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Abstract—This paper aims first to recall the generalized
Mittag-Leffler function and propose several properties of the
generalized matrix Mittag-Leffler function. Afterward, we set
a definition for a further extension of the generalized matrix
Mittag-Leffler function and then show that this function is
absolutely convergent under a certain condition.

Index Terms—Mittag-Leffler function, Matrix Mittag-Leffler
function.

I. INTRODUCTION

THE generalized Mittag-Leffler function is an extension
of the classical Mittag-Leffler function, which is a spe-

cial function widely used in the field of fractional calculus.
The Mittag-Leffler function, denoted as Ea(z), is defined for
complex number z and positive real number α as

Eα(z) =

∞∑
n=0

zn

Γ(αn+ 1)
, (1)

where Γ(·) denotes the gamma function. The Mittag-Leffler
function arises in various areas of mathematics and physics,
including fractional calculus, probability theory, and vis-
coelasticity [1]. It can be explored more in terms of different
theoretical aspects like the results found in [2], [3].

The generalized version allows for matrices as arguments
and provides a powerful tool for solving fractional differen-
tial and integral equations in matrix form [4]. The general-
ized matrix Mittag-Leffler function extends the concept to
matrices. Given a matrix A ∈ Cn×n, the function Eα(A) is
defined as

Eα(A) =

∞∑
n=0

An

Γ(αn+ 1)
, (2)

where α > 0 and An denotes the matrix power in which the
sum is taken over the powers of A. The generalized matrix
Mittag-Leffler function has similar properties as its scalar
counterpart such as holomorphicity, asymptotic behavior, and
integral representations. This function has found applications
in various fields, including fractional calculus, fractional
differential equations, and mathematical physics. It provides
a valuable tool for solving and analyzing systems involving
fractional operators or fractional derivatives. In summary, the
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generalized matrix Mittag-Leffler function is an extension of
the classical Mittag-Leffler function to matrices. It has nu-
merous applications in fractional calculus and related areas,
offering a powerful tool for solving fractional differential and
integral equations in matrix form.

Additionally, its application extends to fractional integral
equations, aiding in the examination of integral operators
with memory effects and contributing to a deeper understand-
ing of solution properties. In the field of viscoelasticity, the
function is employed to model materials with time-dependent
behavior and memory effects, assisting in predicting mechan-
ical responses. Furthermore, it finds utility in signal process-
ing for analyzing signals with fractional dynamics, leading
to the development of advanced techniques considering long-
term memory and non-local dependencies. In control theory,
the generalized matrix Mittag-Leffler function is applied
to design and analyze control systems involving fractional
operators, enabling the development of control strategies
that account for memory effects and enhance system perfor-
mance. Its use also extends to fractional integral equations,
where it facilitates the analysis of integral operators with
memory effects and adds to a better knowledge of solution
properties. The function is used to represent materials having
time-dependent behavior and memory effects in the field of
viscoelasticity, which helps predict mechanical responses [5],
[6]. Moreover, it is useful in signal processing to analyze sig-
nals with fractional dynamics, which stimulates the creation
of sophisticated methods taking non-local dependencies and
long-term memory into account. Control systems containing
fractional operators can be designed and analyzed using the
generalized matrix Mittag-Leffler function in control theory
[7], [8]. This allows control techniques to be developed
that take memory effects into account and improve system
performance. These are just a few examples of the wide range
of applications for the generalized matrix Mittag-Leffler
function. Its versatility and usefulness make it a valuable tool
in various fields of mathematics, physics, and engineering
[9], [10].

II. ON GENERALIZED MITTAG-LEFFLER FUNCTION

The generalized Mittag-Leffler function for two parame-
ters, denoted as Eα,β(z), is a special function that arises in
the theory of fractional calculus and has various applications
in mathematical physics, engineering, and other scientific
fields. It is an extension of the classical Mittag-Leffler
function, which corresponds to the case when α = β = 1.
The generalized Mittag-Leffler function is defined by the
following power series representation:

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
,

(z, α, β ∈ C, Re(α) > 0, Re(β) > 0).

