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discussed in Section II, respectively. In addition, two 

stochastic hybrid genetic algorithm-particle swarm 

optimization algorithms based on stages (SHGA-PSO1) and 

multi population strategy (SHGA-PSO2) combined with the 

local search (LS) strategy are proposed in Section III. In 

section IV, the proposed algorithms are tested via some 

numerical examples. Finally, Section V provides concluding 

remarks. 
 

TABLE I 

THE RELATED STUDIES CONSIDERING THE BACKORDERING FOR APP 

Article Model category Uncertain factors Objective function Solving approaches 

Leung et al. [3] A stochastic linear 
programming model 

Demand Minimize total costs consisting of the 
production cost, subcontracting cost, 

labour cost, inventory cost, hiring 

cost and lay-off cost, and penalty cost 

-- 

Lababidi et al. [4] The two-stage stochastic 

linear program with fixed 
recourse 

Demand, market price, raw 

material cost and production 
yield 

Minimize the total production costs, 

and raw material procurement, as 
well as lost demand, backlog, 

transportation and storage 

penalization 

-- 

Demirel et al. [5] A mixed-integer linear 
programming model 

Demand Minimize production-related costs Solved by the CPLEX 12.0 
solver 

Jamalnia et al. [6] A framework based on a set 
of stochastic, nonlinear, 

multi-objective optimization 

models 

Market demand Minimize total revenue; total 
production costs; utilization of 

production resources and capacity 

The multiple criteria decision 
making methods 

Ning et al. [7] An uncertain expected value 
model 

Market demand, 
deterioration rate, inventory 

cost, capital level, workforce 

production capacity, and 
machine production capacity  

Maximize expected profits Transformed into equivalent 
crisp form, used Genetic 

Algorithm and Direct Search 

Toolbox of MATLAB 8.5 to 
search for the optimal 

solutions 

Alehashem et al.[8] A nonlinear mixed integer 

programming model 

Demand Minimize the majority of supply 

chain cost and some more realistic 
cost 

Model linearization and two-

stage stochastic 
programming approach 

Modarres et al.[9] A multi-objective linear 
programming model 

Operational cost, energy, 
carbon parameters, demand 

and maximum capacity  

Minimize the operational cost, the 
energy cost and carbon emission 

Solved as a single-objective 
model applying a goal 

attainment technique and 

robust optimization approach 
was applied 

Pham et al. [10] A joint production and 

microgrid planning model 

Product demand and energy 

supply 

Minimize the total cost comprised of 

production, logistics and energy 

generation 

Solved as a two-stage 

decision-making process 

Islam et al. [11] A two-stage stochastic 

programming model 

Product demand, labor and 

machine capacity, and power 
generation 

Minimize the expected cost by 

considering all production and 
renewable energy expenses and 

revenues 

Solved through CPLEX 

using the two-phase method 

Hahn et al. [12] Combines a deterministic 

linear programming model 
and an aggregate stochastic 

queuing network model 

The key demand-side and 

operations parameters 

Minimize WIP costs, and average 

weighted campaign lead time 

A hierarchical decision 

support method 

Entezaminia et al.[13] A stochastic robust 

optimization approach lied 
on Mulvey’s model 

Demand and cost parameters Minimize total losses of considered 

supply chain 

The robust optimization 

approach  

Sabah et al. [14] A mixed integer linear 
programming model 

Demand Maximize the customer demand 
satisfaction level 

Monte Carlo simulation 

Li et al. [15] A two-stage stochastic 

programming model 

The sales volume and 

demand 

Minimize the sum of distribution 

costs and the expected recourse costs 

Transformed into an 

equivalent deterministic 

programming model and 
solved by CPLEX solver 

Gozali et al. [16] A linear programming model Demand Minimize total cost that consist of 
production cost, subcontracted cost 

and holding inventory cost 

-- 

Ghaithan et al. [17] A multi-objective stochastic 

optimization model 

Demand and price Minimization of total cost, 

maximization of total revenue, and 
maximization of service level. 

The improved augmented ε-

constraint algorithm 

Tirkolaee et al. [18] A multi-objective mixed-
integer linear programming 

model 

Demand, budgets Total cost minimization, 
total resiliency-weighted purchasing 

maximization 

and total environmental 
pollution/footprint minimization 

Weighted goal programming 
method and Robust 

optimization technique 
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II. MULTI-OBJECTIVE STOCHASTIC PROGRAMMING MODEL 

In this section, the assumed conditions of the APP 

problem in a random environment are analyzed, and the 

relevant variables and parameter symbols are defined. On 

the basis of clarifying the expected losses of production in 

advance and backorder, some constraints such as supply and 

demand, inventory capacity, production capacity, and 

worker labor capacity are analyzed. Furthermore, a multi-

objective stochastic optimization model is established for 

APP problem from two aspects: total production cost and 

employee stability. 

A. Assumptions and Notations 

(1) Assumptions 

The following assumptions are made: 

1) The failure rate of equipment in each period is a 

random variable and independent of each period. 

2) The market demand for products in each period is a 

random variable, and the probability distribution of market 

demand is known. 

3) Backorder and loss of sales are allowed in each period. 

(2) Notations 

1) Sets and indices 

Let T be the set of periods in planning and t ( t T ) be the 

production planning period. Let I ( i I ) be the product 

category, which I is the set of product categories. Let j 

( j J ) be the raw material category, which J is the set of 

raw material category. 

2) Notations of product 
ˆ

itPD : Demand for product i in period t (units), discrete 

random variable; 

iPC : Unit production cost of product i; 

( ' , )itPB t t − : The maximum tolerant backorder quantity 

for product i in period t for the customer waiting time 't t−  

under natural state ; 

( ' )icb t t− : The backorder cost for product i with waiting 

time 't t− ; 

1tC : Total production cost of period t; 

itPR : The unit raw material cost of product i in period t; 

2tC : Total raw material cost in period t; 

iPW : Working hours required for a unit product i; 

ˆ
itPN : The production capacity for product i in period t, 

discrete random variable; 
ˆ5 ( )itC  Total backorder cost or lost sales cost in period t 

under natural state . 

icl : The unit lost sales cost of product i. 

