n ≼ (κ̃∗)nQκ̃n.

So for n+ 1 > m

d̃c∗
(
ξαn+1 , ξαm

)
≼ d̃c∗

(
ξαn+1 , ξαn

)
+ d̃c∗

(
ξαn , ξαn−1

)
+ · · ·

+d̃c∗
(
ξαm+1 , ξαm

)
≼ (κ̃∗)nQκ̃n + (κ̃∗)n−1Qκ̃n−1 + · · ·+ (κ̃∗)mQκ̃m

≼
n∑

k=m

(κ̃∗)kQκ̃k =
n∑

k=m

(κ̃∗)kQ
1
2Q

1
2 κ̃k

≼
n∑

k=m

(κ̃kQ
1
2 )∗(Q

1
2 κ̃k) =

n∑
k=m

|Q 1
2 κ̃k|2

≼ ∥
n∑

k=m

|Q 1
2 κ̃k|2∥ĨC̃ ≼

n∑
k=m

∥Q 1
2 ∥2∥κ̃∥2k ĨC̃

≼ ∥Q 1
2 ∥2

n∑
k=m

∥κ̃∥2k ĨC̃ ≼ ∥Q∥ ||κ̃||2m

1− ||κ̃||
ĨC̃
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→ 0̃C̃ as m→ ∞.

As a result, {ξαn} is a Cauchy sequence in Θ̃ with regard to
C̃. We can also demonstrate that {ζαn} is a Cauchy sequence
with regard to C̃. Let’s say f(Θ̃) the complete subspace
of (Θ̃, C̃, d̃c∗). Then the sequences {ξαn

} and {ζαn
} are

converge to ξα′ , ζα′ respectively in f(Θ̃). Thus there exist
ψα′ , ϕα′ in f(Θ̃) Such that

lim
n→∞

ξαn = ξα′ = fψα′ and lim
n→∞

ζαn = ζα′ = fϕα′ . (2)

Now we claim that S(ψα′ , ϕα′) = ξα′ and S(ϕα′ , ξα′) = ζα′ .
From (1) and using the triangular inequality

0̃C̃ ≼ d̃c∗(S(ψα′ , ϕα′), ξα′)

≼ d̃c∗(S(ψα′ , ϕα′), ξαn+1
) + d̃c∗(ξαn+1

, ξα′)

≼ d̃c∗(S(ψα′ , ϕα′), S(ψαn+1 , ϕαn+1)) + d̃c∗(ξαn+1 , ξα′).

If we assume that the relation’s limit is n→ ∞ , we get

0̃C̃ ≼ d̃c∗(S(ψα′ , ϕα′), ξα′)

≼ lim
n→∞

d̃c∗(S(ψα′ , ϕα′), S(ψαn+1 , ϕαn+1)).

By the definition of η, we have

η
(
d̃c∗(S(ψα′ , ϕα′), ξα′)

)
≼ lim

n→∞
η
(
d̃c∗(S(ψα′ , ϕα′), S(ψαn+1

, ϕαn+1
))
)

≼ lim
n→∞

η
(
κ̃∗d̃c∗(fψα′ , fψαn+1

)κ̃
)

≼ lim
n→∞

η
(
κ̃∗d̃c∗(fψα′ , ξαn)κ̃

)
= 0̃C̃ .

Therefore, we have d̃c∗(S(ψα′ , ϕα′), ξα′) = 0̃C̃ implies that
S(ψα′ , ϕα′) = ξα′ .
Similarly, we prove S(ϕα′ , ξα′) = ζα′ .Therefore, it follows
S(ψα′ , ϕα′) = ξα′ = fψα′ and S(ϕα′ , ψα′) = ζα′ = fϕα′ .
Since {S, f} is ω-compatible pair, we have
S(ξα′ , ζα′) = fξα′ and S(ζα′ , ξα′) = fζα′ .
Now to prove that fξα′ = ξα′ and fζα′ = ζα′ . We have

0̃C̃ ≼ η
(
d̃c∗(fξα′ , ξαn+1)

)
≼ η

(
d̃c∗(S(ξα′ , ζα′), S(ψαn+1 , ϕαn+1))

)
≼ η

(
κ̃∗d̃c∗(fξα′ , fψαn+1

)κ̃
)

≼ η
(
κ̃∗d̃c∗(fξα′ , ξαn)κ̃

)
.

