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Abstract—Hemodynamics in stenosed arteries is complex,
including turbulence, recirculation, and vortices, which can
further worsen the disease. This study provides an overview
of blood flow characteristics in stenosed arteries, focusing on
flow physics, stenosis geometry, and severity. This present article
examines the impact of heat and mass exchange on blood flow
in arterial stenosis, taking into account chemical processes,
magnetic fields, and thermal radiation. The features of vital
fluid (blood) in the constricted arterial tube are examined
by taking blood as Newtonian fluid in the arterial stenosis
region. The continuity (mass), momentum, and concentration
equations are solved using a finite difference approach with the
help of appropriate boundary conditions. Solutions have been
established for axial velocity, temperature, and concentration
equations with variable parameters in blood circulation. It
is noticed that an enhancement in the Reynolds number
indicates more disorder in the velocity of the blood flow
near the downstream area of cholesterol or plaque deposition.
The temperature profile induced is stronger nearer to the
arterial complaint wall downstream of stenosis. These findings
for RBC’s flow in stenosis-contained arteries have significant
advantages in terms of understanding the disease mechanisms,
developing accurate computational models, and identifying
effective treatment strategies for patients.

Index Terms—Blood flow; Concentration profile; Influence
of mass and heat transfer; Magnetic; Mathematical modelling;
Porous and radiation parameters.

I. INTRODUCTION

THE discussion of blood movement through an artery ac-
companied by stenosis plays a significant role in many

cardiovascular diseases. The character of blood depends on
the hematocrit level where the whole red blood cells are
occupied. The level of hematocrit in blood flow defines the
relationship as the value of artery diameter reduces, and the
RBC’s level in the stenosed artery also reduces, as observed
by the Fahraeous effect. Stenosis is an important factor in
the cause of death in various cases. Stenosis is nothing but
the narrowing of blood vessels or various tubes in the human
body. Due to such narrowing, the blood flow in blood vessels
thickens and causes diseases that, in severe cases, lead to
death. The accumulation of fat and propagation of connective
nerves in an arterial stenosis wall lead to the formation of
plaques, which grow inward and restrict blood movement in

Manuscript received July 13, 2023; revised January 04, 2024. G.Shankar
is a research scholar, Department of Mathematics, College of Engineering
and Technology, Faculty of Engineering and Technology, SRM Institute of
Science and Technology, SRM Nagar, Kattankulathur-603203, Chengalpattu
District, Tamil Nadu, INDIA (e-mail:sg1710@srmist.edu.in).

*E.P.Siva is an Associate Professor at Department of Mathematics, Col-
lege of Engineering and Technology, Faculty of Engineering and Technol-
ogy, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-
603203, Chengalpattu District, Tamil Nadu, INDIA (corresponding author
to provide email:sivae@srmist.edu.in).

the human body. In the cardiovascular system, the system
transports nutrients and unused products from one part of
the body to the other. The main function of the system
is to provide oxygenated blood to every tissue over the
arteries; thus, sufficient vital fluid blood rotation is required.
If the blood gets thickened due to stenosis, the function
is not performed properly, and so it causes severe arterial
diseases. Leading causes of death due to heart dysfunction
such as atherosclerosis, arteries becoming stenosed, and the
hardening of tissues due to the formation of plaque and
cholesterol.

The variety in the red blood cell region and how
it affects the blood’s rheological characteristics, including
yield stress, are considered through two different approaches.
One is collected from healthy and unhealthy donors, and
the next is washing red cells a different number of times
in saline, as investigated experimentally by Cokelet [1].
Young [2] discovered the impact of a time-varying blockage
(stenosis) on the flow of fluid inside a tube. Vitro models
(experimental) for separated flow can occur in the down-
stream areas, as explained by Young and Tsai [3]. Haldar
[4] says that narrowing can take on different shapes, and
this study is interested in understanding how these different
shapes will impact blood flow resistance through the artery.
Additionally, non-Newtonian and Newtonian blood flowing
inside tapered arteries containing stenosis depositions was
inspected by Misra [5] and Chakravarty [6]. Therefore, it
seems that the effects of vessel tapering and stenosis shape
on flow characteristics are equally significant and thus call for
special consideration. David et al. [7]- [9] discovered the flow
properties of blood are affected by factors and the presence
of obstructions or constrictions in the blood vessels. They
explained the circulatory system and physical behaviour of
blood flow in arteries and veins, microcirculation, analogue
models, and the finite difference scheme to solve the chosen
governing equations. This study examines the pulsatile nature
of the flow through arteries, which generates a dynamic
environment that forms as a result of many interesting and
fundamental unsteady fluid mechanics questions. Ponala-
gusamy [10] and Mishra et al. [11] studied two-layered
models and composite types of stenosis, which are made up
of different layers and can affect the performance of blood
flow as it passes through.