2) Notations of inventory 
ˆ
itCI : The inventory of product i in period t, discrete 

random variable; 

iCK : Inventory cost of product i; 

iCN : The inventory capacity of product i; 

ˆ3 ( )itC  : Total inventory cost of product i in period t 

under natural state . 

3) Notations of raw material 

ijR : The demand of raw material j for producing unit 

product i; 

jtRM : Total demand of raw material j in period t; 

jtRC : The price of raw material j in period t. 

4) Notations of worker 

tWH : Number of new employees in period t; 

tWL : Number of workers laid off in period t; 

WHC : Training cost for one new employee; 

WR : Maximum regular work hours in each period; 

WO : Maximum overtime labor hours for in each period; 

tWRT : Total regular labor hours in period t; 

tWOT : Total overtime labor hours in period t; 

WRC : Regular time labor cost per hour; 

WOC : Overtime labor cost per hour; 

4tC  Total labor cost in period t. 

5) Decision variables 

itPP : Production quantity of product i in period t; 

tW : Number of employees in period t. 

B. Expected Loss Cost of Production in Advance and 

Stockout 

(1) The inventory cost 

Production enterprises can utilize the abundant production 

capacity in the early stage. Since the demand for products in 

each stage ˆ
itPD is a random variable, the initial inventory is 

also a random variable. According to the production and 

inventory balance conditions, the inventory at the beginning 

of the period can be expressed as: 

1 1 1
ˆ ˆ ˆ
it it it itCI CI PP PD− − −= + − .                    (1)

 

For the beginning inventory of each planning period, if 

ˆ ( ) 0itCI   , it means that there is no delay in the previous 

planning period and inventory costs will be incurred. 

If the probability of each natural state occurring is known 

in advance, the inventory cost for each period under each 

natural state can be calculated using equation (2). 
ˆ ˆ ˆ3 ( ) ( ) , ( ) 0it it i itC CI CK CI=     .                (2) 

(2) The backorder cost 

1) Maximum stockout quantity that customers can 

tolerate 

Stockout will lead to a decline in customer satisfaction or 

loss of sales. Generally, the longer the replenishment time 

and the greater the backorder quantity are, the greater the 

possibility of loss of sales will be [19]. 

The customer's loss threshold is defined as Equation (3) 

according to the definition of exponential partial 

backlogging rate. 
1 ( ' 1)

0( ' )
k t t

t t k e − − −
− =  ,                          (3) 

where 0k is the backordering intensity coefficient, and 1k is 

the waiting time resistance, and 0 10 1, 0k k   . 

So, based on the demand ˆ ( )itPD  of the product i under a 

natural state  during the period t, the maximum tolerant 

stockout quantity for customers in different delayed periods 

can be calculated as: 
1 ( ' 1)

0
ˆ ˆ( ' , ) ( ) ( ' ) ( ) k t t

it it itPB t t PD t t PD k e    − − −− =  − =   .   (4) 

2) Delayed delivery/loss of sales cost 

The cost of delayed delivery per unit of out of stock 

quantity gradually increases with waiting time. The delayed 

delivery cost per unit of out of stock quantity is defined by 

the penalty fee for delayed delivery as follows: 
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2( ' )= ( ' ) ( ' )i i i icb t t f a t t b t t− +  − +  − ,                  (5) 

where if is the fixed cost part of unit out of stock quantity, 

ia and ib are the cost rate and cost increasing rate of unit 

delivery cost, respectively. 

If the ending inventory of a planning period ˆ ( ) 0itCI   , it 

indicates that there has been a delayed delivery situation in 

that planning period. Therefore, when the delayed delivery 

quantity in a natural state  is less than or equal to the 

maximum tolerant stockout quantity, the backorder cost can 

be expressed as: 
ˆ ˆ ˆ ˆ5 ( )= ( ) ( ' ), ( ) 0, ( ) ( ' )it it i it it itC CI cb t t CI CI PB t t   −  −  −  − .(6) 

If the out of stock quantity exceeds the maximum tolerant 

stockout quantity, the enterprise will lose this part of the 

product. The cost of out of stock in a certain natural 

state can be expressed as: 

ˆ ˆ ˆ5 ( )= ( ) , ( ) ( ' )it it i it itC CI cl CI PB t t  −  −  − .             (7) 

C. Objective Functions 

The total production cost and the employee stability are 

mainly considered in APP problem. The total production 

cost mainly includes five aspects: product production cost, 

raw material cost, product inventory cost, employee cost and 

backorder cost. Due to the uncertainty of product inventory 

costs and delayed delivery/loss of sales costs, the expected 

value approach is used to handle the total cost. Then, the 

total production cost can be defined as 

( )1

1

ˆ ˆ1 2 ( 3 ) 4 ( 5 )
T

t t it t it

t

Z C C E C C E C
=

= + + + + ,             (8) 

where the total production cost 
1

1 =
I

t it i

i

C PP PC
=

 , the total 

raw material cost 
1 1

2 =
I J

t it ij jt

i j

C PP R RC
= =

  , and 

4 =t t t t tC WH WHC W WI WRT WRC WOT WOC +  +  +  . 

ˆ( 3 )tE C and ˆ( 5 )tE C can be calculated by Equations (9) and 

(10). 

1

ˆ ˆˆ( 3 )= ( , ) 3 ( )
I

it it it

i

E C CI C


  
=

 ,                  (9) 

1

ˆ ˆˆ( 5 )= ( , ) 5 ( )
I

it it it

i

E C CI C


  
=

 ,                  (10) 

where ( )E  represents the expected value of a random 

variable, and ( )  expresses the prediction probability 

function of discrete random variables. 

For the first planning period, if the initial inventory is a 

fixed value, then 1
ˆ( )=1iCI . The probability of occurrence in 

a certain natural state of other initial storage periods can be 

expressed as: 
1

' '

' 1

ˆ ˆ ˆ( , )= ( , ) ( , )
t

it it it

t

CI CI PD     
−

=

 .               (11) 

The sum of changes in employee numbers is used to 

measure its stability according to Equation (12). 

