
 

  

Abstract—In recent years, there is massive development of 

new metaheuristics as stochastic methods. Meanwhile, there is 

not any metaheuristics is powerful to handle all problems as 

stated in the no-free-lunch (NFL) theory. Based on this 

circumstance, this paper introduces a new swarm-based 

metaheuristics with the main strategy moving toward the 

resultant of better swarm members and avoiding the resultant 

of worse swarm members called group better-worse algorithm 

(GBWA). It consists of five searches: moving toward the best 

swarm member, moving toward the resultant of better swarm 

members, moving away from the resultant of worse swarm 

members, searching locally, and jumping to the opposite area. 

GBWA is then evaluated in three ways. The first evaluation is a 

comparative evaluation where GBWA is compared to five recent 

metaheuristics: coati optimization algorithm (COA), average 

and subtraction-based optimization (ASBO), clouded leopard 

optimization (CLO), total interaction algorithm (TIA), and 

osprey optimization algorithm (OOA). The second evaluation is 

the individual search evaluation. The third evaluation is 

hyperparameter test. The collection of 23 classic functions is 

chosen as the use case in all evaluations. The result of the first 

evaluation shows that GBWA is better than COA, ASBO, CLO, 

TIA, and OOA in 20, 21, 20, 21, and 21 functions consecutively. 

Meanwhile, the result of the second evaluation shows the equal 

contribution between the motion toward the best swarm 

member and the motion toward the resultant of better swarm 

members. 

 

Index Terms—stochastic optimization, metaheuristic, swarm 

intelligence, neighborhood search, jump search. 

I. INTRODUCTION 

WARM intelligence is a popular technique that has been 

used in many popular metaheuristics. Particle swarm 

optimization (PSO) is the early popular metaheuristic that 

uses swarm intelligence concept. Some popular 

metaheuristics, such as grey wolf optimization (GWO), slime 

mold algorithm (SMA), and marine predator algorithm 

(MPA) also use swarm intelligence. These three 

metaheuristics have been used extensively in many 

optimizations. GWO has been combined with support vector 

regression (SVR) to provide more accurate strip thickness 

prediction for raw materials [1]. PSO has been utilized to 

provide scheduling scheme for power system [2]. In this 

work, the modification of PSO was proven in reducing fuel 

 
 

cost, emission, and power loss [2]. PSO also has been used in 

the secure distributed computation in the cloud system [3]. In 

the operation research area, PSO has been utilized to solve 

vehicle routing problems for fresh product distribution with 

the soft time window and multi compartment issue [4]. In this 

study, the objective was minimizing the cost including 

penalty cost, damage cost, refrigeration cost, delivery cost, 

and vehicle cost [4]. MPA has been combined with support 

vector machine (SVM) to classify Alzheimer disease [5]. 

In the last three years, many new swarm-based 

metaheuristics are introduced. Some of them adopted animal 

behavior as inspiration, such as Komodo mlipir algorithm 

(KMA) [6], coati optimization algorithm (COA) [7], zebra 

optimization algorithm (ZOA) [8], osprey optimization 

algorithm (OOA) [9], golden jackal optimization (GJO) [10], 

clouded leopard optimization (CLO) [11], northern goshawk 

optimization (NGO) [12], cat and mouse based optimization 

(CMBO) [13], Siberian tiger optimization (STO) [14], walrus 

optimization algorithm (WaOA) [15], white shark 

optimization (WSO) [16], Tasmanian devil optimization 

(TDO) [17], snake optimization (SO) [18], green anaconda 

optimization (GAO) [19], red fox optimization (RFO) [20], 

and so on. Some metaheuristics adopted social or human 

behavior, such as modified social force algorithm (MSFA) 

[21], mother optimization algorithm (MOA) [22], migration 

algorithm (MA) [23], chef-based optimization algorithm 

(CBOA) [24], election-based optimization algorithm 

(EBOA) [25], and so on. On the other hand, some 

metaheuristics did not use any metaphors such as total 

interaction algorithm (TIA) [26], attack leave optimization 

(ALO) [27], multiple interaction-dual leader optimization 

(MIDLO) [28], average and subtraction-based optimization 

(ASBO) [29], golden search optimization (GSO) [30], and so 

on. 