Magnetohydrodynamics (MHD) is the study of the
movement of conducting fluids through the effect of a
magnetic field. If a magnetic field is applied to the conduct-
ing fluids, it conducts electricity and induces electric and
magnetic fields. Bhavya et al. [12] analysed the influence
of temperature distribution on blood flow over an inclined
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porous stenosed artery with heat. Additionally, they assumed
that the viscosity of blood varies with hematocrit, specifically
within the artery region.

The radiation effect in human blood has a signifi-
cant role in treatments. The radiation affects the cancerous
tissues by overheating them with electromagnetic radiation.
The procedure involves the transmission of heat over the
affected area through the surface of the skin into the tissues
and muscles. By heating them to high temperatures, they
speed up healing by increasing blood flow. Sinha et al.
[13] theoretically analysed the magnetohydrodynamic flow of
vital fluid in capillaries and analysed the effect of temperature
and velocity of the blood. Chakravarty and Mandal [14] have
discussed the character of the blood flow and found the
behaviour of streamlines, flow velocity, pressure drop, and
Wall Shear Stress (WSS). They have also found that temper-
ature and concentration have less influence on unsteady blood
movements in irregularly multi-stenosed arteries. Sreeparna
and Shit [15] have explained the disparity of the velocity
along the radial track with distinct values of the parameter
and at dissimilar places of the stenosed artery. Also, the
condition of the stenosed artery plays a significant role in
the influence of the parameter. The parameter calculates the
value in accordance with the velocity, viscosity, pressure,
length of the blood vessel, or arterial difference obtained
by the difference in these aspects in the stenosed region.
Tashtoush and Magableh [16] conducted a study on the
influence of magnetic fields on the geometry of arteries with
multiple stenoses. Moreover, the heat transfer acts by induc-
ing a static magnetic field. Prakash and Makinde [17] studied
the heat transmission to fluid movement over the stenosis
artery in the presence of MHD. The literature survey [18]-
[20] reports the effect and the factors that affect the blood
flow in arterial stenosis. The unsteady flow of blood over the
arterial stenosis with radiative heat transfer, magnetic field,
pressure gradient, and velocity profile is studied. Nadeem
and Ijaz [21] concluded that the resistance impedance and
the flow and pressure difference both give the best results
for converging and diverging tapering, respectively.

Yadong [22] and Mekheimer et al. [23] investigated
the mixed convection influence of thermal (heat) and mass
transfer in 2D pulsatile and micropolar blood flow through a
tapered stenosed artery. Yadong observed the velocity profile
of blood and gave valuable suggestions on heat and mass
transfer. The natural convection of temperature and concen-
tration of a couple stress fluids with silver nanoparticles
through tapered stenosed arteries is explained by Ramana et
al. [24]. It has been shown that the Nusselt number is directly
proportional to the volume fraction and enhances molecular
heat dispersal by increasing the concentration of nanopar-
ticles. Nadeem [25] and Umadevi et al. [26] explained
metallic and mixed copper water-based nanofluid inside a
curved artery with the presence of a permeable wall and
magnetic field. Umadevi concluded that Cu-water has higher
flow resistance than pure water due to copper-enhancing
artery flexibility. Ponalagusamy and Priyadharshini [27]-
[29] analyzed two types of fluid (plasma and micropolar)
in the peripheral layer through a tapered stenosed artery
and extended their research with the help of a variable
magnetic field and acceleration of the periodic body. They
found the trapping bolus size is increasing in couple stress

fluid compared to Newtonian fluid. Furthermore, hematocrit
and WSS are directly proportional to each other. A 2D
rheological blood flow model in a tapered diseased stenosis
artery was solved by using the finite element method, which
was explained by Dubey and Vasu [30]. Also, consider the
blood flow model, Eringen micropolar. They reveal that the
pulsatile parameters have the opposite behaviour as WSS.
Ameenuddin et al. [31] modeled a set of non-linear governing
equations indicating the variations in shear rate and the
concentration of hematocrit level in human blood.