( )2

1

T

t t

t

Z WH WL
=

= + ,                          (12) 

where the hired worker number,  1max ,0t t tWH W W −= − , 

and the number of laid off workers,  1max ,0t t tWL W W−= − . 

D.  Analysis of Constraints 

APP problem generally requires consideration of 

constraints such as supply and demand, inventory capacity, 

production capacity, and worker labor capacity. 

Production and inventory balance: 

1 1 1
ˆ ˆ ˆ
it it it itCI CI PP PD− − −= + − .                     (13) 

Workforce balance: 

1t t t tW W WH WL−= + − .                         (14) 

Due to the fact that the initial inventory of each period is 

a random variable, we expect the warehouse capacity to 

meet the requirement at confidence level 1 . Then, the 

opportunity constraint of the inventory capacity can be 

expressed as: 

  1
ˆPr it iCI CN   .                            (15) 

During the production process, it is inevitable that the 

equipment will malfunction, be damaged or repaired, which 

will reduce the production capacity of the enterprise. Due to 

the above situation in the equipment, the production 

capacity of the enterprise changes randomly. Similarly, if it 

is expected that the production capacity meets the 

requirement at the confidence level 2 , the production 

capacity constraint can be expressed as: 

  2
ˆPr it itPP PN   .                           (16) 

If it is also expected to meet product requirement at a 

confidence level 3 , then the product demand constraints for 

each stage can be expressed as: 

  3
ˆ ˆP r it it itPP CI PD +   .                      (17) 

The production time constraint of workers can be 

expressed as: 

1

( )
I

it i t

i

PP PW W WR WO
=

  + .                     (18) 

E. The Optimization Model 

Based on the above analysis, the multi-objective 

stochastic APP model in a random environment is 

constructed as follows: 

( )

( )

 

 

1

1

2

1

1 1 1

1

1

2

1

ˆ ˆmin 1 2 ( 3 ) 4 ( 5 ) ,

min ,

ˆ ˆ ˆ , , ,

, ,

ˆPr , , ,

ˆPr , , ,
s.t.

( ), ,

ˆ ˆP r

T

t t t t t

t

T

t t

t

it it it it

t t t t

it i

it it

I

it i t

i

it it i

Z C C E C C E C

Z WH WL

CI CI PP PD i t

W W WH WL t

CI CN i t

PP PN i t

PP PW W WR WO t

PP CI PD





=

=

− − −

−

=

= + + + +

= +

= + − 

= + − 

  

  

  + 

+ 







  3 , , ,

ˆ, , , , .

t

t it it

i t

W PP N CI Z i t














  



  

 

III. DESIGN OF SOLVING ALGORITHMS 

According to the comparative analysis of several 
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algorithms of [19], it can be seen that the quality of 

solutions obtained by the local search-based GA (LS-GA), 

hybrid genetic algorithm-particle swarm optimization based 

on stages (HGA-PSO1) and multi population strategy 

(HGA-PSO2) is relatively good, and HGA-PSO1 and HGA-

PSO2 have significant advantages in computational time. 

Therefore, two stochastic hybrid genetic algorithm-particle 

swarm optimization algorithms based on stages (SHGA-

PSO1) and multi population strategy (SHGA-PSO2) 

combined with the local search (LS) strategy are designed to 

solve -objective stochastic APP model. 

A. Algorithm Preprocessing 

(1) Chromosome encoding 

The APP model in this paper uses the production quantity 

of product itPP and the number of employees in each period 

tW as the decision variables, and both are positive integers. 

Therefore, this paper still adopts the encoding method of 

positive integers, as detailed in [20]. Fig.1 shows a sub-

chromosome itP  represents the production quantity with I 

product categories and a sub-chromosome tW  represents the 

number of workers with T periods. 

P

...

W

...

Worker number

T...21

ITPP...
1IPP 2IPP

...21PP 22PP
2TPP

12PP11PP
1TPP

Period (t)

Category 1

Category 2

...

Category I

... TW2W1W
 

Fig. 1. A simple example of a chromosome 

 

(2) Handling of opportunity constraints 

Since 1 1 1
ˆ ˆ ˆ
it it it itCI CI PP PD− − −= + − and the production 

quantity is deterministic, the probability distribution of 

random inventory ˆ
itCI is the same as that of 1 1

ˆ ˆ
it itPD CI− −− . 

Let the probability distribution function of 1 1
ˆ ˆ

it itPD CI− −− be 

( )  , and 1( ) −   be its inverse function. So, at a confidence 

level 1 , the opportunity constraint of inventory capacity can 

be transformed into:  

 1 1 1 1
ˆ ˆPr it i it itPP CN PD CI − − −−  −  .             (19) 

Then, equation (14) can be equivalent to: 

 1

1 1 1
sup (1 )

it it i
PP K K CN −

− −
− = −  .            (20) 

Similarly, at a confidence level 2 , the production 

capacity opportunity constraint can be equivalent to: 

 1

2sup (1 )it itPP K K  − = − ,                 (21) 

where ( )  and 1( ) −  are the probability distribution function 

and its inverse function of the production capacity ˆ
itPN , 

respectively. 

(3) Feasible range for production quantity 

Due to the fact that the backorder cost is greater than the 

cost of on-time delivery, the on-time delivery strategy 

should be adopted when the production capacity is sufficient. 

If the production capacity exceeds the demand, the 

minimum production quantity can meet the minimum 

demand of the planned period. Otherwise, the production 

should be at its maximum production capacity. Therefore, 

the minimum production quantity of each product during the 

planning period can be expressed as: 

   1

2
ˆ ˆMinPP max 0,min ,sup (1 )it it it itPD CI K K  −= − = − .(22) 

In addition, according to the equation (19) and equation 

(20), the maximum production quantity of each product 

should not exceed the production capacity and inventory 

capacity. Therefore, at the confidence level 1 and 2 , the 

maximum production quantity of each product during the 

planning period can be expressed as: 

 

 

1

1 1

1

2

MaxPP min sup (1 ) ,

sup (1 )

it it i

it

K K CN

K K

 

 

−

−

−

= = − +

= −

.    (23) 

(4) Feasible range of the number of employees 

The total working hours required for the planning period t 

can be calculated based on the production quantity itPP  and 

the working hours required per unit product iPW , so the 

minimum number and maximum number the of employees 

can be calculated using equation (24) and equation (25), 

respectively (     represents rounding up). 

