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Abstract—This paper studies the problem of under what
conditions the general nonlinear networks with directional
competition and perturbations to achieve fully distributed BS
(bipartite synchronization). For the norm bounded disturbances
with unknown upper bound, under the assumption that the
signed digraph is structurally balanced and contains a directed
spanning tree, a fully distributed observer-based adaptive
protocols is designed for BS problem of general nonlinear
networks with no leader and neural networks approximation.
For the disturbances generated by exosystems, based on a
disturbance observer, a fully distributed disturbance observer-
based adaptive protocol is proposed to make network achieve
bounded BS. In order to reduce the chattering phenomenon,
some adaptive gains and adaptive parameter vector of neural
networks approximation are proposed. Finally, the theoretical
results are verified by two numerical simulation examples.

Index Terms—Bipartite synchronization, competitive rela-
tionships, disturbances, nonlinear networks.

I. INTRODUCTION

S INCE competition and cooperation are ubiquitous in
social, biological, physical and other fields, in the last

decade, the research on the impact of competition and coop-
eration on network synchronization (consensus) behavior has
attracted more and more attention from scholars in various
related fields [1], [2], [3], [4], [5], [6], [7], [8]. A network
with competition and cooperation can be represented by a
signed digraph, where the positive edge represents cooper-
ation and the negative edge represents competition. Thus,
the consensus problem in a network with competitive and
cooperative relationships becomes the problem of studying
how to design consensus agreements based on signed graphs
[9]. Since Altafini’s pioneering work, there has been many
literature studies on the problem of consensus on signed
graphs, such as BS [1], [10], [11], [12], [13], [14], [15],
[16], modulus synchronization [17], interval BS [3] and so
on.

Depending on whether there is a leader, existing work on
BS can be divided into two categories, that is, leaderless

Manuscript received October 7, 2023; revised January 18, 2024.
This work was supported in part by the Natural Science Foundation of

Chongqing of China under Grant cstc2019jcyj-msxmX0109.
Chaoyang Li is a Postgraduate of School of Automation, Chongqing

University of Posts and Telecommunications, Chongqing, 400065, China
(e-mail: lcyeml@163.com).

Shidong Zhai is an Associate Professor of School of Automation,
Chongqing University of Posts and Telecommunications, Chongqing,
400065, China (corresponding author e-mail: zhaisd@cqupt.edu.cn).

Tianhong Zhou is a Postgraduate of School of Automation, Chongqing
University of Posts and Telecommunications, Chongqing, 400065, China
(e-mail: 1345638218@qq.com).

Hao Peng is a Postgraduate of School of Automation, Chongqing Univer-
sity of Posts and Telecommunications, Chongqing, 400065, China (e-mail:
penghcqupt@163.com).

BS [18], [19], [20], [21], [22] and leader-following BS [23],
[11], [24], [12], [25], [26]. In the absence of a leader, if
the system has its own dynamics, it is generally necessary
to obtain the coupling strength condition for all nodes to
achieve BS. Since these conditions generally depend on
the Laplacian matrix of the signed graph, the resulting
conditions are not fully distributed. In order to overcome
this problem, few fully distributed BS algorithms observer-
based were proposed in [19], [21], [22]. Under the undirected
signed graph, a adaptive BS strategy has been proposed
to guarantee BS for leaderless networks [19]. The finite-
time BS problem of first-order networks has been studied
in [20]. Some adaptive BS strategies have been designed
for general networks with input saturation [21], and gen-
eral nonlinear networks[22]. Leader-follower BS of linear
uncertain networks has been studied in [11]. The BS tracking
for networks with leader’s unknown input was addressed in
[24], and for higher-order heterogeneous nonlinear uncertain
networks, the same problem was studied in [12], where
agent nonlinear dynamics (including leader dynamics) are
general and unknown. When the topology is switching, [25]
addressed the leader-following BS for the nonlinear networks
subject to exogenous disturbances.

Due to the fact that actual systems can be affected by
various disturbances, it is very necessary to study the impact
of disturbances on the system. There are generally two types
of disturbance, one is the bounded disturbance, and the other
is the disturbance generated by external systems. For the BS
problem of networks, [20], [23], [11] addressed the condition
that the system is affected by bounded disturbance. Norm
bounded disturbances may come from inputs [20], [23], [11]
or from the system itself, such as in the case of nonlinear un-
certainties [19], [24], [22]. Under the Lipschitz-like nonlinear
condition, [25] addressed the BS problem of networks with
exogenous disturbances, and a leader-following BS method
based on disturbance observer is proposed. Based on the
above literature review, in the absence of leadership, there
is little literature on the impact of various disturbances on
the BS, especially the fully distributed protocol design.

Motivated by the above literature review, we will research
the leaderless BS problem of general nonlinear networks with
directed competitive relationships and disturbances. In this
paper, the situation that network nodes are subject to the
norm bounded disturbance and the external system distur-
bance is considered respectively. The main contributions of
this paper are the following three areas:

• First, unlike the works in [19], [24], [22], we consider
the bounded disturbances and disturbances generated by
exosystems, and obtain some fully distributed distur-
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bance observer-based adaptive protocols for the leader-
less BS problem.