By the definition of η and taking the limit as n→ ∞ in the
above relation, we obtain

0̃C̃ ≼ d̃c∗(fξα′ , ξα′) ≼ κ̃∗d̃c∗(fξα′ , ξα′)κ̃

we have

0 ≤ ||d̃c∗(fξα′ , ξα′)|| ≤ ||κ̃∗d̃c∗(fξα′ , ξα′)κ̃||
≤ ||κ̃∗||||d̃c∗(fξα′ , ξα′)||||κ̃||
≤ ||κ̃||2||d̃c∗(fξα′ , ξα′)|| < ||d̃c∗(fξα′ , ξα′)||.

It is impossible. So d̃c∗(fξα′ , ξα′) = 0 implies that
fξα′ = ξα′ . Similarly, we show that fζα′ = ζα′ . Therefore,
S(ξα′ , ζα′) = fξα′ = ξα′ and S(ζα′ , ξα′) = fζα′ = ζα′ .
Thus (ξα′ , ζα′) is common coupled fixed point of S and
f . The following will demonstrate the distinctness of the
common coupled fixed point in Θ̃. Take into account that

there is a second coupled fixed point (ξα′′ , ζα′′) for S and
f . Then

η
(
d̃c∗(ξα′ , ξα′′)

)
= η

(
d̃c∗(S(ξα′ , ζα′), S(ξα′′ , ζα′′))

)
≼ Γ

(
η
(
κ̃∗d̃c∗(fξα′ , fξα′′)κ̃

)
, θ
(
κ̃∗d̃c∗(fζα′ , fζα′′)κ̃

))
≼ η

(
κ̃∗d̃c∗(fξα′ , fξα′′)κ̃

)
≼ η

(
κ̃∗d̃c∗(ξα′ , ξα′′)κ̃

)
.

By the definition of η, which further induces that

||d̃c∗(ξα′ , ξα′′)|| ≤ ||κ̃∗d̃c∗(ξα′ , ξα′′)κ̃||
≤ ||κ̃||2||d̃c∗(ξα′ , ξα′′)||
< ||d̃c∗(ξα′ , ξα′′)||.

It is impossible. So d̃c∗(ξα′ , ξα′′) = 0 implies ξα′ = ξα′′ .
Similarly, we show that
ζα′ = ζα′′ and hence (ξα′ , ζα′) = (ξα′′ , ζα′′) which means
the coupled fixed point is unique. In order to prove that S
and f have a unique fixed point, we only have to prove
ξα′ = ζα′ . We have

η
(
d̃c∗(ξα′ , ζα′)

)
= η

(
d̃c∗(S(ξα′ , ζα′), S(ζα′ , ξα′))

)
≼ Γ

(
η
(
κ̃∗d̃c∗(fξα′ , fζα′)κ̃

)
, θ
(
κ̃∗d̃c∗(fζα′ , fξα′)κ̃

))
≼ η

(
κ̃∗d̃c∗(fξα′ , fζα′)κ̃

)
≼ η

(
κ̃∗d̃c∗(ξα′ , ζα′)κ̃

)
.

By the definition of η, which further induces that

||d̃c∗(ξα′ , ζα′)|| ≤ ||κ̃∗d̃c∗(ξα′ , ζα′)κ̃|| ≤ ||κ̃||2||d̃c∗(ξα′ , ζα′)||.