1

MinW MinPP / (  )
I

t it i

i

PW WR WO
=

 
=  + 

 
 .           (24) 

1

MaxW MaxPP /
I

t it

i

WR
=

 
=  

 
 .                       (25) 

B. Genetic Algorithm Design 

(1) Initial population generation 

In the process of initial population generation, the genes 

of sub-chromosome P and W are generated within the 

feasible range of product production and employee numbers. 

The specific method for generating a chromosome is as 

follows: 

Step1. Initialize known parameters. 

Step2. For t = 1 to T, repeat Step3 to Step4. 

Step3. For i = 1 to I, calculate MinPPit and MaxPPit , and 

generate a random integer number [MinPP ,MaxPP ]it it itPP   as 

a gene of sub-chromosome P. Calculate the ending 

inventory of products and its probability distribution 

( )  according to equations (1) and (11). 

Step4. Calculate MinWt and MaxWt , and generate a 

random integer number [MinW ,MaxW ]t t tW  as a gene of 

sub-chromosome W. 

Fig.2 is a schematic diagram of generating a sub-

chromosome P. 

The demands for this product in four planning periods are 

(80, 90, 100), (100, 110, 120), (100, 110, 120), and (130, 

140, 150), respectively, with the corresponding probability 

distributions of (30%, 40%, 30%). The initial inventory of 

the first phase is 10, and the production capacity is (90, 100, 

110), (120, 130, 140), (100, 110, 120), (130, 140, 150), 

respectively. The corresponding probability distributions are 

(10%, 20%, 70%), the confidence levels 1 and 2 both are 

80%, and the inventory capacity is 50. According to 

equations (22) and (23), the minimum production capacity 

for the first phase is 70, and the maximum production 

capacity is  min 120,  100 100= . Therefore, genes can be 
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generated based on [70,100]itPP  . If the gene generated in 

the first planning period is 90, then update the inventory and 

probability distribution of the next period of the product 

according to equations (1) and (11) as (20,10,0) and (30%, 

40%, 30%), respectively. Similarly, a feasible sub-

chromosome of P can be obtained.  

 

Period (t) 4321

130,140,150100,110,120100,110,12080,90,100

130,140,150100,110,120120,130,14090,100,110

30,20,10,0,
-10,-20,30

20,10,0,
-10,-20

20,10,010

P 13010010090

ˆ( , )itCI  2.7,10.8,22.5,
28,22.5,10.8,2.7

9,24,34,24,930,40,30100

[MinPP ,MaxPP ]it it 70 100 80 130 80 110 100 140

ˆ
itPD

ˆ
itPN

ˆ
itCI

 
Fig. 2. Examples of the production process of chromosome 

 

According to equations (22) and (23), the feasible range 

of yield sub-chromosomes is determined, and the genetic 

operators for gene crossover, mutation, chromosome repair 

and selection operations are designed as that of genetic 

algorithm in [20]. 

(2) Local search strategy 

In order to improve the search depth of genetic algorithms, 

this paper designs a local search strategy. According to [20], 

the production quantity optimization problem is a special 

case of the minimum-cost flow (MCF) problem. Therefore, 

the LS strategy for production quantity can be designed 

based on the augmenting cycle. 

For the sub-chromosome P, there are various situations in 

the initial inventory of the product during local search based 

on the augmented circle algorithm. When two different 

planning periods, 1 2, [1, ]t t T , are randomly selected to form 

a circle, the adjustable production will change accordingly. 

According to equations (22) and (23), the possible 

adjustment range of the augmenting circle can be obtained.  

1) Anticlockwise cycle 

If the formed circle is counterclockwise (as shown in 

Fig.3, I is the adjustment flow), the maximum flow 

increase of the augmenting circle is limited by three factors: 

production quantity of 1t , inventory capacity from 1t  to 2t , 

and production quantity of 2t . 

The production quantity of 1t : The maximum flow that 

can be increased during the 1t  planning period is limited by 

its maximum production quantity, which can be determined 

according to equation (23). The increase in maximum flow 

of the augmenting circle can be expressed as 
1 1

MaxPPit itPP− . 

Inventory surplus capacity: The inventory that can be 

increased is ˆ
i itCN CI− . Since 1 1 1

ˆ ˆ ˆ
it it it itCI CI PP PD− − −= + − , the 

minimum inventory surplus capacity from 1t  to 2t  can be 

inferred from equation (20) at the confidence level 1 , 

which can be expressed as: 

  1

1 1 1 1 2min sup (1 )i it itCN PP K K t t t −

− −− + = −   . (26) 

o

2
it

i

PP

−1it

i

P
P



+

1t
v

2t
v

d

1

ˆ
it

P
D

2ˆ it

P
D

1
ˆ
itCI

ˆ
it iCI +

i

2

ˆ
itCI

. . .

 
Fig. 3. Examples of flow increase in anticlockwise circle 

 

The production quantity of 
2t : The adjustment amount 

for the production limit during 
2t  is

2 2
MinPPit itPP − . 

Then, the maximum adjustment amount of anticlockwise 

cycle for product i can be obtained by the following 

equation: 



  

1 1 2 2

1

1 1 1 1 2

min MaxPP , MinPP ,

sup (1 ) .

i it it it it

i it it

FP PP PP

CN PP K K t t t −

− −

= − −

− + = −  
 (27) 

Taking the chromosome in Fig.2 as an example, the two 

randomly selected planning periods are 1t =1 and 
2t =3, and 

according to equation (27), the maximum adjustment can be 

obtained as  min 10,40, 20 =10iFP = . As shown in Fig.4, 

there is a counterclockwise flow increasing chain, with a 

maximum adjustment of 10. 
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 min 10,40, 20iFP =
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Fig. 4. Illustration of local search for sub-chromosomes pp in anticlockwise 

circle 

 

2) Clockwise cycle 

If the formed circle is in a clockwise direction (as shown 

in Fig.5), the maximum flow increase is also limited by the 

production quantity of 1t , inventory from 1t  to 2t , and 

production quantity of 2t . 