• Second, compared with the Lipschitz-like nonlinear
condition [25], the general nonlinear systems with neu-
ral networks approximation are considered in this paper
and a modified adaptive gain vector is proposed to
estimate the unknown constant vector of approximation.

• Third, some adaptive gains and adaptive parameter
vectors of neural networks approximation are designed
for reducing the chattering phenomenon. For the dis-
turbances generated by exosystems, the bounded BS
is achieved by a fully distributed disturbance observer-
based adaptive protocol.

The paper is organized as follows. Section II presents
notations, some properties for digraphs, and the problem
formulation. Section III provides a fully distributed observer-
based adaptive protocol for the BS of general nonlinear
networks with bounded disturbances. Section IV gives a fully
distributed disturbance observer-based adaptive protocol for
the bounded BS of general nonlinear networks with distur-
bances produced from the external system. Section V gives
two numerical examples to verify the theorems deduced in
Sections III and IV. Section VI summarizes the conclusions
of this paper and describes the direction of future work.

II. PRELIMINARIES

A. Notations

The symbol ⊗ represents the Kronecker product.
diag(r1, · · · , rN ) represents a diagonal matrix consisting of
r1, · · · , rN . ∥ · ∥1, ∥ · ∥ and ∥x∥∞ represent the 1-norm,
2-norm and ∞-norm respectively. Let 1N denote an n-
dimensional column vector with each element equal to 1.
0 represents a matrix with elements all 0. X ≻ (≺)0 repre-
sents X is positive (negative) definite matrix, λmin(X) and
λmax(X) represent the minimum and maximum eigenvalues
for the symmetric matrix X respectively. In represents the
identity matrix of dimension n. The sgn(·) function is defined
as: when x > 0, sgn(x) = 1; x < 0, sgn(x) = −1; x = 0,
sgn(x) = 0.

B. Directed interaction graphs

In this subsection, we introduce some concepts of signed
digraph and some lemmas that will be used in the sequel.

Let V = {v1, · · · , vN} be the node set. The interactions
among nodes can be represented by the signed digraph G =
(V, E ,A), where E ⊂ V×V represents the edge set and A =
(aij) ∈ RN×N represents the weighted adjacency matrix.
The edge Eij ∈ E represents a node set (vi, vj) means vi
can receive information from vj . The coupling configuration
information for each edge in G is recorded in A. vi and vj
is cooperative if the weight aij > 0, vi and vj is competitive
if the weight aij < 0, and aij = 0 if (vi, vj) /∈ E . For any
pair of nodes vi, vj ∈ V that are not identical, there exists a
directed path from vj to vi in V which consists of a set of
directed edges, that is, (vi, vi1), · · · , (vi,k−1, vik), (vik, vj) ∈
E . The digraph is strongly connected, if there always exists
directed path from vj to vi for any two different agents in V .
For a node vj ∈ V , there always exists directed path for any
not identical node vi ∈ V ,the topology is called containing
a directed spanning tree. Let Lc = (lij) ∈ RN×N define the

Laplacian matrix of the signed digraph G, where lij = −aij ,
i ̸= j and lii =

∑N
j=1 |aij |.

Definition 1. [1] The signed digraph G is structurally
balanced if the node set can be separated into Va and
Vb, satisfying Va ∪ Vb = V and Va ∩ Vb = ∅ such that
∀vi, vj ∈ Vh(h ∈ {a, b}), aij ≥ 0 and ∀vi ∈ Vk1

, vj ∈
Vk2({k1, k2} = {a, b}), aij ≤ 0.

The gauge transformation matrices set is expressed as

P = {P = diag(p1, · · · , pn), pi ∈ {±1}}.

Lemma 1. [1] The signed digraph G is structurally balanced
if and only if ∃P ∈ P such that PAP has all nonnegative
elements.

Assumption 1. The signed digraph G is structurally bal-
anced and contains a directed spanning tree.

Lemma 2. [27] With Assumption 1, the node set V̄
can be separated into V̄a = {v̄1, · · · , v̄k} and V̄b =
{v̄k+1, · · · , v̄N}, such that
1) The subdigraph V̄a is strongly connected.
2) The node in V̄a has no neighbors in V̄b.

Without losing the generality, this paper assumes that V̄a =
{v1, · · · , vk} and V̄b = {vk+1, · · · , vN}. Based on Lemma
2, the Laplacian matrix Lc can be written as

Lc =

[
Lc1 0
Lc2 Lc3

]
,

where Lc1 ∈ Rk×k is the Laplacian matrix of V̄a, Lc3 ∈
R(N−k)×(N−k).

Lemma 3. [21], [24] The signed digraph G1 with the
Laplacian matrix Lc1 is strongly connected, there exists a
matrix R̄ = diag(r1, · · · , rk) ≻ 0, such that

min
zT x=0

xT L̂c1x ≥ λ2(L̂c1)

k
xTx,

where L̂c1 = R̄Lc1 + LT
c1R̄ with r = [r1, · · · , rk]T as the

left zero eigenvector for P1Lc1P1, λ2(L̂c1) is the second
minimum eigenvalue of L̂c1, P1z represents vector with all
positive elements.