It follows from the fact ||κ̃|| < 1 that ||d̃c∗(ξα′ , ζα′)|| = 0,
thus ξα′ = ζα′ . Which means that S and f have a unique
fixed point in Θ̃.
Corollary III.1: Let (Θ̃, C̃, d̃c∗) be a complete C∗-algebra
valued fuzzy soft metric space.Suppose S: Θ̃ × Θ̃ → Θ̃
satisfies

η
(
d̃c∗ (S(ψα1 , ϕα1), S(ψα2 , ϕα2))

)
≼ Γ

(
η
(
κ̃∗d̃c∗(ψα1 , ψα2)κ̃

)
, θ
(
κ̃∗d̃c∗(ϕα1 , ϕα2)κ̃

))
(3)

for all ψα1
, ψα2

, ϕα1 , ϕα2 ∈ Θ̃, where κ̃ ∈ C̃ with ||κ̃|| < 1
and η, θ ∈ Ω and Γ ∈ C∗. Then S has a unique fixed point
in Θ̃.
Example III.1: Let Θ = {α1, α2, α3}, U = {x, y, z, w} and
C and D are two subset of Θ where C = {α1, α2, α3},
D = {α1, α2, }. Define fuzzy soft set as,

(ψΘ, C) =

 α1 = {x0.7, y0.6, z0.6, w0.5},
α2 = {x0.8, y0.7, z0.8, w0.6},
α3 = {x0.9, y0.7, z0.9, w0.8}


(ϕΘ, D) =

{
α1 = {x0.5, y0.6, z0.5, w0.3},
α2 = {x0.7, y0.7, z0.8, w0.5}

}
ψα1 = µψα1

= {x0.7, y0.6, z0.6, w0.5}
ψα2 = µψα2

= {x0.8, y0.7, z0.8, w0.6}

ψα3 = µψα3
= {x0.9, y0.7, z0.9, w0.8}

ϕα1 = µϕα1
= {x0.5, y0.6, z0.5, w0.3}

ϕα2 = µϕα2
= {x0.7, y0.7, z0.8, w0.5}
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and FSC(FΘ) = {ψα1 , ψα2 , ψα3 , ϕα1 , ϕα2}, let Θ̃ be
a absolute fuzzy soft set, that is Θ̃(α) = 1̃ for all α ∈ Θ,
and C̃ =M2(R(C)∗), be a C∗-algebra.
Define d̃c∗ : Θ̃× Θ̃ → C̃ by
d̃c∗(ψα1 , ψα2) =

(
inf{|ψα1

(x)− ψα2
(x)|/x ∈ U} 0

)
,

then obviously (Θ̃, C̃, d̃c∗) is a complete C∗-algebra valued
fuzzy soft metric space. We define S: Θ̃ × Θ̃ → Θ̃ by
S(ψα1 , ϕα1)(x) =

ψα1+2ϕα1+3

12 , f : Θ̃ → Θ̃ by
fψα1 =

ψ2α1+1

5 for all x ∈ U and ψα1 , ϕα1 ∈ Θ̃.
Let two continuous functions η, θ : C̃+ → C̃+ as η(κ̃) = κ̃
and θ(κ̃) = κ̃

5 for all κ̃ ∈ C̃+ and Γ : C̃+ × C̃+ → C̃+

by Γ(κ̃, b̃) = κ̃ − θ(κ̃) for all κ̃, b̃ ∈ C̃+. Then obviously,
S(Θ̃× Θ̃) ⊆ f(Θ̃) and {S, f} is ω-compatible pair.
Observe that fψα1 =

2ψα1
+1

5 = {0.48, 0.44, 0.44, 0.4} and
fψα2 =

2ψα2+1

5 = {0.52, 0.48, 0.52, 0.44} . Thus,

inf{|µxfψα1
(s)− µxfψα2

(s)|/s ∈ C}
= inf{0.04, 0.04, 0.08, 0.04} = 0.04.

Therefore, d̃c∗(fψα1 , fψα2) =

[
0.04 0
0 0.04

]
also, fϕα1 =

2ϕα1
+1

5 = {0.4, 0.44, 0.4, 0.32} and
fϕα2 =

2ϕα2+1

5 = {0.48, 0.48, 0.52, 0.4} .
Thus, inf{|µxfϕα1

(s)− µxfϕα2
(s)|/s ∈ C}

= inf{0.08, 0.04, 0.12, 0.08} = 0.04 and

d̃c∗(fϕα1 , fϕα2) =

[
0.04 0
0 0.04

]
.