The production quantity of 1t : The adjustment amount for 

the production limit during 1t  is
1 1

MinPPit itPP − . 
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Fig. 5. Example of flow increase in clockwise circle 

 

Inventory from 1t  to 2t .The minimum inventory quantity 

from 1t  to 2t  is  1 2
ˆmin max( )itCI t t t  . 

The production quantity of 
2t : The adjustment amount 

for the maximum production quantity limit during 
2t  is 

2 2
MaxPPit itPP− . 

Then, when the circle is clockwise, the maximum 

adjustment amount of product i can be obtained by the 

following equation: 




1 1

2 2 1 2

ˆmin MinPP ,max( ),

MaxPP |

i it it it

it it

FP PP CI

PP t t t

= −

−  
.               (28) 

C. Particle Swarm Optimization Algorithm Design 

Since Gbest is the best position ever found by all the 

particles that can guide particles towards the global optimal 

position. Selecting a suitable global optimal position Gbest 

to guide each particle will greatly improve the quality of the 

obtained Pareto solutions and maintain the diversity of non-

dominated solutions. An external file is established, mainly 

used to record the global Pareto solution set and Pareto 

frontiers of the population. Furthermore, as the Particle 

Swarm Optimization (PSO) algorithm evolves, external file 

is updated. The global optimal guide selection mechanism, 

as well as the individual global optimal guide allocation and 

selection mechanism, is detailed in [19]. 

During each iteration, each particle updates its speed and 

position according to the following strategy based on the 

global and individual optimal guides selected for allocation 

[19], [21]: 
1 1 1 1

1 1

1 1

2 2

( 1) ( ) ( ( ) ( ))

( ( ) ( ))

k k k k k

k k

v g v g c r pb g x g

c r gb g x g

 + = + −

+ − 

,       (29) 

2 2 2 2

1 1

2 2

2 2

( 1) ( ) ( ( ) ( ))

( ( ) ( ))

k k k k k

k k

v g v g c r pb g x g

c r gb g x g

 + = + −

+ − 

,      (30) 

1 1 1( 1) ( )   ( 1)k k kx g x g v g + = + +  ,               (31) 

2 2 2( 1) ( )   ( 1)k k kx g x g v g + = + +  ,              (32) 

where k is a particle,  is the constriction factor, and k is 

the inertia weight. 1c , 2c are respectively learning factors. 

1r , 2r are two random parameters and g is the number of 

iterations. 1 ( )kv g and 2( )kv g  represent the velocity of particle 

k in P layer and W layer of iteration g, respectively. 
1 ( )kpb g , 2( )kpb g , 1( )kgb g and 2( )kgb g represent the local 

optimal guide and global optimal guide, respectively. 
1 ( )kx g and 2 ( )kx g are the position of particle k. 

After updating the particle speed and position, the P and 

W layers of the particles may not be feasible and need to be 

repaired. 

Repair method of P layer: Firstly, calculate the feasible 

range of product production, [MinPP ,MaxPP ]it it ,based on 

equations (22) and (23). Secondly, check whether the 

position of a new particle of P layer meets 

MinPP MaxPPit it itPP  . If it is not satisfied, the position of 

the unsatisfied particle is regenerated, that is, a 

' [MinPP ,MaxPP ]it it itPP   is randomly generated as a position 

of the particle. 

Repair method of W layer: Calculate the feasible range of 

worker number based on equations (24) and (25), 

[MinW ,MaxW ]t t , and check whether the position of a new 

particle of W layer meets MinW MaxWt t tW  . If it is not 

satisfied, a [MinW ,MaxW ]t t tW   is randomly generated as a 

position of W. 

D. Hybrid Strategies 

The idea of the SHGA-PSO1 strategy is: Firstly, the PSO 

algorithm is used for global search. When it falls into a local 

optimal solution, a genetic algorithm based on LS is used to 

perform local search in the neighborhood of the global 

optimal solution, in order to improve the quality of the 

Pareto solution set. 

The idea of the SHGA-PSO2 strategy is: Divide the PSO 

population into two subgroups (GA and PSO), with sizes set 

as POPSIZE/4 and POPSIZE×3/4, respectively, and use a 

selection method based on non-dominated sorting and 

crowding distance sorting to complete the clustering 

operation. The GA subgroup uses selection operations to 

select the initial population from external files, while the 

PSO subgroup selects individual particles from the overall 

parent population. The GA subgroup utilizes a local search 

based genetic algorithm for optimization, while the PSO 

subgroup utilizes the PSO algorithm for global search. 

IV. NUMERICAL EXPERIMENTS 

In order to verify the effectiveness of SHGA-PSO1 and 

SHGA-PSO2 and analyze the impact of uncertain conditions 

on the calculation results, this section uses these two 

algorithms to perform 10 calculations on 4 test cases. In 

addition, the sensitivity of product demand and production 

capacity under different confidence levels is analyzed using 

numerical examples. 

A. Algorithm Performance Analysis 

The average objectives value ( avg( ) ) [22], the runtime 

of algorithm (Runtime (S)), the number of nondominated set 

( 1M ), set coverage measure ( 2M ) [23]-[24] and mean ideal 

distance (MID), are used to analyze the performance of two 

algorithms. 

The maximum iteration number 1000G = , the number of 

chromosomes 30popsize = . Moreover, the constriction 

factor 0.73 = , the maximum and minimum inertia 
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weight max =0.8 , min =0.4 , and learning factors 1=2.0c , 

2=2.1c , respectively. The backordering intensity 

coefficient 0=0.25k , the waiting time resistance 1=0.3k , the 

fixed cost part =0.05i if PC , the cost rate =0.5i ia f and cost 

increasing rate =0.05i ib f . Confidence levels 1 , 2  and 3  

are all 80%. The unit lost sales cost =0.5i icl PC . 