The best swarm member becomes the most popular 

reference in the directed search. This reference is used 

extensively in many swarm-based metaheuristics, such as 

ASBO [29], COA [7], ZOA [8], ALO [27], and so on. Besides 

the best swarm member, a randomly picked swarm member 

also becomes the popular reference as it is used in various 

metaheuristics, such as NGO [12], ZOA [8], COA [7], TIA 

[26], and so on. Meanwhile, some other metaheuristics uses a 

randomly picked better swarm members as its reference. 

The neighborhood search with the reduced local search 

space during the iteration becomes a popular secondary 

search in the recent swarm-based metaheuristics. This 
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strategy can be found in many recent metaheuristics, such as 

CLO [11], NGO [12], OOA [9], COA [7], ZOA [8], and so 

on. In the beginning, the local search space is large so that it 

looks like exploration. Then, the local search space declines 

as iteration goes on which represents the strategic shifting to 

exploitation. 

Despite the popularity of various references in the directed 

search, there are opportunities to invent various other 

references. For example, the resultant of three best swarm 

members used in GWO [31], the two best swarm members in 

GJO [10], or the resultant of certain number of best swarm 

members in KMA [6] can be modified becomes the resultant 

of all better members in the perspective of the corresponding 

swarm member. On the other hand, avoiding a randomly 

picked swarm member whose quality is worse can be 

modified becomes avoiding the resultant of all worse swarm 

members, once again from the perspective of the 

corresponding swarm member.  

The popularity of neighborhood search with reduced local 

search space during the iteration can also be challenged with 

other random searches. In general, the neighborhood search 

is an exploitation strategy. This approach can be challenged 

with a random search that focuses on the exploration strategy. 

Due to this context, rather than trying to find a better solution 

near the current solution, this random search tries to find in 

the remote area and avoids searching near the current 

solution. 

Based on this opportunity, this work is aimed at 

introducing a new swarm-based metaheuristic called group 

better-worse algorithm (GBWA). As the name suggests, 

GBWA is motivated by the motion toward the group of better 

swarm members and avoid the group of worse swarm 

members. GBWA is also equipped with the jump search to 

improve the exploration capability. Meanwhile, GBWA is 

also enriched with the motion toward the best swarm member 

and the neighborhood search with reduced search space 

during the iteration. 

The main and scientific contributions of this work are 

briefed as follows. 

1) This work introduces the motion toward the resultant of 

the better solutions and the motion avoiding the 

resultant of the worse solutions in the swarm-based 

metaheuristic development. 

2) This work introduces the jump search as exploration 

activity in the development of metaheuristics.  

3) This work presents a comparative evaluation to 

investigate the performance of GBWA compared to 

most recent metaheuristics.  

4) This work presents an individual search evaluation to 

investigate the performance of each search constructing 

the GBWA. 

5) This work presents the hyper parameter test to evaluate 

the impact of the adjusted parameters to the 

performance of GBWA. 

The formulation of this paper is as follows. Section 1 is the 

introduction consisting of the background of this work which 

is followed by the problem statement, research objective, and 

the contribution. Then, section 2 conducts the in-depth review 

of the development of recent metaheuristics, including the 

comparison among some recent metaheuristics. Section 3 

provides the fundamental concept of GBWA which is 

followed by the formalization of the algorithm using the 

pseudocode and mathematical formulation. The evaluation of 

GBWA is presented in section 4 consisting of the evaluation 

scenario and the result. The comprehensive analysis 

regarding the evaluation result, the drawback to the theory, 

limitations, and the computational complexity of GBWA is 

presented in section 5. In the end, the conclusion and the 

ground for future development is summarized in section 6. 