Model of K.L. fluid blood flow in a constricted
tapered artery without a slip condition on the wall and time-
dependent constriction discussed by Ponalagusamy [32]. The
K-L model was compared to both Newtonian and non-
Newtonian fluids in terms of velocity field, wall shear
stress, and resistive impedance. They discovered that the
flow properties of K-L fluid differ from those of Casson
fluid depending on the values of the K-L fluid parameters
used. Prasad et al. [33] analysed the unique properties of
blood flow in a specific type of artery (porous tapered artery)
with mild stenoses, particularly focusing on how an external
magnetic field affects this flow. Furthermore, it was found
that as the speed of the applied magnetic field increases, the
shear stress also rises accordingly. Conversely, when there
is an increment in the permeability parameter, the shear
stress decreases. The influence of both variable and constant
viscosity on the Bingham plastic blood model, along with the
transverse magnetic field in tapered arteries, was discovered
by Veena [34] and Devaki et al. [35]. They came to the
conclusion that when the Womersley number is high, the
rate of change in the volumetric flow rate inside the artery is
lower over time. Increasing the Darcy number can improve
the flow rate at the beginning and end of stenosis, but there
were no significant changes in wall shear stress when the
Womersley number was high. Bhavya and Sharma [36] stud-
ied the influences of varying viscosity on arterial blood flow
within inclined arteries under the influence of a magnetic
field while considering the presence of chemical reactions.
As a result of this impact, strong magnetic field intensity will
create plaque rupture, which can harm the body by paralysing
the affected area. Pulsatile blood flow through an elastic
artery with the introduction of a uniform magnetic field was
described by Sadeghi et al. [37] and Kumar [38]. They reveal
that the magnetic field has a larger effect on single stenosis
than on double stenosis. For maximum velocities, the effects
of the Hartmann number (Ha) on the artery wall shear stress
in the region affected by both single and multiple stenoses
indicate that an increasing Hartmann number increases shear
stress. Gudekote et al. [39] and Buzuzi [40], and Shankar
& Siva [41] investigated the influence of heat and mass
transfer on the peristaltic movement of an Eyring Powell
and non-uniform MHD Casson and Williamson fluid through
an inclined channel. Sweed et al. [42] and Das et al. [43]
explained the pulsatile blood and EMHD flow in asymmetric
and inclined channels, respectively.

Considering the aforementioned discussion, our pro-
posed study aims to explore the blood flow in a stenosed
artery of a Newtonian fluid in the presence of a magnetic
field, chemical reaction, thermal radiation, radiative heat flux,
and porous medium. Solutions have been established for the
axial velocity, temperature, and concentration equations of
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the blood flow inside an artery. To learn the characteris-
tics of blood flow, the velocity profile, temperature profile,
porous parameter, radiation parameter, and concentration
profile have been depicted for various ranges of magnetic
parameters.

II. MATHEMATICAL MODELING

In this current paper, we discuss the application of per-
meability (porous medium) for the learning of vital fluid
movement through the arterial stenosis in the occurrence of
MHD. The application of MHD to physiological problems is
gaining attention. Consider the model of incompressible vital
fluid flow through an arterial stenosis of stretch L. Moreover,
let us consider the cylindrical stenosed artery with a radius of
r̄, whereas the viscosity of the fluid is µ̄. The fluid flow can
be organised by smearing enough of a magnetic field. Let the
blood flow axis be considered as z. The channel is supposed
to be of cylindrical shape since the blood flow in the artery is
pipe flow in nature, with (ū, v̄, w̄) being the velocities along
(r̄, θ̄, z̄) direction. Let T̄w be the temperature of the outer
wall and C̄w be the concentration of the outer wall of the
artery. The geometry of the arterial stenosis [2] is symmetric
about the z̄ direction, which is given by

R̄(z̄)

R̄0

=

{
1 − δ0

2R0

(
1 + cos 2π

L0

(
z̄ − d̄ − L0

2

))
for d0 + L0 ≤ z̄ ≤ d0 + 4L0,

1 , otherwise.
(1)
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Fig. 1: Diagram of a stenosed artery

where L0 is the stenosis length and d0 the coaction of
stenosis. R̄(z̄), R̄0(z̄) are the stenosis radius and healthy
artery radius, respectively. n decide the compression profile
shape, and δ0 specifies the extreme height of the arterial
stenosis situated at

z̄ = d+
L0

n
1

(n−1)

. (2)

where n = 2 is the extreme height of the stenosis that arises
in the middle part of the arterial area.

z̄ = d+
L0

2
. (3)

Since it is considered that the blood is a Newtonian incom-
pressible fluid.