The initial inventory information and raw material related 

parameters are shown in Table Ⅱ, the unit production cost, 

working hours, and raw material cost are shown in Table III, 

the product demand and its probability are shown in Table 

IV, and the production capacity and probability of each 

period are shown in Table V. 

TABLE Ⅱ 

INITIAL INVENTORY INFORMATION AND RAW MATERIAL COMPOSITION 

PARAMETERS 

i 1iCI  
iCK  

iCN  
ijR  

1 2 3 

1 60 1.0 100 0.8 0.5 0 

2 30 1.0 50 0.3 0.5 0.4 

3 10 0.5 70 0.2 0.3 0.3 

4 20 1.0 100 0.5 0.2 0.6 

 

TABLE III 

THE UNIT PRODUCTION COST, WORKING HOURS AND RAW MATERIAL 

COST 

Parameter i, j 
t 

1 2 3 4 5 6 

iPC /(Yuan) 

1 500  500  500  500  500  500  

2 450 450 450 450 450 450 

3 200  200  200  200  200  200  

4 300  300 300 300 300 300 

iPW /(h) 

1 1.0 1.0 1.0 1.0 1.0 1.0 

2 1.5 1.5 1.5 1.5 1.5 1.5 

3 2.0  2.0  2.0  2.0  2.0  2.0  

4 0.8 0.8 0.8 0.8 0.8 0.8 

jtRC /(Yuan) 

1 2.0  2.0  3.0  1.0  2.0  2.0  

2 3.0  2.0  3.0  3.0  2.0  2.0  

3 3.0  3.5  3.0  2.8  3.0  4.0  

 

 

 

TABLE IV 

THE PRODUCT DEMAND AND ITS PROBABILITY DISTRIBUTION 

Experiment No. i 
t 

1 2 3 4 5 6 

S1 

1 

ˆ
itPD  (70,80,90) (90,100,110) (150,160,170) (200,220,250) -- -- 

ˆ( )itPD  (0.3,0.4,0.3) (0.2, 0.6, 0.2) (0.3, 0.5, 0.2) (0.2,0.6,0.2) -- -- 

2 

ˆ
itPD  (20,30,40) (40,50,60) (40,50,60) (50,60,70) -- -- 

ˆ( )itPD  (0.2,0.5,0.3) (0.2,0.6,0.2) (0.3,0.5,0.2) (0.3,0.4,0.3) -- -- 

S2 

1 

ˆ
itPD  (70,80,90) (110,120,130) (160,170,180) (200,210,220) (180,200,220) (140,150,160) 

ˆ( )itPD  (0.3,0.4,0.3) (0.3,0.4,0.3) (0.3,0.5,0.2) (0.3,0.4,0.3) (0.3,0.5,0.2) (0.2,0.6,0.2) 

2 

ˆ
itPD  (20,30,40) (40,50,60) (50,60,70) (50,60,70) (70,80,90) (50,60,70) 

ˆ( )itPD  (0.3,0.5,0.2) (0.2,0.6,0.2) (0.3,0.5,0.2) (0.3,0.4,0.3) (0.2,0.6,0.2) (0.2,0.6,0.2) 

S3 

1 

ˆ
itPD  (80,90,100) (110,120,130) (170,180,190) (190,200,210) -- -- 

ˆ( )itPD  (0.3,0.4,0.3) (0.3, 0.5, 0.2) (0.3, 0.5, 0.2) (0.2,0.6,0.2) -- -- 

2 

ˆ
itPD  (20,30,40) (40,45,50) (40,50,60) (70,80,90) -- -- 

ˆ( )itPD  (0.2,0.5,0.3) (0.3,0.4,0.3) (0.2,0.6,0.2) (0.2,0.5,0.3) -- -- 

3 

ˆ
itPD  (40,50,60) (50,60,70) (50,60,70) (60,70,80) -- -- 

ˆ( )itPD  (0.2,0.6,0.2) (0.3,0.4,0.3) (0.2,0.5,0.3) (0.2,0.5,0.3) -- -- 

4 

ˆ
itPD  (90,100,110) (110,120,130) (80,90,100) (90,100,110) -- -- 

ˆ( )itPD  (0.3,0.4,0.3) (0.3,0.4,0.3) (0.2,0.5,0.3) (0.3,0.4,0.3) -- -- 

S4 

1 

ˆ
itPD  (80,85,90) (120,130,140) (170,180,190) (200,210,220) (190,200,210) (170,180,190) 

ˆ( )itPD  (0.3,0.4,0.3) (0.3, 0.5, 0.2) (0.2, 0.6, 0.2) (0.2,0.6,0.2) (0.3,0.5,0.2) (0.3, 0.4, 0.3) 

2 

ˆ
itPD  (20,30,40) (40,50,60) (40,50,60) (70,80,90) (60,70,80) (60,65,70) 

ˆ( )itPD  (0.2,0.5,0.3) (0.2,0.5,0.3) (0.2,0.6,0.2) (0.2,0.5,0.3) (0.3,0.4,0.3) (0.3,0.4,0.3) 

3 

ˆ
itPD  (40,50,60) (50,60,70) (50,60,70) (60,70,80) (50,55,60) (70,75,80) 

ˆ( )itPD  (0.2,0.6,0.2) (0.3,0.4,0.3) (0.2,0.5,0.3) (0.2,0.5,0.3) (0.2,0.5,0.3) (0.3,0.4,0.3) 

4 

ˆ
itPD  (90,100,110) (110,120,130) (80,90,100) (90,100,110) (90,100,110) (110,120,130) 

ˆ( )itPD  (0.2,0.5,0.3) (0.3,0.4,0.3) (0.2,0.5,0.3) (0.2,0.4,0.4) (0.3,0.4,0.3) (0.2,0.5,0.3) 
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TABLE V 