II.   RELATED WORKS 

In recent years, the development of metaheuristics has been 

dominated by the swarm intelligence. Using swarm 

intelligence approach, the metaheuristic is constructed by a 

certain number of agents that work autonomously to find the 

optimal solution. Due to this autonomy, the central 

coordination does not exist in this system. This coordination 

is replaced by the common or collective intelligence shared 

among the agents. This intelligence is manifested by the 

location of certain solutions including the quality of these 

solutions. Through this collective intelligence, each swarm 

member can take better action depends on the strategy 

implemented in the corresponding metaheuristic. 

Each metaheuristic has its own collective intelligence 

which is used as the reference for the directed motion 

conducted by each swarm member. Each swarm-based 

metaheuristic may use single reference or multiple 

references. This reference can be the best swarm member, 

global best solution, local best solution, a randomly picked 

swarm member, the mixture or resultant of certain swarm 

members, the worst swarm member, and so on. The reference 

can also be the combination among the references mentioned 

previously. The direction of the motion can be getting closer 

or avoiding the reference. In general, the step size of this 

motion is stochastic. Several common distributions are 

uniform, normal, sinusoid, and so on. 

This directed search implemented in the swarm-based 

intelligence makes the distinction between exploration and 

exploitation ambiguous. The basic definition of exploitation 

is searching for improvement near the current solution. On 

the other hand, the basic definition of exploration is searching 

somewhere within the search space to avoid local optimal. In 

many metaheuristics, the exploration and exploitation are 

conducted by different strategies. For example, in genetic 

algorithm (GA), the crossover represents exploitation while 

mutation represents exploration [32]. The simulated 

annealing (SA) is a metaheuristic that focuses on the 

exploitation. In swarm-based metaheuristic, this directed 

search can be seen as exploration or exploitation depends on 

the distance between the swarm member and its reference. 

When the swarm member is close to its reference, the motion 

can be perceived as exploitation. On the other hand, when the 

swarm member is far from its reference, the motion can be 

perceived as exploration. 
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TABLE I 
COMPARISON OF SOME RECENT SWARM-BASED METAHEURISTICS 

No Metaheuristics Strategy Acceptance 

1 COA [7] The swarm member moves toward the best swarm member. The swarm member moves toward a randomized 

location within space. The swarm member takes neighborhood search with reduced local space. 

strict 

2 ASBO [29] The swarm member moves toward the middle location between the best and worst swarm members. The swarm 

member moves with the direction of the gap between the best and worst swarm members. The swarm member 

moves away from the best swarm member. 

strict 

3 CLO [11] The swarm member moves toward or away from a randomly picked other swarm member based on the quality 

comparison. The swarm member takes neighborhood search with reduced local space. 

strict 

4 TIA [26] The swarm member moves toward or away from all other swarm members. strict 

5 OOA [9] The swarm member moves toward a randomly picked member from a pool consisting of all the better swarm 

members plus the best swarm member. The swarm member takes neighborhood search with reduced local 

space. 

strict 

6 GSO [30] The swarm member moves toward the portion of global best member and the portion of local best member 

through sinusoid distribution. The worst swarm member is replaced with a randomly picked swarm member. 

loose 

7 NGO [12] The swarm member moves toward or away from a randomly picked other swarm member based on the quality 

comparison. The swarm member takes neighborhood search with reduced local space. The local space is 

already narrow in the beginning of the iteration. 

strict 

8 GJO [12] The first best and second-best swarm members move toward the swarm member. The first best and second-

best swarm members move away the swarm member. 

loose 

9 STO [14] The swarm member moves toward a randomly picked member from a pool consisting of all the better swarm 

members plus the best swarm member. The swarm member moves toward or away from a randomly picked 

other swarm member based on the quality comparison. The swarm member takes neighborhood search with 

reduced local space. 

strict 

10 WSO [16] The swarm member moves toward the best swarm member. The swarm member performs local search. loose 

11 this work The swarm member moves toward the best swarm member. The swarm member moves toward the resultant 

of the group of the better swarm members. The swarm member moves away from resultant of the group of 

worse swarm members. The swarm member performs the neighborhood search with reduced local search 

space. The swarm member jumps to the opposite area within space. 

strict 

 

As iterative-based optimization, all metaheuristics consist 

of two stages. The first stage is initialization while the second 

stage is iteration. In almost all population-based 

metaheuristics, especially the swarm-based metaheuristics, 

all swarm members are generated uniformly within the search 

space. This circumstance makes the tendency of exploration 

high in the early iteration. Meanwhile, when the iteration is 

close to the maximum iteration, in general, all swarm 

members converge in a certain small area. This circumstance 

makes the tendency of exploitation high in the end of 

iteration. 