Moreover,
S(ψα1 , ϕα1)(x) =

ψα1+2ϕα1+3

12 = {0.391, 0.4, 0.383, 0.341}
and S(ψα2 , ϕα2)(x) =

ψα2+2ϕα2+3

12
= {0.433, 0.425, 0.45, 0.383} .

Then

η
(
d̃c∗(S(ψα1 , ϕα1), S(ψα2 , ϕα2))

)
=

[
0.025 0
0 0.025

]
≼ 4

5

([
2√
5

0

0 2√
5

][
0.04 0
0 0.04

] [ 2√
5

0

0 2√
5

])

≼

([
2√
5

0

0 2√
5

][
0.04 0
0 0.04

] [ 2√
5

0

0 2√
5

])

−1
5

([
2√
5

0

0 2√
5

][
0.04 0
0 0.04

] [ 2√
5

0

0 2√
5

])
≼ Γ

(
η
(
κ̃∗d̃c∗(ψα1 , ψα2)κ̃

)
, θ
(
κ̃∗d̃c∗(ϕα1 , ϕα2)κ̃

))
.

Here κ̃ =

[
2√
5

0

0 2√
5

]
with ||κ̃|| = 2√

5
< 1. Therefore,

all the conditions of Theorem III.1 satisfied and ( 13 ,
1
3 ) is

coupled fixed point of S and f .

IV. APPLICATION TO HOMOTOPY

In this part, we examine the possibility that homotopy
theory has a unique solution.
Theorem IV.1: Let (Θ̃, C̃, d̃c∗) be complete C∗-algebra val-
ued fuzzy soft metric space, ∆ and ∆ be an open and closed
subset of Θ̃ such that ∆ ⊆ ∆. Suppose H : ∆

2× [0, 1] → Θ̃
be an operator with following conditions are satisfying,
τ0) ℘α ̸= H(℘α, ϖα, s), ϖα ̸= H(ϖα, ℘α, s), for each
℘α, ϖα ∈ ∂∆ and s ∈ [0, 1] ;

τ1) for all ℘α, ϖα, ıα, ȷα ∈ ∆, s ∈ [0, 1] and η, θ ∈ Ω,
Γ ∈ C∗ and κ̃ ∈ C̃ with ||κ̃|| < 1such that

η
(
d̃c∗ (H(℘α, ϖα, s),H(ıα, ȷα, s))

)
≼ Γ

(
η
(
κ̃d̃c∗(℘α, ıα)κ̃

∗
)
, θ
(
κ̃d̃c∗(ϖα, ȷα)κ̃

∗
))

.

τ2) ∃ M̃ ∈ C̃+ ∋
d̃c∗(H(℘α, ϖα, s),H(℘α, ϖα, t)) ≼ ||M̃ |||s− t|
for every ℘α, ϖα ∈ ∆and s, t ∈ [0, 1].
Then H(., 0) has a coupled fixed point ⇐⇒ H(., 1) has a
coupled fixed point.
Proof: Let the set

Θ =

 s ∈ [0, 1] : H(℘α, ϖα, s) = ℘α,
H(ϖα, ℘α, s) = ϖα,
for some ℘α, ϖα ∈ ∆


Suppose that H(., 0) has a coupled fixed point in ∆2, we
have that (0, 0) ∈ Θ2. So that Θ is non-empty set. Now we
show that Θ is both closed and open in [0, 1] and hence by the
connectedness Θ = [0, 1]. As a result, H(., 1) has a coupled
fixed point in ∆2. First we show that Θ closed in [0, 1].
To see this, Let

{
sαp

}∞
p=1

⊆ Θ with sαp → sα′ ∈ [0, 1]
as p → ∞. We must show that sα′ ∈ Θ. Since sαp ∈ Θ
for p = 0, 1, 2, 3, · · ·, there exists sequences

{
℘αp

}
,
{
ϖαp

}
with ℘αp = H(℘αp , ϖαp , sαp), ϖαp = H(ϖαp , ℘αp , sαp).
Consider

d̃c∗(℘αp , ℘αp+1)

= d̃c∗
(
H(℘αp , ϖαp , sαp),H(℘αp+1 , ϖαp+1 , sαp+1)

)
≼ d̃c∗

(
H(℘αp , ϖαp , sαp),H(℘αp+1 , ϖαp+1 , sαp)

)
+d̃c∗

(
H(℘αp+1 , ϖαp+1 , sαp),H(℘αp+1 , ϖαp+1 , sαp+1)

)
≼ d̃c∗

(
H(℘αp , ϖαp , sαp),H(℘αp+1 , ϖαp+1 , sαp)

)
+||M̃ |||sαp − sαp+1 |.