PRODUCT PRODUCTION CAPACITY AND ITS PROBABILITY DISTRIBUTION 

Experiment No. i 
t 

1 2 3 4 5 6 

S1 

1 

ˆ
itPN  (80,90,100) (120,150,170) (180,190,200) (240,250,260) -- -- 

ˆ( )itPN  (0.1,0.2,0.7) (0.1, 0.2, 0.7) (0.1, 0.1, 0.8) (0.1,0.2,0.7) -- -- 

2 

ˆ
itPN  (70,80,90) (70,80,90) (100,110,120) (100,110,120) -- -- 

ˆ( )itPN  (0.1,0.2,0.7) (0.1,0.2,0.7) (0.1,0.1,0.8) (0.1,0.2,0.7) -- -- 

S2 

1 

ˆ
itPN  (80,90,100) (140,160,170) (180,190,200) (240,250,260) (210,220,230) (180,190,200) 

ˆ( )itPN  (0.1,0.2,0.7) (0.1, 0.2, 0.7) (0.1, 0.2, 0.7) (0.1,0.2,0.7) (0.1,0.1,0.8) (0.1, 0.2, 0.7) 

2 

ˆ
itPN  (60,70,80) (70,80,90) (120,130,140) (100,110,120) (80,90,100) (80,90,100) 

ˆ( )itPN  (0.1,0.2,0.7) (0.1,0.1,0.8) (0.1,0.2,0.7) (0.1,0.2,0.7) (0.1,0.3,0.6) (0.1,0.2,0.7) 

S3 

1 

ˆ
itPN  (100,110,120) (120,140,150) (180,190,200) (230,240,250) -- -- 

ˆ( )itPN  (0.1, 0.2, 0.7) (0.2, 0.2, 0.6) (0.1, 0.2, 0.7) (0.1,0.2,0.7) -- -- 

2 

ˆ
itPN  (60,70,80) (70,80,90) (130,140,150) (90,100,110) -- -- 

ˆ( )itPN  (0.1,0.2,0.7) (0.1,0.2,0.7) (0.1,0.2,0.7) (0.1,0.2,0.7) -- -- 

3 

ˆ
itPN  (60,70,75) (50,60,70) (60,70,80) (60,70,80) -- -- 

ˆ( )itPN  (0.1,0.1,0.8) (0.1,0.1,0.8) (0.1,0.2,0.7) (0.1,0.1,0.8) -- -- 

4 

ˆ
itPN  (130,140,150) (130,140,150) (130,140,150) (130,140,150) -- -- 

ˆ( )itPN  (0.1,0.1,0.8) (0.1,0.1,0.8) (0.1,0.2,0.7) (0.1,0.1,0.8) -- -- 

S4 

1 

ˆ
itPN  (100,110,120) (150,160,170) (180,190,200) (240,250,260) (200,210,220) (200,210,220) 

ˆ( )itPN  (0.2, 0.2, 0.6) (0.1, 0.2, 0.7) (0.1, 0.1, 0.8) (0.1,0.2,0.7) (0.1, 0.1, 0.8) (0.1, 0.2, 0.7) 

2 

ˆ
itPN  (60,70,80) (70,80,90) (130,140,150) (100,110,120) (80,90,100) (80,90,100) 

ˆ( )itPN  (0.1,0.2,0.7) (0.1,0.1,0.8) (0.1,0.2,0.7) (0.1,0.2,0.7) (0.1,0.2,0.7) (0.1,0.2,0.7) 

3 

ˆ
itPN  (60,70,75) (50,60,70) (60,70,80) (60,70,80) (60,70,75) (60,70,80) 

ˆ( )itPN  (0.1,0.1,0.8) (0.1,0.1,0.8) (0.1,0.2,0.7) (0.1,0.1,0.8) (0.1,0.2,0.7) (0.1,0.1,0.8) 

4 

ˆ
itPN  (130,140,150) (130,140,150) (140,150,160) (130,140,150) (130,140,150) (120,130,140) 

ˆ( )itPN  (0.1,0.1,0.8) (0.1,0.2,0.7) (0.1,0.2,0.7) (0.1,0.1,0.8) (0.1,0.2,0.7) (0.1,0.1,0.8) 

 

The results obtained after 10 calculations are shown in 

Fig.6. From the comparison results of evaluation 

indicators 1avg( )Z , 2avg( )Z , 1M and MID, there is no 

significant difference in the performance of SHGA-PSO1 

and SHGA-PSO2. From the perspective of algorithm 

runtime, the SHGA-PSO1 algorithm has a slightly shorter 

runtime than the SHGA-PSO2 algorithm (as shown in Fig.7).  

Comparing the running time of deterministic and 

stochastic APP examples of the same scale, the results are 

shown in Fig.8. It can be seen that the running time of 

stochastic APP examples is significantly longer than that of 

deterministic APP examples of the same scale. Due to the 

fact that the number of natural states of random variables in 

stochastic APP problems increases with the increase of 

planning period, the calculation time of stochastic APP 

problems increases sharply with the increase of problem size. 

For example, for 2 products with 4 planning periods, it takes 

about 70 seconds for deterministic APP, while for stochastic 

APP, it takes about 190 seconds. The calculation of 6 

planning periods for 4 products takes approximately 120 

seconds for deterministic APP, while the calculation for 

stochastic APP takes approximately 450 seconds. 

The obtained Pareto solution sets of two algorithms are 

compared in Fig.9. The results show that there is no 

significant difference in the number of nondominated sets 

obtained by two algorithms. However, in terms of the set 

coverage measure, the overall performance of SHGA-PSO2 

algorithm is slightly better than that of SHGA-PSO1 

algorithm. 
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Fig. 6. Comparison of calculation results between two strategies. 
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Fig.8. Comparative analysis of running time between deterministic and 

stochastic examples 
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Fig.9. Comparison of the Pareto solution sets obtained by two algorithms 

B. Sensitivity Analysis 

Due to the setting of product demand ˆ
itPD and production 

capacity ˆ
itPN as random variables in this paper, the 

credibility of market forecasts by enterprises in uncertain 

environments can directly affect their production plans. 