The summary of recent swarm-based metaheuristics is 

provided in Table 1. This presentation includes the strategy 

conducted in every metaheuristic and the acceptance 

approach regarding the seed produced in every search.  

The presentation in Table 1 exhibits that there are three 

common searches in the recent swarm-based metaheuristics. 

The first search is the motion toward the best swarm member. 

The second search is the motion toward or away from a 

randomly picked swarm member. The third search is the 

neighborhood search with reduced local search space. Based 

on this explanation, the first and third searches are 

accommodated in the proposed GBWA. 

Moreover, the presentation in Table 1 exposes the distinct 

searches performed in GBWA. The first distinct search is the 

motion toward the resultant of the group of better swarm 

members. The second distinct search is the motion away from 

the resultant of the worse swarm members. The third distinct 

search is the jump search to the opposite side of the space. 

These three searches also become the novel strategy proposed 

in this work regarding the continuous development of 

metaheuristics. 

III. PROPOSED MODEL 

GBWA is constructed based on the swarm intelligence 

concept. It means that GBWA consists of a set of autonomous 

agents called swarm. The fundamental concept is that each 

swarm member tries to move toward the group of better 

swarm members and avoids the group of worse better 

members. These two groups are based on the perspective of 

the corresponding swarm member. It means that the members 

of the better swarm members will be different between one 

swarm member and the others. This circumstance is also 

applied for the group of worse swarm members. As the 

corresponding swarm member will move once for each 

group, then the swarm member will move to the central point 

of the group. This central point is determined based on the 

resultant or average location of the group without considering 

the quality of each swarm members within the group.  

GBWA is also enriched with other searches besides 

moving toward the resultant of better swarm members and 

away from the resultant of the worse swarm members. The 

first enrichment is the motion toward the best swarm member. 

This search is adopted due to its commonality in many recent 

swarm-based metaheuristics. The second enrichment is the 

jump search to the opposite area within the search space. This 

search is adopted because it is a new concept in the studies 

regarding the development of metaheuristics. The third 

enrichment is the neighborhood search with the reduction of 

local search space during the iteration. This search is adopted 

because it is commonly found in many recent metaheuristics. 

These five searches are accommodated into four sequential 

steps. The first step is the motion toward the best swarm 

member. The second step is the motion toward the resultant 

of better swarm members. The third step is the motion away 

from the worse swarm members. The fourth step is the jump 

search or neighborhood search. The determination of 

choosing between the jump search or neighborhood search is 

conducted stochastically. In the early iteration, the probability 

of performing jump search is high. Then, this probability 

declines as the iteration goes on. On the other hand, the 

probability of performing neighborhood search grows as the 
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iteration goes on. The motivation of this approach in the 

fourth step is to force the swarm members juggle on both 

sides of the search space that represents exploration. Then, 

the swarm member will focus on the local search with narrow 

search space in the end of the iteration to avoid being thrown 

away from the current location.  

The strict acceptance approach is implemented in GBWA. 

It means that the seed generated in every search can replace 

its parent (current solution) only if the seed is better than the 

parent. Moreover, the best swarm member will be replaced 

with the corresponding swarm member only if the 

corresponding swarm member is better than the current best 

swarm member. 

The formalization of GBWA is presented in algorithm 1. 

The mathematical formulation is presented in (1) to (11). 