Lemma 4. [28] For the Laplacian matrix Lc3, there exists
a diagonal matrix Ḡ = diag(g1, · · · , gN−k) ≻ 0 such that
ḠLc3 + LT

c3Ḡ ≻ 0.

C. Problem formulation

Consider the following general nonlinear network with N
agents defined on a signed digraph G

ẋi = Axi(t) +B[ui(t) + fi(xi, t) + di(t)], (1)

where i = 1, · · · , N , xi ∈ Rn is the state, ui ∈ Rm is the
control input, and di ∈ Rm is the disturbance. fi(xi, t) is the
smooth function, A ∈ Rn×n and B ∈ Rn×m are constant
matrices.

Assumption 2. [29], [19] The function fi(xi, t) satisfies

fi(xi, t) = ϕi(xi, t)wi + ςi(t), (2)

where wi ∈ Rq is an unknown constant parameter vector,
and ϕi(xi, t) ∈ Rm×q is a bounded continuous function
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matrices, ςi(t) ∈ Rm is a bounded approximation error
satisfying ∥ςi(t)∥∞ < υ with υ being a positive constant.

Assumption 3. The pair (A,B) is controllable.

Remark 1. Note that Assumption 2 holds, many well known
practical physical systems satisfy this condition, such as
robot manipulator dynamics [30], and yaw dynamics of
ship [31]. In fact, any smoothed nonlinear function can be
expressed as an approximate form of a neural network. With
Assumption 3, for the following Riccati inequality equation,
there exists a solution with Q ≻ 0.

QA+ATQ− 2QBBTQ+ In ≺ 0. (3)

Definition 2. If limt→∞∥xi(t)− pipjxj(t)∥ = 0, ∀i, j ∈ V ,
then the general nonlinear networks (1) can achieve BS.

Definition 3. The general nonlinear networks (1) can
achieve bounded BS if there exists a control input such that
∥eij(t)∥ ≤ β(∥eij(0)∥, t)+ε,∀i, j ∈ V , where ε is a positive
constant, eij(t) = xi(t)−pipjxj(t), and β(·, ·) is a class KL
function.

III. BOUNDED DISTURBANCES WITH UNKNOWN UPPER
BOUND

In this section, we will focus on designing a fully dis-
tributed observer-based adaptive protocol for the BS problem
of a general nonlinear networks (1) with no leader and
neural network approximation, while consider the bounded
disturbances di(t) with an unknown upper bound.

Assumption 4. Each agent is subject to a bounded distur-
bance, such that

∥di(t)∥∞ ≤ ω, i = 1, · · · , N,

where ω > 0 is an unknown bounded constant.

To solve the BS problem, we first design the state observer
as follows

˙̂xi(t) =Ax̂i(t) + (zi(t) + δi(t))BKηi(t),

żi(t) =ηTi (t)Γηi(t),
(4)

where x̂i ∈ Rn is the observer state, ηi =∑N
j=1 |aij |(x̂i − sgn(aij)x̂j) is the synchronization error of

the observer state, zi(t) denotes the adaptive gain with
zi(0) > 0, δi(t) = ηTi (t)Qηi(t), K = −BTQ with Q ≻ 0
being the solution of (3) and Γ = QBBTQ.

The following fully distributed observer-based adaptive
protocol is proposed to solve the BS problem

ui(t) =− ϕi(xi, t)ŵi(t) + (zi(t) + δi(t))BKηi(t)

+K (xi(t)− x̂i(t)) + γi(t)sgn(K(xi(t)− x̂i(t))),
(5)

where ŵi(t) is the estimation of wi, K = −BTQ with Q ≻
0 is the solution of (3), ŵi(t) is the solution of following
equation
˙̂wi(t) =−miϕ

T
i (xi, t)K (xi(t)− x̂i(t))−misi(ŵi(t)

− w̄i(t)),

˙̄wi(t) =nisi(ŵi(t)− w̄i(t)),

(6)

where mi and si are positive constants, γi(t) is the adaptive
gain defined by

γ̇i(t) =∥K(xi(t)− x̂i(t))∥1 − s̄i(γi(t)− γ̂i(t)),

˙̂γi(t) =s̄i(γi(t)− γ̂i(t)),
(7)

where s̄i is a positive constant.
Let x̃i = xi − x̂i be the observer error, w̃i = wi − ŵi,

˜̄w = wi − w̄i, the closed-loop dynamics can be expressed as

˙̃xi =(A+BK)x̃i +B[d̄i + γisgn(Kx̃i) + ϕiw̃i],

˙̂xi =Ax̂i + (zi + δi)BKηi,

˙̃wi =miϕ
T
i Kx̃i +misi(ŵi − w̄i),

˙̄̃wi =− nisi(ŵi − w̄i),

(8)

where d̄i = ςi + di, and ∥d̄i∥∞ ≤ ω + υ.
Let ¯̂x1 = [x̂T

1 , · · · , x̂T
k ]

T , ¯̂x2 = [x̂T
k+1, · · · , x̂T

N ]T with
x̂ = [¯̂xT

1 ,
¯̂xT
2 ]