Letting p→ ∞, we get

lim
p→∞

d̃c∗(℘αp , ℘αp+1)

≼ lim
p→∞

d̃c∗
(
H(℘αp , ϖαp , sαp),H(℘αp+1 , ϖαp+1 , sαp)

)
.

Since η, θ are continuous and non-decreasing, we obtain

lim
p→∞

η
(
d̃c∗(℘αp

, ℘αp+1
)
)

≼ lim
p→∞

η
(
d̃c∗
(
H(℘αp , ϖαp , sαp),H(℘αp+1 , ϖαp+1 , sαp)

))
≼ lim

p→∞
Γ

 η
(
κ̃d̃c∗(℘αp , ℘αp+1)κ̃

∗
)
,

θ
(
κ̃d̃c∗(ϖαp , ϖαp+1)κ̃

∗
) 

≼ lim
p→∞

η
(
κ̃d̃c∗(℘αp , ℘αp+1)κ̃

∗
)
.

By the definition of η, and ||κ̃|| < 1 it follows that

lim
p→∞

||d̃c∗(℘αp , ℘αp+1)|| ≤ lim
p→∞

||κ̃d̃c∗(℘αp , ℘αp+1)κ̃
∗||

≤ ||κ̃||2 lim
p→∞

||d̃c∗(℘αp , ℘αp+1)||.

So that

lim
p→∞

d̃c∗(℘αp , ℘αp+1) = 0̃C̃ .

IAENG International Journal of Applied Mathematics

Volume 54, Issue 3, March 2024, Pages 518-523

 
______________________________________________________________________________________ 



Now for q > p, by use of triangular inequalilty , we have

d̃c∗
(
℘αp , ℘αq

)
≼ d̃c∗

(
℘αp , ℘αp+1

)
+ d̃c∗

(
℘αp+1 , ℘αp+2

)
+d̃c∗

(
℘αp+2 , ℘αp+3

)
+ · · ·+ d̃c∗

(
℘αq−2 , ℘αq−1

)
+d̃c∗

(
℘αq−1 , ℘αq

)
→ 0 as p, q → ∞.

Hence
{
℘αp

}
is a Cauchy sequence in C∗-algebra valued

fuzzy soft metric spaces (Θ̃, C̃, d̃c∗) . Similarly we can show
that

{
ϖαp

}
, is Cauchy sequence in (Θ̃, C̃, d̃c∗) and by the

completeness of (Θ̃, C̃, d̃c∗) , there exist uα′ , vα′ ∈ Θ with

lim
p→∞

℘αp+1 = uα′ lim
p→∞

℘αp lim
p→∞

ϖαp+1 = vα′ = lim
p→∞

ϖαp

we have

η
(
d̃c∗ (uα′ ,H(uα′ , vα′ , sα′))

)
= lim

p→∞
η
(
d̃c∗
(
H(℘αp , ϖαp , sα′),H(uα′ , vα′ , sα′)

))
≼ lim

n→∞
η
(
κ̃d̃c∗(℘αp , uα′)κ̃∗

)
= 0.

It follows that H(uα′ , vα′ , sα′) = uα′ . Similarly, we can
prove H(vα′ , uα′ , sα′) = vα′ . Thus sα′ ∈ Θ. Hence Θ is
closed in [0, 1]. Let sα0 ∈ Θ, then there exist ℘α0 , ϖα0 ∈ ∆
with ℘α0 = H(℘α0 , ϖα0 , sα0), ϖα0 = H(ϖα0 , ℘α0 , sα0).
Since ∆ is open, then there exist r̃ > 0 such that
Bdc∗ (℘α0 , r̃) ⊆ ∆. Choose sα′ ∈ (sα0 − ϵ, sα0 + ϵ)
such that |sα′ − sα0 | ≤ 1

||M̃p|| <
ϵ
2 , then for

℘α′ ∈ B ˜dc∗
(℘α0 , r̃)

=
{
℘α′ ∈ Θ/d̃c∗(℘α′ , ℘α0) ≤ r̃ + d̃c∗(℘α0 , ℘α0)

}
.