II-A. Governing Equations

The chosen governing equations of the fluid motion in the
cylindrical coordinates (r̄, z̄) are given by [12]:

ρ̄
∂ū

∂t̄
=− ∂p̄

∂z̄
+ µ̄

(
∂2ū

∂r̄2
+

1

r̄

∂ū

∂r̄

)
− µ̄

k0
ū

+ ρ̄ḡβ̄
(
T̄ − T̄0

)
− σ̄B̄2

0 ū+ ρ̄ḡγ̄
(
C̄ − C̄0

)
,

(4)

ρ̄C̄p
∂T̄

∂t̄
= K̄

(
∂2T̄

∂r̄2
+

1

r̄

∂T̄

∂r̄

)
− ∂q̄

∂r̄
, (5)

∂C̄

∂t̄
= D̄

(
∂2C̄

∂r̄2
+

1

r̄

∂C̄

∂r̄

)
+ Ē

(
C̄ − C̄0

)
. (6)

where B̄0 is the applied magnetic field, Ē is the chemical
reaction parameter, σ̄ is the electrical conductivity, ∂p̄

∂z̄ is
the represents pressure gradient, D̄ is the mass diffusivity,
ρ̄ is the density of the fluid, C̄p is the specific heat, K̄ is
the thermal conductivity, ∂q̄

∂r̄ is the radiation effect of heat
transfer and ū is the velocity of the blood flow in radial
direction. Where q̄ represents radiative heat flux in the region.
To solve the velocity, heat, and mass equations of the blood
using no-slip boundary conditions, which are measured in
the artery. The boundary conditions are as follows

u = 0, T = T̄w and C = C̄w at r̄ = R̄(z̄),

∂ū
∂r̄ = 0, ∂C̄

∂r̄ = 0 and ∂T̄
∂r̄ = 0 at r̄ = 0.

(7)

II-B. Non-Dimensional Analysis and Approximations

Now we assume the following non dimensional parameters
from [12]:

Re =
ρ̄R̄2

0ω

µ̄
, p =

R̄0p̄

ū0µ̄
, z =

z̄

R̄0
, t = ω̄t̄, R(z) =

R̄(z̄)

R̄0
,

Ē =
Eµ̄

ρ̄R̄2
0

, r =
r̄

R̄0
, u =

ū

ū0
, θ =

T̄ − T̄0

T̄w − T̄0
, N2 =

4R̄2
0α

2

K̄
,

M2 =
σ̄B̄2

0R̄
2
0

µ̄
, σ =

C̄ − C̄0

C̄w − C̄0
, Gr =

ρ̄ḡβ̄R̄2
0

(
T̄w − T̄0

)
ū0µ̄

,

Gc =
ρ̄ḡγ̄R̄2

0

(
C̄w − C̄0

)
ū0µ̄

; Pe =
ρ̄c̄pR̄

2
0ω̄

K̄
; Sc =

µ̄

ρ̄D̄
.

The equation of velocity, heat and mass transfer equation of
the cylindrical section in the dimensionless form is given by

−∂p

∂z
+

(
∂2u

∂r2
+

1

r

∂u

∂r

)
+Grθ−

(
M2 +

1

k

)
u+Gcσ = Re

∂u

∂t
,

(8)

where k =
k0
R̄2

0

.

pe
∂θ

∂t
=

(
∂2θ

∂r2
+

1

r

∂θ

∂r

)
−N2θ, (9)

Re
∂σ

∂t
=

1

Sc

(
∂2σ

∂r2
+

1

r

∂σ

∂r

)
− Eσ. (10)

The skin-friction coefficient (wall shear stress) is calculated
using Eq. (11), while the thermal (heat) flux (rate of thermal
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exchange) is calculated using Eq. (12).
The skin friction parameter on the wall is defined as

τw = −µ

(
∂u

∂r

)
at r = R (11)

The local Nusselt number parameter is defined as

Nu = −
(
∂θ

∂r

)
at r = R (12)

The equation that describes the rate at which mass is trans-
ferred through the wall of the artery is given by

Sh = −
(
∂σ

∂r

)
at r = R (13)

Where N is the thermal radiation, E is the chemical reaction
quantity, and M, k are the magnetic and porous parameters,
respectively. Applying the non-dimensional quantity in
equation [1], the arterial stenosis is given by

R(z) =

{
1− δ

2

(
1 + cos 2π

(
z − d− 1

2

))
, d0 + 1 ≤ z ≤ d0 + 4,

1 , otherwise.
(14)

III. BOUNDARY CONDITIONS

The dimensional boundary conditions are as follows:

u = 0, T = T̄w and C = C̄w at r̄ = R̄(z̄),

∂ū
∂r̄ = 0, ∂T̄

∂r̄ = 0 and ∂C̄
∂r̄ = 0 at r̄ = 0.