T , η̄1 = [ηT1 , · · · , ηTk ]T , η̄2 = [ηTk+1, · · · , ηTN ]T

with η = [η̄T1 , η̄
T
2 ]

T , we have

η̄1 =(Lc1 ⊗ In)¯̂x1,

η̄2 =(Lc3 ⊗ In)¯̂x2 + (Lc2 ⊗ In)¯̂x1.
(9)

Let x̃ = [x̃T
1 , · · · , x̃T

N ]T , and γ = diag(γ1, · · · , γN ), then
the closed-loop dynamics can be expressed as

˙̃x =[IN ⊗ (A+BK)]x̃+ (IN ⊗B)[d̄

+ (γ ⊗ In)sgn(Kx̃) + ΦW̃ ],

˙̄η1 =[IN ⊗A+ Lc1(Z1 + δ̄1)⊗BK]η̄1,

˙̄η2 =[IN ⊗A+ Lc3(Z2 + δ̄2)⊗BK]η̄2

+ [Lc2(Z1 + δ̄1)⊗BK]η̄1,

˙̃W =misiΦ
T (IN ⊗K)x̃+mi(Ŵ − W̄ ),

˙̄̃
W =− nisi(Ŵ − W̄ ),

(10)

where sgn(Kx̃) = [sgn(Kx̃1)
T , · · · , sgn(Kx̃N )T ]T ,

Ŵ = [ŵT
1 , · · · , ŵT

N ]T , W̄ = [w̄T
1 , · · · , w̄T

N ]T , W̃ =

[w̃T
1 , · · · , w̃T

N ]T , ˜̄W = [ ˜̄wT
1 , · · · , ˜̄wT

N ]T , d̄ = [d̄T1 , · · · , d̄TN ]T ,
Φ = diag(ϕ1, · · · , ϕN ). Z1 = diag(z1, · · · , zk), Z2 =
diag(zk+1, · · · , zN ) with Z = diag(Z1, Z2), and δ̄1 =
diag(δ1, · · · , δk), δ̄2 = diag(δk+1, · · · , δN ) with δ =
diag(δ̄1, δ̄2).

Theorem 1. Suppose that Assumptions 1–4 hold. Under the
fully distributed observer-based adaptive protocol (5), the
general nonlinear networks (1) on the antagonistic digraph
can achieve BS.

Proof: Considering the following Lyapunov function

V1 = µV11 + V12 (11)

with

V11 =
k∑

i=1

1

2
ri(2zi + δi)δi +

k∑
i=1

1

2
ri(zi − β1)

2,

V12 =

N∑
i=k+1

1

2
gi(2zi + δi)δi +

N∑
i=k+1

1

2
gi(zi − β2)

2,

(12)

where µ, β1, β2 are positive constants, ri and gi are given
by Lemma 3 and Lemma 4.

Take the time-derivative of V11 along closed-loop system
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(10)

V̇11 =
k∑

i=1

[ri (zi + δi) δ̇i + riδiżi] +
k∑

i=1

ri (zi − β1) żi

=
k∑

i=1

ri (zi + δi) δ̇i +
k∑

i=1

ri (zi + δi − β1) żi

=2η̄T1
[(
Z1 + δ̄1

)
R⊗Q

]
˙̄η1

+
k∑

i=1

ri (zi + δi − β1) η
T
i Γηi

=η̄T1 [
(
Z1 + δ̄1

)
R⊗ (QA+ATQ)

−
(
Z1 + δ̄1

)
L̂c1

(
Z1 + δ̄1

)
⊗ Γ]η̄1

+ η̄T1
[(
Z1 + δ̄1 − β1Ik

)
R⊗ Γ

]
η̄1,

(13)
where L̂c1 = RLc1+LT

c1R. Define Π = [(Z1 + δ̄1)⊗ In]η̄1,
we have

ΠT [(Z1 + δ̄1)
−1P1r ⊗ 1N ] =η̄T1 (P1r ⊗ 1N )

=¯̂xT
1 (P

−1
1 (P1LT

c1P1)r ⊗ 1N )

=0,
(14)

where we use the fact that rTP1Lc1P1 = 0, with P1 =
diag(p1, · · · , pk). Because each element of P1r is positive,
we can get each element of P1(Z1 + δ̄1)

−1P1r⊗ 1N is also
positive. By Lemma 3, we have

ΠT (L̂c1 ⊗ In)Π ≥ λ2(L̂c1)

k
ΠTΠ

=
λ2(L̂c1)

k
η̄T1 [
(
Z1 + δ̄1

)2 ⊗ In]η̄1.

(15)

Substituting (15) into (13), we have

V̇11 ≤η̄T1 [
(
Z1 + δ̄1

)
R⊗ (QA+ATQ+ Γ)

−

(
λ2(L̂c1)

k
(Z1 + δ̄1)

2 + β1R

)
⊗ Γ]η̄1.