Meanwhile, below are the annotations used in this 

formalization. 

d dimension 

e seed 

f objective function 

i index for swarm member 

j index for dimension 

s swarm member 

S swarm 

sl lower boundary of space 

su upper boundary of space 

sm middle of the space 

sb the best swarm member 

Sbe group of better swarm members 

Swo group of worse swarm members 

srb resultant of the group of better swarm members 

srw resultant of the group of worse swarm members 

t iteration 

tm maximum iteration 

Ure1 real uniform random number between 0 and 1 

Ure2 real uniform random number between -1 and 1 

Uin1 integer uniform random number between 1 and 2 

 

algorithm 1: group better-worse algorithm 

1 begin 

2  for i=1: n(S) 

3   initialization of s using (1)     

4   update sb using (2) 

5  end for 

6  for t=1: tm 

7   for i=1: n(S) 

8    first motion using (3) 

9    set up better and worse groups using (4) to (7) 

10    second motion using (8) 

11    third motion using (9) 

12    if Ure1 < (t/tm) then  

13     fourth motion using (10) 

14    else 

15     fifth motion using (11)  

16    update sb using (2) 

17   end for 

18  end for 

19  return sb 

20 end 

 

The initialization step appears from lines 2 to 5 in 

algorithm 1. In this initialization, all swarm members are 

generated uniformly within the search space so that the 

probability of each location within the space becomes the 

initial solution is uniform or equal. This process is formalized 

using (1). Then, each time a swarm member is initialized, the 

best swarm member is updated based on the strict acceptance 

regulation as presented in (2).  

 

𝑠𝑖,𝑗 = 𝑠𝑙,𝑗 + 𝑈𝑟𝑒1. (𝑠𝑢,𝑗 − 𝑠𝑙,𝑗)           (1) 

 

𝑠𝑏
′ = {

𝑠𝑖 , 𝑓(𝑠𝑖) < 𝑓(𝑠𝑏)
𝑠𝑏 , 𝑒𝑙𝑠𝑒

              (2) 

 

The iteration stage appears from lines 6 to 18 in algorithm 

1. The first motion is the motion toward the best swarm 

member. This process is formalized using (3). 

 

𝑒1,𝑗 = 𝑠𝑖,𝑗 + 𝑈𝑟𝑒1. (𝑠𝑏,𝑗 − 𝑈𝑖𝑛1. 𝑠𝑖,𝑗)         (3) 

 

The grouping process is performed before the second and 

third motions. The grouping of the better swarm members is 

formalized using (4). Meanwhile, the grouping of the worse 

swarm members is formalized using (5). Then the resultant of 

the better swarm members is formalized using (6) while the 

resultant of the worse swarm members is formalized using 

(7).  

 

𝑆𝑏𝑒,𝑖 = {𝑠 ∈ 𝑆|𝑓(𝑠) < 𝑓(𝑠𝑖)}            (4) 

 

𝑆𝑤𝑜,𝑖 = {𝑠 ∈ 𝑆|𝑓(𝑠) > 𝑓(𝑠𝑖)}           (5) 

 

𝑠𝑟𝑏,𝑖,𝑗 =
∑ 𝑠𝑏𝑒,𝑖,𝑗𝑛(𝑆𝑏𝑒,𝑖,𝑗)

𝑛(𝑆𝑏𝑒,𝑖,𝑗)
               (6) 

 

𝑠𝑤𝑜,𝑖,𝑗 =
∑ 𝑠𝑤𝑜,𝑖,𝑗𝑛(𝑆𝑤𝑜,𝑖,𝑗)

𝑛(𝑆𝑤𝑜,𝑖,𝑗)
              (7) 

 

After these two resultants are determined, the next 

processes are performing the second motion and the third 

motion. The second motion is formalized using (8) while the 

third motion is formalized using (9). 