The respective non-dimensional boundary conditions are
given by

u = 0, θ = 1, σ = 1 at r = R(z),

∂u
∂r = 0, ∂θ

∂r = 0, ∂σ
∂r = 0 at r = 0.

(15)

IV. NUMERICAL APPROACH

The respective non-dimensional boundary condition let us
first apply the finite difference discretization scheme to
discretize nonlinear equations (8–10). We use the central
difference approximations to solve the spatial derivatives
and the explicit forward finite difference approximations to
discretize the time derivative in the following manner are
given by

u =

[
un+1
i + un

i

2

]
,
∂u

∂t
=

[
un+1
i − un

i

∆t

]
,

θ =

[
θn+1
i + θni

2

]
, σ =

[
σn+1
i + σn

i

2

]
,

∂u

∂r
=

1

2

[
un+1
i+1 − un+1

i−1 + un
i+1 − un

i−1

2 (∆r)

]
,

∂2u

∂r2
=

[
(un+1

i+1 − 2un+1
i + un+1

i−1 ) + (un
i+1 − 2un

i + un
i−1)

2 (∆r)
2

]
,

− ∂p

∂z
+

[
(un+1

i+1 − 2un+1
i + un+1

i−1 ) + (un
i+1 − 2un

i + un
i−1)

2(∆r)2

]

+
1

2r

[
un+1
i+1 − un+1

i−1 + un
i+1 − un

i−1

2(∆r)

]
+Gr

[
θn+1
i + θni

2

]
− (M2 +

1

k
)

[
un+1
i + un

i

2

]
+Gc

[
σn+1
i + σn

i

2

]
= Re

[
un+1
i − un

i

∆t

]
,

(16)

Pe

[
θn+1
i − θni

∆t

]
=

1

2r

[
θn+1
i+1 − θn+1

i−1 + θni+1 − θni−1

2(∆r)

]

+

[
(θn+1

i+1 − 2θn+1
i + θn+1

i−1 ) + (θni+1 − 2θni + θni−1)

2 (∆r)
2

]

−N2

[
θn+1
i + θni

2

]
,

(17)

Re

[
σn+1
i − σn

i

∆t

]
=

1

Sc

[
σn+1
i+1 − σn+1

i−1 + σn
i+1 − σn

i−1

4r(∆r)

]

+
1

Sc

[
(σn+1

i+1 − 2σn+1
i + σn+1

i−1 ) + (σn
i+1 − 2σn

i + σn
i−1)

2(∆r)2

]

− E

[
σn+1
i + σn

i

2

]
.

(18)

V. RESULTS AND DISCUSSION

In this part, the effect of the velocity (u) profile,
temperature distribution profile (θ), and concentration
profile (σ) of the blood flow on various pertinent parameters
has been elaborately discussed. In this segment, we collected
measurements to see how different factors affect the thing
we were looking into. porous parameter (k), Reynolds
number (Re), magnetic influence (M), Grashof number
(Gr), mass Grashof number (Gc), thermal radiation effect
(N), Peclet number (Pe), Schmidt number (Sc), a chemical
reaction (E), various heights of stenosis (δ), four separate
time periods (t), and the profiles of velocity, temperature,
and concentration are some of the things that these factors
take into account. Additionally, we look at how stenosis
acts in terms of speed and time.

Figures 2–17 show how these factors change things,
and we explain in detail the significance of those changes.
It includes four subsections in this part. The first part is
all about looking at how the dimensionless axial velocity
profile changes when certain factors are changed. In the
parts that follow, we will discuss how different factors affect
dimensionless temperature and concentration profiles, as
well as how stenosis behaves. Table I provides the default
settings for the parameters utilised in the graphical analysis
of the model’s efficacy. Tables II, III, and IV present the
local skin friction, Nusselt number, and Sherwood number,
respectively. These tables account for various parameters,
such as the Reynolds number, magnetic field strength,
porous parameter, thermal and mass Grashof numbers,
Peclet number, and thermal radiation.
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Table I. The values of the parameters [12].