(16)

Taking the derivative of V12 along closed-loop system (10)

V̇12 =
N∑

i=k+1

[gi (zi + δi) δ̇i + giδiżi] +
N∑

i=k+1

gi (zi − β2) żi

=
N∑

i=k+1

gi (zi + δi) δ̇i +
N∑

i=k+1

gi (zi + δi − β2) żi

=2η̄T2
[(
Z2 + δ̄2

)
G⊗Q

]
˙̄η2

+
N∑

i=k+1

gi (zi + δi − β2) η
T
i Γηi

=η̄T2 [
(
Z2 + δ̄2

)
G⊗

(
QA+ATQ

)
−
(
Z2 + δ̄2

)
L̂c3

(
Z2 + δ̄2

)
⊗ Γ]η̄2

− 2η̄T2
[(
Z2 + δ̄2

)
GLc2

(
Z1 + δ̄1

)
⊗ Γ

]
η̄1

+ η̄T2
[(
Z2 + δ̄2 − β2IN−k

)
G⊗ Γ

]
η̄2,

(17)
where L̂c3 = GLc3 + LT

c3G with λ0 as the smallest eigen-
value.

By Lemma 4, we have

− η̄T2

[(
Z2 + δ̄2

)
L̂c3

(
Z2 + δ̄2

)
⊗ Γ

]
η̄2

≤− λ0η̄
T
2

[(
Z2 + δ̄2

)2 ⊗ Γ
]
η̄2.

(18)

By Young’s Inequality, we have

− 2η̄T2
[(
Z2 + δ̄2

)
GLc2

(
Z1 + δ̄1

)
⊗ Γ

]
η̄1

≤λ0

2
η̄T2

[(
Z2 + δ̄2

)2 ⊗ Γ
]
η̄2

+
2ρ2max(GLc2)

λ0
η̄T1

[(
Z1 + δ̄1

)2 ⊗ Γ
]
η̄1.

(19)

Choosing µ = λ2(L̂c1)
k (µ1 +

2ρ2
max(GLc2)

λ0
) and combining

(16)-(19), we have

V̇1 ≤µη̄T1
[(
Z1 + δ̄1

)
R⊗

(
QA+ATQ+ Γ

)]
η̄1

− η̄T1

[(
µ1

(
Z1 + δ̄1

)2
+ µβ1R

)
⊗ Γ

]
η̄1

+ η̄T2
[(
Z2 + δ̄2

)
G⊗

(
QA+ATQ+ Γ

)]
η̄2

− η̄T2

[(
λ0

2

(
Z2 + δ̄2

)2 − β2G

)
⊗ Γ

]
η̄2.

(20)

Choosing β1 ≥ 9µλmax(R)
4µ1

and β2 ≥ 9λmax(G)
2λ0

. By
Young’s Inequality, we have

V̇1 ≤µη̄T1
[(
Z1 + δ̄1

)
R⊗

(
QA+ATQ− 2Γ

)]
η̄1

+ η̄T2
[(
Z2 + δ̄2

)
G⊗

(
QA+ATQ− 2Γ

)]
η̄2

≤0.

(21)

Considering the following Lyapunov function

V2 =x̃T (IN ⊗Q) x̃+
1

mi
W̃T W̃ +

1

ni

˜̄WT ˜̄W

+
N∑
i=1

(γi − β3)
2
+

N∑
i=1

(γ̂i − β3)
2
,

(22)

where β3 being a positive constant that need to determine.
The derivative of V2 along closed-loop system (10) as

follows

V̇2 =2x̃T (IN ⊗Q) ˙̃x+
2

mi
W̃T ˙̃W +

2

ni

˜̄WT ˙̄̃
W

+ 2
N∑
i=1

(γi − β3) γ̇ + 2
N∑
i=1

(γ̂i − β3) ˙̂γ.

(23)

Note that

2x̃T (IN ⊗Q) ˙̃x

=x̃T
[
IN ⊗

(
QA+ATQ− 2Γ

)]
x̃+ 2x̃T (IN⊗QB) d̄

+ 2x̃T (IN ⊗QB) ΦW̃ + 2x̃T (γ ⊗QB)sgn(Kx̃).
(24)

On the one hand,

2

mi
W̃T ˙̃W +

2

ni

˜̄WT ˙̄̃
W

=2W̃TΦT (IN ⊗K) x̃+ 2siW̃
T (Ŵ − W̄ )

− 2si
˜̄WT (Ŵ − W̄ )

=2W̃TΦT (IN ⊗K) x̃+ 2
N∑
i=1

siw̃
T
i (ŵi − w̄i)

− 2

N∑
i=1

si ˜̄w
T
i (ŵi − w̄i)

=2W̃TΦT (IN ⊗K) x̃− 2
N∑
i=1

si(ŵi − w̄i)
2
.

(25)
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On the other hand,

2
N∑
i=1

(γi − β3) γ̇ + 2
N∑
i=1

(γ̂i − β3) ˙̂γ

=2
N∑
i=1

(γi − β3) [∥Kx̃i∥1 − s̄i(γi − γ̂i)]

+ 2
N∑
i=1

s̄i (γ̂i − β3) (γi − γ̂i)

=− 2
N∑
i=1

β3∥Kx̃i∥1 + 2
N∑
i=1

γi∥Kx̃i∥1

− 2
N∑
i=1

s̄i(γi − γ̂i)
2.