 

𝑒2,𝑗 = 𝑠𝑖,𝑗 + 𝑈𝑟𝑒1. (𝑠𝑟𝑏,𝑖,𝑗 − 𝑈𝑖𝑛1. 𝑠𝑖,𝑗)        (8) 

 

𝑒3,𝑗 = 𝑠𝑖,𝑗 + 𝑈𝑟𝑒1(0,1). (𝑠𝑖,𝑗 − 𝑈𝑖𝑛1. 𝑠𝑤𝑜,𝑖,𝑗 )      (9) 

 

The last search is the neighborhood search or the jump 

search. The neighborhood search is formalized using (10). 

Meanwhile, the jump search is formalized using (11). 

 

𝑒4,𝑗 = 𝑠𝑖,𝑗 + 𝑈𝑟𝑒2 (
𝑠𝑙,𝑗

𝑡
+ 𝑈𝑟𝑒1.

𝑠𝑢,𝑗−𝑠𝑙,𝑗

𝑡
)        (10) 

 

𝑒4,𝑗 = {
𝑠𝑚,𝑗 + 𝑈𝑟𝑒1. (𝑠𝑢,𝑗 − 𝑠𝑚,𝑗), 𝑠𝑖,𝑗 < 𝑠𝑚,𝑗

𝑠𝑙,𝑗 + 𝑈𝑟𝑒1. (𝑠𝑚,𝑗 − 𝑠𝑙,𝑗), 𝑒𝑙𝑠𝑒
     (11) 

IV. SIMULATION 

There are three evaluations provided in this paper to 

evaluate the performance of GBWA. The first evaluation is 

called a comparative evaluation. In this paper, GBWA is 
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compared with five new swarm-based metaheuristics: COA, 

ASBO, CLO, TIA, and OOA. Three of these metaheuristics 

(COA, TIA, and OOA) were first introduced in 2023.  On the 

other hand, the two others (ASBO and CLO) were first 

introduced in 2022. There are several reasons why these five 

metaheuristics are chosen as comparison. First, there are a lot 

of new metaheuristics introduced in the last three years. This 

circumstance pushes the introduction of any new 

metaheuristics should be compared with any existing 

metaheuristic as new as possible. Second, all these 

comparators are swarm-based metaheuristics and deploy 

strict acceptance rule. Meanwhile, except TIA, the 

comparators implement multi-strategy and multi-stage 

approaches. COA, CLO, and OOA are comparators that 

implement neighborhood search. Third, all these comparators 

do not contain any adjusted parameters except the maximum 

iteration and swarm size. It means that the performance of 

these comparators will always be in its default status. 

The second evaluation is called an individual search 

evaluation. As GBWA is a multi-strategy metaheuristic, it is 

important to assess the contribution of each search. The 

objective of this evaluation is to find the contribution or 

dominance of each search compared to the other search. 

Moreover, as stated in NFL theory, it is also important to 

assess the performance of each search to overcome various 

problems. Moreover, the strength and weakness of each 

search can be investigated. 

The third evaluation is called hyperparameter test. This test 

is conducted to assess the impact of the adjusted parameters 

on the performance of GBWA. There are two adjusted 

parameters assessed in this paper: the maximum iteration and 

the swarm size. 

The set of 23 classic functions is used as the theoretical use 

case in both evaluations. It consists of seven high dimension 

unimodal (HDU) functions, six high dimension multimodal 

(HDM) functions, and fixed dimension multimodal (FDM) 

functions. This use case is popular so that it was used in the 

first introduction of many new metaheuristics, such as KMA 

[6], TIA [26], ALO [27], and so on. Its popularity comes from 

the variety of circumstances it covers. It consists of unimodal 

functions that have only one optimal solution. On the other 

hand, some functions are multimodal functions that have 

multiple optimal solutions so that it is challenging to avoid 

the local optimal entrapment. There is variety in the search 

space from the narrow ones to the large ones. The shape or 

terrain is also various, from smooth, ripple, to a flat shape 

with narrow steep hole. 

In this evaluation, the swarm size is set to 5 while the 

maximum iteration is set to 10. The dimensions for the high 

dimension functions are set to 60. Tables 2 to 4 exhibit the 

detailed result of the first evaluation, including the average 

fitness score, standard deviation, and the mean rank. Then, 

this result is summarized based on the functions class and 

provided in Table 5. The result of the second evaluation is 

provided in Table 6. The value more precise than 10-4 is 

rounded to 0.  