(3)
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Note that whenever β = 1, the one parameter of the Mittag-
Leffler function will be yielded. In fact, Eα(z) was intro-
duced by Mittag-Leffler [11] and Eα,β(z) was introduced by
Wiman [12]. The main results in the classical theory of these
functions can be found in the handbook by Erdelyi [13], and
more results are given in the books by Dzherbashyan [14].
In the following content, we will recall an extension of the
Mittag-Leffler function Eγ

α,β(z), which has the form

Eγ
α,β(z) =

∞∑
k=0

(γ)kz
k

Γ(αk + β)k!
, (4)

where z, α, β, γ ∈ C such that Re(α) > 0, Re(β) > 0, and
where (γ)k is the Pchhammer symbol, which is defined as

(γ)r =
Γ(γ + r)

Γ(γ)

=

{
1, r = 0, γ ∈ C\{0}
γ(γ + 1) · · · (γ + k − 1), r = k ∈ N, γ ∈ C

,

(5)
where N is the set of natural numbers. Herein, by taking
γ = β = 1, the one parameter of the Mittag-Leffler function
will be also yielded. A further extension of the matrix Mittag-
Leffler function Eγ,δ

α,β(z) can be given in the following form:

Eγ,δ
α,β(z) =

∞∑
k=0

(γ)kz
k

Γ(αk + β)(δ)k
, (6)

where z, α, β, γ, δ ∈ C such that Re(α) > 0, Re(β) > 0, and
where (γ)k is as defined above in (5), and (δ)k is defined as

(δ)r =
Γ(δ + r)

Γ(δ)

=

{
1, r = 0, δ ∈ C\{0}
δ(δ + 1) · · · (δ + k − 1), r = k ∈ N, δ ∈ C

.

(7)
Remark 1: Based on the previous discussion, the follow-

ing special cases can be immediately yielded:
• If δ = 1, we have

Eγ,1
α,β(z) =

∞∑
k=0

(γ)kz
k

Γ(αk + β)(1)k
= Eγ

α,β(z). (8)

• If γ = δ = 1, we have

E1,1
α,β(z) = Eα,β(z). (9)

• If γ = δ = β = 1, we have

E1,1
α,1(z) = Eα(z). (10)

III. ON GENERALIZED MATRIX MITTAG-LEFFLER
FUNCTION

In this section, we first recall the definition of the gener-
alized matrix Mittag-Leffler function, and then we establish
some further properties of its construction.

Definition 1: Let A ∈ Cn×n and α, β, γ, δ ∈ C with
Re(α) > 0 and Re(β) > 0. Then the generalized matrix
Mittag-Leffler function is defined by

Eγ,δ
α,β(A) =

∞∑
k=0

(γ)kA
k

Γ(αk + β)(δ)k
, (11)

where (γ)k and (δ)k are previously defined in (5) and (7)
respectively.

Corollary 1: In light of Definition 1, the following prop-
erties of the generalized matrix Mittag-Leffler function are
held:

1) If α = β = γ = δ = 1, we have

E1,1
1,1(A) =

∞∑
k=0

Ak

k!
= eA. (12)

2) If α = 0 and β = γ = δ = 1, we have

E1,1
0,1(A) = (I −A)−1. (13)

3) If α = γ = δ = 1 and β = 2, we have

E1,1
1,2(A) = A−1(eA − I). (14)

4) If α = 2 and β = γ = δ = 1, then we have

E1,1
2,1(A

2) = cosh(A).

5) If α = 2and β = γ = δ = 1, then we have

E1,1
2,1((−A)2) = cos(A).

6) If α = β = 2 and γ = δ = 1, then we have

E1,1
2,2(A

2) = A−1(eA − e−A).

7) If α = β = 2 and γ = δ = 1, then we have

E1,1
2,2(−A2) = A−1sin(A).

8) If β = γ = δ = 1, then we have

E1,1
α,1(At) =

A

α
E1,1

α,α(At), t ∈ R.

Proof: We prove some parts of Corollary 1 for com-
pleteness, as the proofs of the remaining parts are trivial.
2) It should be noted that if one takes the given assumption
into account, we get

E1,1
0,1(A) =

∞∑
k=0

Ak = I +A+A2 +A3 + · · · . (15)

Now, let us assume

B = I +A+A2 +A3 + · · · . (16)

Then by multiplying, from the left, equation (16) by A, we
obtain

AB = A+A2 +A3 +A4 + · · · . (17)

Subtracting (17) from (16) yields

B −AB = I,

or
B = (I −A)−1, (18)

which finishes the proof.
3) Suppose α = γ = δ = 1 and β = 2. Then we get

E1,1
1,2(A) = I +

A

2!
+

A2

3!
+

A3

4!
+ · · · = eA. (19)

Now, multiplying, from the left, equation (19) by A−1 yields

A−1eA = A−1 + I +
A

2!
+

A2

3!
+

A3

4!
+ · · ·

= A−1 + E1,1
1,2(A),

(20)
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which is equivalent to the desired result.
6) To prove this result, one might notice

E1,1
2,2(A

2) =
∞∑
k=0

A2k

(2k + 1)!