(26)

Substituting (24)-(26) to (23), we have

V̇2 =x̃T
[
IN ⊗

(
QA+ATQ− 2Γ

)]
x̃

+ 2x̃T (γ ⊗QB)sgn(Kx̃) + 2x̃T (IN⊗QB) d̄

− 2
N∑
i=1

β3∥Kx̃i∥1 + 2
N∑
i=1

γi∥Kx̃i∥1

− 2

N∑
i=1

s̄i(γi − γ̂i)
2 − 2

N∑
i=1

si(ŵi − w̄i)
2
.

(27)

By choosing β3 > θ, we can get

V̇2 ≤ x̃T [IN ⊗ (QA+ATQ− 2Γ)]x̃, (28)

where θ = ω + υ, x̃T
i QBsgn(Kx̃i) = −∥Kx̃i∥1. Thus, we

can derive that

V̇1 + V̇2 ≤µη̄T1
[(
Z1 + δ̄1

)
R⊗

(
QA+ATQ− 2Γ

)]
η̄1

+ η̄T2
[(
Z2 + δ̄2

)
G⊗

(
QA+ATQ− 2Γ

)]
η̄2

+ x̃T [IN ⊗ (QA+ATQ− 2Γ)]x̃

≤0.
(29)

Therefore, we can get V1 is bounded, η̄1, η̄2 and zi are
also bounded. We know that V̇1 ≡ 0 represents η̄1 ≡ 0 and
η̄2 ≡ 0, so η ≡ 0. Through LaSalle Invariance principle, we
have that η asymptotically converges to zero. In addition, we
can get V2 is bounded and

∫∞
0

x̃T x̃dt exists and is bounded,
x̃, W̃ , γi are also bounded, that x̃T ˙̃x is finite. By Barbalat’s
lemma [32], we can get that x̃ asymptotically converges to
zero. Therefore, the problem is solved.

Remark 2. Note that the observer-based adaptive protocol
(5) is fully distributed. Compared to literature [19], we
consider directed graphs and bounded disturbances. In this
paper, we provide the adaptation laws (6) and (7) which
can regard as adaptive form for the σ-modification [33].
The adaptation laws (6) and (7) can be seen as extensions
of laws in [24], [22], which avoid the overlarge gains and
reduce the chattering phenomenon.

IV. DISTURBANCES FROM EXTERNAL SYSTEMS

In this section, we consider the bounded BS problem for
a general nonlinear networks described by equation (1), with
no leader and neural network approximation. We assume
that the disturbances di(t) experienced by each agent are

produced by an external system described by the following
dynamics {

ξ̇i = Sξi,
di = Dξi,

(30)

where ξi ∈ Rn is the state of the external system (30), S ∈
Rn×n and D ∈ Rm×n are constant matrices.

Assumption 5. Suppose that (BD,S) is observable.

Remark 3. Note that in Assumption 2 there exist nonlinear
small residual errors. However, in this section we do not
consider the nonlinear small residual error, that is

∥ςi(t)∥∞ = 0, i = 1, · · · , N,

To solve the external disturbances, we design a disturbance
observer as shown below

ċi =(S + FBD)(ci − Fxi) + FAxi + FBui

+ FBϕi(xi, t)ŵi,

ξ̂i =ci − Fxi,

d̂i =Dξ̂i,

(31)

where ci ∈ Rn is the state and d̂i ∈ Rm is the output,
F ∈ Rn×n is needed to be designed such that S + FBD is
Hurwitz. x̂i, δi, zi and ηi are the same as they were defined
before. Assumption 5 ensures that there exists a matrix F .

To solve the bounded BS problem, the following fully
distributed disturbance observer-based adaptive protocol is
proposed

ui(t) =− ϕi(xi, t)ŵi(t) + (zi(t) + δi(t))BKηi(t)

+K (xi(t)− x̂i(t))− d̂i(t),
(32)

where d̂i(t) is the estimation of di(t), K = −BTQ with
Q ≻ 0 being the solution of (3), ŵi(t) is the estimation of
wi(t) as follows

˙̂wi(t) =− m̄iϕ
T
i (xi, t)K (xi(t)− x̂i(t))− m̄iκiŵi(t),

(33)
where m̄i and κi are positive constants.

Let x̃i = xi − x̂i, ei = ξi − ξ̂i and w̃i = wi − ŵi, then
one can get the closed-loop system as follows

˙̃xi =(A+BK)x̃i +B[ϕi(xi, t)w̃i +Dei],

ėi =(S + FBD)ei + FBϕi(xi, t)w̃i,

˙̃wi =m̄iϕi
T (xi, t)Kx̃i + m̄iκiŵi.

(34)

Let x̃ = [x̃T
1 , · · · , x̃T

N ]T , e = [eT1 , · · · , eTN ]T . The one can
get the following form of closed-loop system

˙̃x =[IN ⊗ (A+BK)]x̃+ (IN ⊗B)ΦW̃ + (IN ⊗BD)e,

ė =[IN ⊗ (S + FBD)]e+ (IN ⊗ FB)ΦW̃ ,

˙̃W =m̄iΦ
T (IN ⊗K)x̃+ m̄iκiŴ ,

(35)
where W̃ = [w̃T

1 , · · · , w̃T
N ]T , Φ = diag(ϕ1, · · · , ϕN ), Ŵ =

[ŵT
1 , · · · , ŵT

N ]T .