Parameters Values
Magnetic field parameter (M) 1-5

Grashof number (Gr) 1-6
Porous parameter (k) 0-1

Mass Grashof number (Gc) 1-6
Chemical reaction parameter (E) 0-2
Thermal radiation parameter (N) 2-10

Peclet number (Pe) 0-2
Schmidt number (Sc) 0-2
Eckert number (Ec) 0-2

Table II. Local skin friction.

Re M k Gr Gc Skin friction
1 2.23 0.5 3 3 0.1037
2 0.1166
3 0.1203
4 0.1220
5 1.5 0.5 3 2 0.1386

2.5 0.1365
3.5 0.1331
4.5 0.1285

5 2.23 0.2 3 3 0.1210
0.5 0.1228
0.7 0.1232
1 0.1235

5 2.23 0.5 1 2 0.1231
3 0.1240
5 0.1249
6 0.1259

5 2.23 0.5 3 1 0.0234
3 0.0249
5 0.0265
6 0.0280

Table III. Local Nusselt number.

Pe N Nusselt Number
1 2.5 0.0337
2 0.0429
3 0.0459
4 0.0473

1.5 1 0.0403
2 0.0363
3 0.0288
4 0.0203

Table IV. Local Sherwood number.

Sc E Re Sherwood number
0.5 0.2 3 3.3876
1 2.4568

1.5 1.8185
2 0.5178

0.8 0 2 2.2884
0.5 1.3827
0.8 1.0221
1 0.8356

1 1.5 2.5 4.7437
3 2.5728

3.5 1.5014
4 0.9312

V-A. Flow Characteristics

Figures 2–6 show the effects of various parameters
like magnetic field parameter (M), Grashof number (Gr),
Reynolds number (Re), porous parameter (k), and mass
Grashof number (Gc) on the velocity of the fluid flow. The
velocity distribution in the axial direction of blood flow de-
creases with respect to an increase in the magnetic parameter
(M). When blood flows through a magnetic field, erythro-
cytes align their disc plane parallel to the magnetic field’s
direction. This activity induces an increase in the internal
blood viscosity by increasing red blood cell concentration.
The variation in concentration of the haemoglobin molecule,
which is made of iron content, is figured out against the
magnetic field, which is depicted in figure 2. The blood flow
under the influence of an applied magnetic field is directly
proportional to the direction of the magnetic field (M). There
is a downturn in the velocity profile of the fluid (blood)
flow in stenosed arteries as the value of the applied magnetic
field parameter increases. The stenosis plays a vital role in
the increase and decrease of the chosen parameters. In the
arteries, the creation of plaque or stenosis disturbs the blood
flow rate. The geometry of stenosis affects the blood flow.
Figure 3 explains the characteristics of the velocity profile
of blood with the heat Grashof number. Elevated values of
the thermal Grashof number are indicative of a substantial
temperature gradient, which in turn generates a heightened
buoyancy force responsible for propelling the fluid motion.
The fluid experiences a greater buoyant force near the centre
due to higher temperatures, whereas the force at the wall is
comparatively smaller. It is noted that as the Grashof number
increases, the velocity of blood flow increases. It is detected
from Figure 4 that the behaviour of the velocity of blood
has a Reynolds number. It is noted that as it increases, the
velocity profile of blood flow decreases. The enhancement
of stress increases the potency of the magnetic field. The
streaming blood affects the flexibility of the wall, which
results in an increase in pressure. We observe that an increase
in Re causes more disorder in fluid (blood) velocity at the
downstream of the area of cholesterol or panel deposition,
and the temperature induced is strong near the arterial wall at
the downstream of stenosis. Figure 5 indicates the variation
of the permeability parameter with the velocity of blood. It
reveals that with an increase in the permeability parameter,
the velocity profile of blood flow enhances. Figure 6 shows a
profile of the velocity of blood with a mass Grashof number.
It is detected that as the mass Grashof number rises, the
velocity of blood flow increases.