Now we have

d̃c∗ (H(℘α′ , ϖα′ , sα′), ℘α0)

= d̃c∗ (H(℘α′ , ϖα′ , sα′),Hb(℘α0 , ϖα0 , sα0))

≼ d̃c∗ (H(℘α′ , ϖα′ , sα′),H(℘α′ , ϖα′ , sα0))

+d̃c∗ (H(℘α′ , ϖα′ , sα0),H(℘α0 , ϖα0 , sα0))

≼ ||M̃ |||sα′ − sα0 |
+d̃c∗ (H(℘α′ , ϖα′ , sα0),H(℘α0 , ϖα0 , sα0))

≼ d̃c∗ (H(℘α′ , ϖα′ , sα0),H(℘α0 , ϖα0 , sα0))

+
1

||M̃p−1||
.

Letting p→ ∞, we obtain

d̃c∗ (H(℘α′ , ϖα′ , sα′), ℘α0)

≼ d̃c∗ (H(℘α′ , ϖα′ , sα0),H(℘α0 , ϖα0 , sα0)) .

Since η, θ are continuous and non-decreasing, we obtain

η
(
d̃c∗ (H(℘α′ , ϖα′ , sα′), ℘α0)

)
≼ η

(
d̃c∗ (H(℘α′ , ϖα′ , sα0

),H(℘α0
, ϖα0

, sα0
))
)

≼ Γ
(
η(κ̃d̃c∗(℘α′ , ℘α0)κ̃

∗), θ(κ̃d̃c∗(ϖα′ , ϖα0)κ̃
∗)
)

≼ η
(
κ̃d̃c∗(℘α′ , ℘α0))κ̃

∗
)
.

Since η is non-decreasing, we have

||d̃c∗ (H(℘α′ , ϖα′ , sα′), ℘α0) || ≤ ||κ̃d̃c∗(℘α′ , ℘α0))κ̃
∗||

≤ ||κ̃||2||d̃c∗(℘α′ , ℘α0))||
≤ r + ||d̃c∗(℘α0 , ℘α0)||.

Similarly, we can prove,

||d̃c∗ (H(ϖα′ , ℘α′ , sα′), ϖα0) || ≤ r + ||d̃c∗(ϖα0 , ϖα0)||.

Thus for each fixed sα′ ∈ (sα0 − ϵ, sα0 + ϵ),
H(., sα′) : B ˜dc∗

(℘α0 , r̃) → B ˜dc∗
(℘α0 , r̃),

H(., sα′) : B ˜dc∗
(ϖα0

, r̃) → B ˜dc∗
(ϖα0

, r̃). Then all con-
ditions of Theorem IV are satisfied. Thus we conclude
that H(., sα′) has a coupled fixed point in ∆

2
. But this

must be in ∆2 since (τ0) holds. Thus, sα′ ∈ Θ for any
sα′ ∈ (sα0 − ϵ, sα0 + ϵ). Hence (sα0 − ϵ, sα0 + ϵ) ⊆ Θ.
Clearly Θ is open in [0, 1]. For the reverse implication, we
use the same strategy.

V. CONCLUSION

This paper finishes various applications to homotopy the-
ory via coupled fixed point theorems for C∗-class functions
in the setting up of C∗-algebra valued fuzzy soft metric
spaces.

Significance Statement

This study proposed a framework for establishing fixed point
results in C∗-algebra valued fuzzy soft metric spaces using
generalised contractions of C∗-class functions. The findings
of this study will help to broaden the generalisation of
various contractions in C∗-algebra valued fuzzy soft metric
spaces and other metric spaces, facilitating their use in
Homotopy theory. As a result, a novel framework for fuzzy
soft metric spaces with C∗-algebra values can be established.
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