Theorem 2. Suppose that Assumptions 1-3 and Assump-
tion 5 are satisfied. Under the fully distributed disturbance
observer-based adaptive protocol (32), bounded BS of the
general nonlinear networks (1) on the antagonistic digraph
can be achieved.
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Proof: Considering the Lyapunov function

V3 =x̃T (IN ⊗Q) x̃+
1

m̄i
W̃T W̃ + µ̄eT (IN ⊗ Q̄)e,

(36)
where µ̄ is a positive constant to be determined, Q̄ ≻ 0 is
the solution of (S + FBD)T Q̄+ Q̄(S + FBD) ≺ 0.

Taking the derivative of V3 along closed-loop system (35),
we have

V̇3 =2x̃T (IN ⊗Q) ˙̃x+
2

m̄i
W̃T ˙̃W + 2µ̄eT (IN ⊗ Q̄)ė,

=x̃T
[
IN ⊗

(
QA+ATQ− 2Γ

)]
x̃+ 2κiW̃

T Ŵ

+ 2µ̄eT [IN ⊗ Q̄(S + FBD)]e+ 2x̃T (IN ⊗QBD) e

+ 2µ̄eT (IN ⊗ Q̄FB)ΦW̃ .
(37)

Note that

2x̃T (IN ⊗QBD)e ≤
N∑
i=1

x̃T
i x̃i +

N∑
i=1

eTi D
TBTQ2BDei

≤1

2

N∑
i=1

∥x̃i∥2 + 2τ1

N∑
i=1

∥ei∥2,

(38)
where τ1 = λmax(D

TBTQ2BD).

2κiW̃
T Ŵ =2κiW̃

TW − 2κiW̃
T W̃

=2κi

N∑
i=1

w̃T
i wi − 2κi

N∑
i=1

w̃T
i w̃i

≤κi

N∑
i=1

∥wi∥2 − κi

N∑
i=1

∥w̃i∥2,

(39)

where W = [wT
1 , · · · , wT

N ]T and κi is to be determined later.

2eT [IN ⊗ Q̄(S + FBD)]e

=2
N∑
i=1

eTi Q̄(S + FBD)ei

≤− τ2

N∑
i=1

ei
T ei = −τ2

N∑
i=1

∥ei∥2,

(40)

where τ2 = λmin(−2Q̄(S + FBD)).

2eT (IN ⊗ Q̄FB)ΦW̃ = 2

N∑
i=1

eTi Q̄FBϕiw̃i

≤τ2
2

N∑
i=1

eTi ei +
2

τ2

N∑
i=1

∥ϕi∥2∥Q̄FB∥2∥w̃i∥2

≤τ2
2

N∑
i=1

∥ei∥2 + τ3

N∑
i=1

∥w̃i∥2,

(41)

where τ3 = 2
τ2
∥Q̄FB∥2ϕmax, and ϕmax is the upper bound

of ∥ϕi∥2.

By choosing µ̄ = (4τ1+2α1)
τ2

, κi = µ̄τ3+α2, then we have

V̇3 ≤x̃T [IN ⊗ (QA+ATQ− 2Γ)]x̃+
1

2

N∑
i=1

∥x̃i∥2

− α1

N∑
i=1

∥ei∥2 − α2

N∑
i=1

∥w̃i∥2 + κi

N∑
i=1

∥wi∥2

≤− 0.5
N∑
i=1

∥x̃i∥2 − α1

N∑
i=1

∥ei∥2 − α2

N∑
i=1

∥w̃i∥2

+ κi

N∑
i=1

∥wi∥2

≤− α3V3 + κi

N∑
i=1

∥wi∥2,

(42)

where α1, α2 are positive numbers, and α3 =
min{1/2,α1,α2}

max{λmax(Q),1/m̄i,µ̄·λmax(Q̄)} . Let α4 = κi

∑N
i=1 ∥wi∥2.

Then the following inequality holds

V̇3 ≤ −α3

(
V3 −

α4

α3

)
,

which implies

V3 ≤ e−α3t

(
V3(0)−

α4

α3

)
+

α4

α3
.

Hence, one has

λmin(Q)∥x̃∥2 ≤ x̃T (IN ⊗Q) x̃

≤ V3

≤ e−α3t

(
V3(0)−

α4

α3

)
+

α4

α3
,

and bounded BS of the general nonlinear networks (1) is
achieved. Therefore, the problem is solved.

Remark 4. When the disturbances are generated by exosys-
tems (30), BS is difficult to achieve, and bounded BS can be
achieved by the fully distributed disturbance observer-based
adaptive protocol (32). The references [24], [22] did not
consider this situation and only addressed the BS problem.

V. TWO NUMERICAL EXAMPLES

This section will provide two numerical simulation ex-
amples to demonstrate the effectiveness of the theoretical
results obtained. We consider a third-order nonlinear network
consisting of six agents. The system matrix for the network
is expressed as follows

A =

0 1 0
0 0 1
0 0 0

 , B =

00
1

 ,

and nonlinear functions fi(xi, t) are assumed to be

fi(xi, t) = xi3 sin(xi2) + xi1 cos(xi3).