V-B. Thermal Characteristics

The temperature profile in a stenosed artery can be affected
by the Peclet number because the convective transport of
blood can cause a significant mixing of heat in the fluid,
while the diffusive transport of heat is much slower. This
can result in a non-uniform temperature distribution in the
fluid, with a higher temperature near the core region of
the artery and a lower temperature near the wall. Figures
7 and 8 show a profile of the temperature of the blood with
thermal radiation and the Peclet number, respectively. It is
seen from Figure 7 that as the thermal radiation increases, the
temperature decreases. The temperature of the blood along
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the radial coordinates does not impact the blood flow. The
temperature in the stenosed artery does impact the thermal
radiation, which leads to a decrease in thermal radiation.
It is shown in Figure 8 that the Peclet number increases
with a decrease in temperature; this is due to heat transfer
and the thermal energy in the blood. For the values in the
Peclet number, the heat transfer in the blood causes the
temperature to decrease in the blood flow. The benefits of
thermal radiation in blood flowing inside the diseased artery
include its non-invasive, safe, and painless nature, accurate
measurements, early detection, and cost-effectiveness. These
benefits can lead to better diagnosis and treatment outcomes
for patients with blood flow diseases of the artery.

V-C. Concentration Profile

The concentration of the blood suppresses due to mass
diffusivity in the blood. It is noted from figures 9–10 that
both the Schmidt number (Sc) and chemical reaction pa-
rameter (E) increase with a decrease in the concentration of
blood flow in the arterial stenotic region. This phenomenon
could be observed as the buildup of specific substances
(reactants) and decreased levels of products, potentially
impacting the general physiology and functionality of the
circulatory system and the tissues it supplies. Figures 9 and
10 concluded that both the chemical reaction parameter and
Schmidt number have a direct impact on the concentration
profile, with an increase in either of them leading to a
decrease in the species concentration in the fluid. In the
case of blood flow in an artery that has narrowed, a smaller
Schmidt number could mean that solutes spread out better
and that substances are more evenly spread in the blood.
This could be because mass diffusion is working better, so
there are fewer sharp variations in concentration and the
concentration curve is smoother.

V-D. Behaviour of Stenosis

Figure 11 demonstrates a clear inverse relationship be-
tween the height of the stenosis δ and the axial velocity,
indicating that a rise in δ leads to a decrease in axial
velocity. In more accessible language, as the stenosis of
an artery increases, the axial blood flow velocity decreases.
The reduction in velocity can have significant implications
for hemodynamics and general perfusion inside the affected
arterial location. Figure 12 shows the results of the radial
velocity components changing over four different time peri-
ods when the narrowing of the artery is at its worst. These
flow speeds, on the other hand, are always positive. They
start at zero on the axis and build as you move away
from it until they reach a fixed value on the artery wall
surface. It looks like all of the shapes are sloping towards
the wall, which means they are open to nonlinear flow. In
clinical settings, it is very important to know how pressure
differences affect the speed of blood flow in vessels that
are narrowed. It helps doctors figure out how bad arterial
blockages are and plan the right treatments, like angioplasty
(a procedure to open up narrowed or blocked arteries) or stent
placement, to get blood flowing normally again and avoid
problems like thrombosis, embolism, or ischemia. Figure 13
depicts the relationship between blood flow velocity and
radial distance (r) under different pressure gradients. The

velocity (u) exhibits a negative correlation with the radius of
stenosis, such that an increase in the radius of stenosis leads
to a drop in velocity. Based on the Hagen-Poiseuille equation,
it can be observed that a slight increase in the radius leads
to a substantial increase in the flow rate, under the condition
that other variables, such as the viscosity and length of the
vessel, remain unchanged. The rate of blood flow is depicted
with respect to the radius of a healthy artery in Figure 14.
It demonstrates quite clearly that an increase in the velocity
of blood flow occurs whenever the radius of a healthy artery
expands. Figure 15 depicts the time-dependent variation of
wall shear stress for distinct Reynolds number values in a
condition of unstable blood flow. The data demonstrates that
when the Reynolds number increases from 1 to 4 throughout
the time cycle, there is a proportional rise in shear stress at
the artery wall. Furthermore, Figure 16 indicates the changes
in wall shear stress over time for various levels of an applied
magnetic field.