= I +
A2

3!
+

A4

5!
+

A6

7!
+

A8

9!
+ · · · .

(21)

But, we have

eA = I +
A

1!
+

A2

2!
+

A3

3!
+

A4

4!
+ · · · , (22)

and

e−A = I − A

1!
+

A2

2!
− A3

3!
+

A4

4!
+ · · · . (23)

Subtracting (23) from (22) yields

eA − e−A = 2A+ 2
A3

3!
+ 2

A5

5!
+ · · · . (24)

Thus, multiplying (24), from the left, by A−1 gives conse-
quently the desired result.
8) Herein, we have

E1,1
α,1(At) =

∞∑
k=0

(At)k

Γ(αk + 1)
. (25)

By taking the derivative to the both sides of the above
equality, we get

d

dt
E1,1

α,1(At) =
∞∑
k=0

(k + 1)Ak+1tk

Γ(α(k + 1) + 1)
, (26)

or
d

dt
E1,1

α,1(At) =
A

α

∞∑
k=0

(At)k

Γ(αk + α)
, (27)

which implies the result.
Corollary 2: In light of Definition 1, the following prop-

erties of the generalized matrix Mittag-Leffler function are
held:

1) If AB = BA, then we have

Eγ,δ
α,β(A)B = BEγ,δ

α,β(A).

2) For A ∈ Cn×n, we have

AEγ,δ
α,β(A) = Eγ,δ

α,β(A)A. (28)

3) For A ∈ Cn×n, we have

Eγ,δ
α,β(A)

T =

(
Eγ,δ

α,β(A)

)T

. (29)

4) For A ∈ Cn×n and m ∈ Z, we have

AmEγ,δ
α,β(A) = Eγ,δ

α,β(A)A
m. (30)

5) If A and B are two nilpotent matrices with index 2
such that AB = BA = 0. Then we have

Eγ,δ
α,1(A+B) = Eγ,δ

α,1(A) + Eγ,δ
α,1(B). (31)

Proof: In what follows, we also prove some parts of
Corollary 2 for completeness.

3) We have

Eγ,δ
α,β(A)T =

∞∑
k=0

(γ)k(A
T )k

Γ(αk + β)(δ)k

=
∞∑
k=0

(γ)k(A
k)T

Γ(αk + β)(δ)k

=

( ∞∑
k=0

(γ)kA
k

Γ(αk + β)(δ)k

)T

=

(
Eγ,δ

α,β(A)

)T

.

(32)

5) To prove this result, we should note that

Eγ,δ
α,1(A+B) =

∞∑
k=0

(γ)k(A+B)k

Γ(αk + 1)(δ)A

= I +
(γ)1(A+B)

Γ(α+ 1)(δ)1
+

(γ)2(A+B)2

Γ(2α+ 1)(δ)2

+
(γ)3(A+B)3

Γ(3α+ 1)(δ)3
+ · · · .

(33)

Due to AB = BA = 0, we get

Eγ,δ
α,1(A+B) = I +

(γ)1(A+B)

Γ(α+ 1)(δ)1
+

(γ)2(A
2 +B2)

Γ(2α+ 1)(δ)2

+
(γ)3(A

3 +B3)

Γ(3α+ 1)(δ)3
+ · · · .

(34)
Also, since A2 = B2 = 0, we obtain

Eγ,δ
α,1(A+B) = I +

(γ)1(A+B)

Γ(α+ 1)(δ)1
. (35)

On the other hand, if one takes the right-hand side of (31),
we obtain

Eγ,δ
α,1(A) + Eγ,δ

α,1(B) =

( ∞∑
k=0

(γ)kA
k

Γ(αk + 1)(δ)k

)
+

( ∞∑
k=0

(γ)kB
k

Γ(αk + 1)(δ)k

)
,

(36)

or

Eγ,δ
α,1(A) + Eγ,δ

α,1(B) =

∞∑
k=0

(γ)k(A
k +Bk)

Γ(αk + 1)(δ)k

= I +
(γ)1(A+B)

Γ(α+ 1)(δ)1

+
(γ)2(A

2 +B2)

Γ(2α+ 1)(δ)2

+
(γ)3(A

3 +B3)

Γ(3α+ 1)(δ)3
+ · · · .

(37)

This consequently means

Eγ,δ
α,1(A) + Eγ,δ

α,1(B) = I +
(γ)1(A+B)

Γ(α+ 1)(δ)1
. (38)

Thus, comparing (35) with (38) gives immediately the de-
sired result.