Then, we choose Q as the solution to the Riccati equation
(3)

Q =

5.1201 5.7017 2.1169
5.7017 10.4176 4.3302
2.1169 4.3302 3.0545

 .

It follows that K = [−2.1169,−4.3302,−3.0545].
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Fig. 1. The signed digraph with six agents, the digraph contains a directed
spanning tree and a strongly connected subdigraph. Edges without markers
all have a weight of 1.
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Fig. 2. Simulation results for the states xi1 of the network (1) under the
fully distributed observer-based adaptive protocol (5).

Example 1. This example considers the case where each
node is affected by bounded disturbances, which is expressed
as

di(t) = cos(xi2 + 1) + sin(xi1 + xi2).

Through the distributed state observer (4) and the adaptive
controller (5), the adaptive gain zi is mentioned in (4) with
zi(0) > 0, the adaptive control gain γi is mentioned in (7)
with s̄i = 1. In addition, the initial values of zi and γi are
random. The basic function is

ϕi = [sin(xi1 + xi2), sin(xi1 − xi2), cos(1 + xi2)],

and wi = [−1, 1, 1]T with si = 1. The interaction digraph
is shown in Fig. 1. According to Theorem 1, the network (1)
with the fully distributed observer-based adaptive protocol
(5) achieves the BS.

The state trajectories of xi are shown in Fig. 2, Fig. 3 and
Fig. 4 that achieve BS under the fully distributed observer-
based adaptive protocol (5). The states of agents diverge to
two sides. The tracking errors x̃i are shown in Fig. 5, Fig. 6
and Fig. 7. We can see that under the bounded disturbance
condition, the tracking error of x̃i asymptotically approaches
zero, which is consistent with our theoretical analysis. The
adaptive gain γi is shown in Fig. 8.

Example 2. In this example, we consider a scenario where
each agent in the third-order nonlinear network is affected

0 2 4 6 8

-3

-2

-1

0

1

2

3

4

Fig. 3. Simulation results for the states xi2 of the network (1) under the
fully distributed observer-based adaptive protocol (5).
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Fig. 4. Simulation results for the states xi3 of the network (1) under the
fully distributed observer-based adaptive protocol (5).
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Fig. 5. The tracking errors x̃i1 under the fully distributed adaptive protocol
(5).
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Fig. 6. The tracking errors x̃i2 under the fully distributed adaptive protocol
(5).
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Fig. 7. The tracking errors x̃i3 under the fully distributed adaptive protocol
(5).
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Fig. 8. The daptive gain γi under the adaptive protocol (7).
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Fig. 9. Simulation results for the states xi1 of the network (1) under the
fully distributed disturbance observer-based adaptive protocol (32).

by external disturbances described by equation (30), where

S =

0 1 1
0 1 0
1 0 0

 , D = [0, 0, 1].

The basic function is

ϕi = [sin(xi1xi3), sin(xi1 − xi3), cos(xi3) + 1],

and wi = [0.5i, i− 0.5, 2]T . Choosing

F =

0 0 −19
0 0 −24
0 0 −7


to solve the linear matrix inequality (S + FBD)T Q̄ +
Q̄(S + FBD) ≺ 0. According to Theorem 2, the state
trajectories of xi are shown in Fig. 9, Fig. 10 and Fig. 11
that achieve bounded BS under the fully distributed observer-
based adaptive protocol (32). The states of agents diverge
to two sides. The tracking errors x̃i are shown in Fig. 12,
Fig. 13 and Fig. 14. We can see that under the condition
of external perturbation, the absolute value of the tracking
errors x̃i is less than a bounded constant close to zero,
the bounded BS is achieved, which is consistent with our
theoretical analysis.

VI. CONCLUDING REMARKS

This paper addressed the BS problem for general nonlinear
networks with neural networks approximation and external
disturbances in signed digraphs. For the agents subject to
bounded disturbances with an unknown upper bound, when
the signed digraph contains a directed spanning tree, de-
signed the fully distributed observer-based adaptive protocol
to make network achieve leadless BS. When the agents are
affected by disturbances generated by a external system, the
fully distributed disturbance observer-based adaptive proto-
col is designed to the general nonlinear nonlinear networks
with no leader and neural networks approximation, and
the closed-loop network achieves bounded BS. Finally, the
theoretical results are verified by two numerical simulation
examples. Future research can be carried out on switching
topologies or cluster BS.
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Fig. 10. Simulation results for the states xi2 of the network (1) under the
fully distributed disturbance observer-based adaptive protocol (32).
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Fig. 11. Simulation results for the states xi3 of the network (1) under the
fully distributed disturbance observer-based adaptive protocol (32).
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Fig. 12. The tracking errors x̃i1 under the fully distributed disturbance
observer-based adaptive protocol (32).
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Fig. 13. The tracking errors x̃i2 under the fully distributed disturbance
observer-based adaptive protocol (32).
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Fig. 14. The tracking errors x̃i3 under the fully distributed disturbance
observer-based adaptive protocol (32).
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