Overoptimistic factors can lead to product backlog, while 

pessimistic factors can lead to loss of sales. Therefore, this 

section conducts sensitivity analysis on different confidence 

levels based on numerical examples above. 

Based on the above data, 4 calculation examples are used 

for comparative analysis of product demand and production 

capacity at different confidence levels (calculated 5 times 

for each example at different confidence levels). As it is a 

multi-objective problem, MID parameters and average total 

production cost 1avg( )Z are used to measure the impact of 

confidence level changes. 

(1) Sensitivity analysis of confidence level for production 

capacity 

The impact of the change in confidence level of 

production capacity 2  is shown in Fig.10 ( 1=0.8 , 3=0.8 ). 

It can be seen that as the confidence level of production 

capacity continues to increase, the results of MID indicator 

remain basically unchanged. The main reason for this result 

is that the production capacity in the example is sufficient, 

and the impact on production is relatively small. 

Adjust the production capacity and probability of each 

stage to Table VI. After calculation, the results of total 

production cost and MID index are shown in Fig.11 and 

Fig.12 It can be seen that when production capacity is 

limited, the total production cost and MID index show an 

upward trend as the confidence level of production capacity 

increases. 
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Fig.10. Sensitivity analysis of production capacity confidence level 
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TABLE VI 

THE PRODUCTION CAPACITY AND ITS PROBABILITY DISTRIBUTION 

Experiment No. i 
t 

1 2 3 4 5 6 

S1-1 

1 

ˆ
itPN  (80,90,100) (70,80,90) (180,190,200) (240,250,260) -- -- 

ˆ( )itPN  (0.1,0.2,0.7) (0.2, 0.2, 0.6) (0.1, 0.1, 0.8) (0.1,0.2,0.7) -- -- 

2 

ˆ
itPN  (70,80,90) (70,80,90) (30,40,50) (100,110,120) -- -- 

ˆ( )itPN  (0.1,0.2,0.7) (0.1,0.2,0.7) (0.1,0.1,0.8) (0.1,0.2,0.7) -- -- 

S2-1 

1 

ˆ
itPN  (80,90,100) (140,160,170) (140,150,160) (240,250,260) (210,220,230) (180,190,200) 

ˆ( )itPN  (0.1,0.2,0.7) (0.1, 0.2, 0.7) (0.1, 0.2, 0.7) (0.1,0.2,0.7) (0.1,0.1,0.8) (0.1, 0.2, 0.7) 

2 

ˆ
itPN  (60,70,80) (70,80,90) (40,50,60) (100,110,120) (80,90,100) (80,90,100) 

ˆ( )itPN  (0.1,0.2,0.7) (0.1,0.1,0.8) (0.1,0.2,0.7) (0.1,0.2,0.7) (0.1,0.3,0.6) (0.1,0.2,0.7) 
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(b) Experiment S2-1 

Fig.11. Changes in total production cost under different confidence levels 

of production capacity 
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Fig.12. Changes in MID under different confidence levels of production 

capacity 
 

(2) Sensitivity analysis of confidence level for product 

demand 

Similarly, the impact of changes in the confidence level 

of product demand is analyzed ( 1=0.8 , 3=0.8 ). The results 

of the total production cost and MID indicators are shown in 

Fig.13 and Fig.14. From the figures, it can be seen that as 

the confidence level of product demand increases, both the 

total production cost and MID indicators show an upward 

trend. This indicates that the higher the confidence level is, 

the higher the cost that the enterprise will have to pay, and 

the greater the difficulty in obtaining a better plan. 
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(c) Experiment S3 
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(d) Experiment S4 
Fig.13. Changes in total production cost under different confidence levels 

of product demand 
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Fig.14. Changes in MID under different confidence levels of product 
demand 

V. CONCLUSION 

A multi-objective stochastic programming APP model is 

constructed considering external demand and internal 

capabilities as random variables, with minimal expected 

opportunity cost and employee instability. At a certain level 

of confidence, the opportunity constraint is transformed and 

processed. In addition, based on the determined feasible 

range of product output and employee number, SHGA-

PSO1 and SHGA-PSO2 algorithms based on a local search 

strategy are designed to solve the model. Two algorithms 

are compared and analyzed from the evaluation 

indicators avg( ) , Runtime, 1M , 2M and MID by using 

numerical examples. Moreover, the sensitivity of product 

demand and production capacity under different confidence 

levels is analyzed. The following conclusions have been 

drawn: 

(1) From the comparison results of evaluation indicators 

1avg( )Z , 2avg( )Z , 1M and MID, there is no significant 

difference in the performance of SHGA-PSO1 and SHGA-

PSO2 algorithms. Both algorithms are suitable for solving 

the multi-objective stochastic programming APP problem. 

(2) From the perspective of algorithm runtime, the 

SHGA-PSO1 algorithm has a slightly shorter runtime than 

the SHGA-PSO2 algorithm. 

(3) By comparing the running time of deterministic and 

stochastic APP examples of the same scale, it is found that 

the calculation time of stochastic APP problems is 

significantly longer than that of deterministic APP problems, 

and the larger the problem size, the greater the difference in 

calculation time. 

(4) By analyzing the sensitivity of product demand and 

production capacity under different confidence levels, it is 

known that when the production capacity is sufficient, the 

change in production capacity confidence level has a little 

impact on production. Otherwise, as the confidence level of 

production capacity increases, the total production cost and 

MID indicators show an upward trend. In addition, as the 

confidence level of product demand increases, the total 

production cost and MID indicators also show an upward 

trend. To increase confidence, enterprises must pay higher 

costs. 

Two hybrid SHGA-PSO algorithms based on the global 

search ability of PSO algorithm and the local search ability 

of GA proposed by this paper can effectively improve the 

solving efficiency of the algorithm. With the rapid 

development of the Internet, changes in market demand will 

become more frequent. In the future, we will consider 

dynamically integrating dynamic demand information into 

the market and studying dynamic production planning 

problems for orders. 
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