V-E. Skin friction, Nusselt number and Sherwood number
Skin friction in blood flow through stenotic arteries helps

explain biomechanical aspects that cause vascular disor-
ders. It helps assess risk, optimise treatment, and establish
preventative initiatives to improve patient outcomes. Upon
analysis of Table II, it becomes evident that the skin-friction
coefficient exhibits a positive correlation with the increasing
values of Re, k, Gr, and Gc, but it demonstrates a negative
correlation with the rising values of M. According to the data
presented in Table III, the Nusselt number exhibits an upward
trend as the Peclet number increases but experiences a
decline when the Nusselt number itself becomes larger. Table
IV reveals that the Sherwood number exhibits an opposite
trend in comparison to the chemical reaction, Reynolds, and
Schmidt numbers.

VI. VERIFICATION OUTCOME

The velocity of varying porous parameters is plotted in
Figure 17 and validated with previous results. The ongoing
problem implies the flow of Newtonian fluid in the pres-
ence of porous parameters. Bhavya et al. [12] solved and
experienced different non-Newtonian fluids without a porous
parameter. Based on this comparison, it is evident that the
findings of this inquiry are accurate and give simultaneous
results.
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VII. CONCLUSION

In this article, we have studied the behaviour of the blood
through a stenosed deposited artery in the occurrence of the
applying magnetic field. The investigation also considers the
role of heat and mass transfer in this context. By considering
the blood to be Newtonian fluid in the cylindrical region

(stenosed artery). This survey has explained the study of
stenosis in a cylindrical region with respect to the radial
coordinates, the momentum, temperature, and concentration
equation of the blood. The impact of the parameters on the
behaviour of the blood has been explained. The findings in-
dicate that the equations possess the capability to forecast the
behaviour of fluid flow in diverse situations. The information
about the impact of velocity, temperature, and concentration
is explained. The following points were summarised:

* The stenosis takes a prominent role in the increase
and decrease of the parameters. In the arteries, the
formation of plaque, or stenosis, disturbs the blood
flow rate. The geometry of stenosis affects the blood
flow.

* Under the influence of an applied magnetic field, the
flow of blood cells is directionally proportional to the
direction of the magnetic field (M). There is a downturn
in the velocity profile of the fluid (blood) flow in
stenosed arteries as the value of the applied magnetic
field parameter increases.

* An increment in the permeability parameter enhances
the velocity profile of blood flow.

* The streaming blood affects the flexibility of the wall,
which results in an increase in pressure. It is observed
that an increase in Re causes more disorder in blood
velocity downstream of the area of cholesterol or
plaque deposition; the temperature induced is strong
along the arterial wall downstream of stenosis.

* The temperature profile in the stenosed artery does
impact the thermal radiation, which leads to a decrease
in thermal radiation.

* The concentration of the blood suppresses due to mass
diffusivity in the blood.

* The inverse relationship between the height of the
stenosis (δ) and the axial velocity indicates that a rise
in (δ) leads to a decrease in axial velocity.

* The skin friction coefficient exhibits a positive correla-
tion with the increasing values of Re, k, Gr, and Gc, but
it demonstrates a negative correlation with the rising
values of M.

* The Nusselt number exhibits an upward trend as the
Peclet number increases but experiences a decline
when the Nusselt number itself becomes larger.

* The Sherwood number, which represents the mass flux
to the artery wall, falls as the Schmidt and Reynolds
numbers increase.
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NOMENCLATURE

u,w Velocity components of r and z axis
R(z) Stenosis radius
R̄0(z̄) Healthy artery radius

n Compression profile shape
δ0 Extreme height of the arterial stenosis
L0 Stenosis length
d0 Coaction of stenosis
B̄0 Applied magnetic field
∂p̄
∂z̄ Pressure gradient
T̄w Temperature of the outer wall
σ̄ Electrical conductivity
D̄ Mass diffusivity
K̄ Thermal conductivity
∂q̄
∂r̄ Radiation effect of heat transfer
q̄ Radiative heat flux
E Chemical reaction parameter
C̄w Concentration of the outer wall
N Thermal radiation
M Magnetic parameter
k Porous parameters
ρ̄ Density of the fluid
C̄p Specific heat

IAENG International Journal of Applied Mathematics

Volume 54, Issue 3, March 2024, Pages 532-541

 
______________________________________________________________________________________ 


	Introduction
	Mathematical Modeling
	Governing Equations
	Non‑Dimensional Analysis and Approximations

	Boundary Conditions
	Numerical Approach
	Results and Discussion
	 Flow Characteristics
	Thermal Characteristics
	Concentration Profile
	Behaviour of Stenosis
	Skin friction, Nusselt number and Sherwood number

	Verification outcome
	Conclusion
	References