IV. A FURTHER GENERALIZATION OF A MATRIX
MITTAG-LEFFLER FUNCTION

In this part, we aim to set a new definition for a further
extension of the generalized matrix Mittag-Leffler function
and then show that this function is absolutely convergent
under a certain condition.
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Definition 2: Let A,B ∈ Cn×n and z, α, β, γ be complex
values with min{Re(α), Re(β), Re(B)} > 0. Then a further
extension of the generalized matrix Mittag-Leffler function
can be defined as

EA,B
α,β (z) =

∞∑
k=0

(A)k(B)−1
k zk

Γ(αk + β)
, (39)

where
Γ(A) =

∫ ∞

0

e−ttA−1dt,

Γ−1(A) = A(A+ I) · · · (A+ (k − 1)I)Γ−1(A+ kI),

for k ≥ 1, and

(A)k =

{
I, k = 0.

A(A+ I) · · · (A+ (k − 1)I), k ≥ 1,
(40)

or
(A)k = Γ−1(A)Γ(A+ kI), k ≥ 1. (41)

Theorem 1: The extension version of the generalized ma-
trix Mittag-Leffler function EA,B

α,β (z) is absolutely convergent
for any z ∈ C.

Proof: In order to prove this result, we rewrite EA,B
α,β (z)

again as

EA,B
α,β (z) =

∞∑
k=0

Mkz
k, (42)

where

Mk =
(A)k(B)−1

k

Γ(αk + β)
. (43)

Now, by applying the convergence ratio test, we obtain

lim
k→∞

∣∣∣∣Mk+1

Mk

∣∣∣∣ ≤ ||Γ−1(A)|| ||Γ(A+ kI + I)||
||Γ−1(A)|| ||Γ(A+ kI)||

||Γ−1(B + kI + I)|| ||Γ(B)||
||Γ−1(A)|| ||Γ(A+ kI)||

||Γ(αk + β)||
||Γ−1(B + kI)|| ||Γ(B)||Γ(αk + α+ β)

=
||Γ(A+ kI + I)|| ||Γ−1(B + kI + I)||

||Γ(A+ kI)|| ||Γ−1(B + kI)||
Γ(αk + β)

||Γ(αk + α+ β)||
This implies

lim
k→∞

∣∣∣∣Mk+1

Mk

∣∣∣∣ ≤ ||(A+ kI)|| ||Γ(A+ kI)||
||Γ(A+ kI)|| ||Γ−1(B + kI)||

||((B + kI)Γ(B + kI))−1||Γ(αk + β)

Γ(αk + α+ β)

=
||(A+ kI)|| ||Γ−1(B + kI)||

||Γ−1(B + kI)||
||(B + kI)−1||Γ(αk + β)

Γ(αk + α+ β)

=
||(A+ kI)|| ||(B + kI)−1||Γ(αk + β)

Γ(αk + α+ β)
.

Therefore,
∣∣∣∣Mk+1

Mk

∣∣∣∣ → 0 as k → ∞, which yields the

convergence of EA,B
α,β (z) for any z ∈ C.

In the following content, we list some straightforward
special cases of the extended version of the generalized

matrix Mittag-Leffler function EA,B
α,β (z) defined previously

in (2).
Remark 2: For A ∈ Cn×n, the following properties are

hold for EA,B
α,β (z):

1) If α = β = 0, then we have

EA,A
0,0 (z) =

(
1

(1− z)
I

)
; |z| < 1. (44)

2) If α = β = 1, then we have

EA,A
1,1 (z) =

(
zk

k!

)
= eA. (45)

3) If α = 1 and β = 2, then we have

EA,A
1,2 (z) =

(
ez − 1

z

)
. (46)

4) If α = 2 and β = 1, then we have

EA,A
2,1 (z2) = cosh(z). (47)

5) If α = β = 2, then we have

EA,A
2,2 (−z2) = cos(z). (48)

6) If α = 2 and β = 1, then we have

EA,A
2,2 (−z2) = cos(A). (49)

7) If α = β = 2, then we have

EA,A
2,2 (z2) =

sinh(z)

z
. (50)

8) If α = β = 2, then we have

EA,A
2,2 (−z2) =

sin(z)

z
. (51)

V. CONCLUSION

In this article, we have reviewed the generalized matrix
Mittag-Leffler function and proposed a further number of
its properties. Consequently, we have also set a definition
for an extended version of the generalized matrix Mittag-
Leffler function and hence demonstrated that this function is
absolutely convergent under a specific circumstance.
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