The result in Table 2 indicates the superiority of GBWA 

compared to its confronters in the first group of functions. 

GBWA becomes the first best in solving all seven functions 

(Sphere, Schwefel 2.22, Schwefel 1.2, Schwefel 2.21, 

Rosenbrock, Step, and Quartic). For additional note, all 

metaheuristics in this evaluation achieve the same result in 

solving Schwefel 2.22. The wide performance gap between 

the best and worst performers can be seen in five functions 

(Sphere, Schwefel 1.2, Schwefel 2.21, Rosenbrock, and 

Step). Meanwhile this gap is narrow in solving Quartic. 

The result in Table 3 indicates that GBWA is still superior 

to its comparators in solving the second group of functions. 

GBWA becomes the best performer in all six functions 

(Schwefel, Rastrigin, Ackley, Griewank, Penalized, and 

Penalized 2). The performance gap between the best and 

worst performer is wide in five functions where GBWA 

becomes the best performer (Rastrigin, Ackley, Griewank, 

Penalized, and Penalized 2). Meanwhile, the performance gap 

in solving Schwefel is narrow.  

Table 4 indicates that GBWA is competitive compared to 

its comparators in solving the third group of functions. 

GBWA becomes the best performer in solving nine functions 

(Shekel Foxholes, Kowalik, Six Hump Camel, Branin, 

Hartman 3, Hartman 6, Shekel 5, Shekel 7, and Shekel 10). 

GBWA becomes the third best in solving Goldstein-Price 

behind COA and CLO. Meanwhile, all metaheuristics in this 

evaluation performs equally in solving Hartman 3. 

 

 

 
TABLE II 

PERFORMANCE EVALUATION REGARDING SEVEN HDU FUNCTIONS 

F Parameter COA [7] ASBO [29] CLO [11] TIA [26] OOA [9] GBWA 

1 mean 1.1701x103 9.1475x102 2.1589x103 5.1486x101 2.9559x102 1.2624 

std deviation 4.6962x102 3.1434x102 1.4090x103 1.1224x101 1.1659x102 2.0914 
mean rank 5 4 6 2 3 1 

2 mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

std deviation 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
mean rank 1 1 1 1 1 1 

3 mean 5.3145x104 6.8943x104 1.0325x105 1.1664x104 3.3104x104 4.3104x103 

std deviation 4.1827x104 3.4362x104 3.8338x104 7.8975x103 1.7512x104 5.3334x103 
mean rank 4 5 6 2 3 1 

4 mean 2.4593x101 2.3075x101 5.0583x101 4.6889 1.3862x101 0.9801 

std deviation 5.0695 1.6315x101 1.5177x101 0.7244 4.6121 0.5262 
mean rank 5 4 6 2 3 1 

5 mean 1.9685x105 6.6069x104 9.5053x105 1.0713x103 1.7701x104 6.9518x101 
std deviation 1.6510x105 3.2273x104 8.0527x105 3.9091x102 1.3345x104 9.2275 

mean rank 5 4 6 2 3 1 

6 mean 1.0882x103 8.4527x102 2.2405x103 5.5244x101 3.0685x102 1.3627x101 
std deviation 4.0103x102 3.4945x102 1.2400x103 1.0442x101 1.3415x102 0.9724 

mean rank 5 4 6 2 3 1 

7 mean 0.5658 0.3067 0.9324 0.1154 0.1917 0.0377 

std deviation 0.2683 0.1356 0.6095 0.0599 0.1053 0.0164 

mean rank 5 4 6 2 3 1 
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TABLE III 

PERFORMANCE EVALUATION REGARDING SIX HDM FUNCTIONS 

F Parameter COA ASBO CLO TIA OOA GBWA 

8 mean -4.1944x103 -3.7869x103 -4.0912x103 -2.1995x103 -3.4490x103 -4.3019x103 

std deviation 6.6039x102 5.6699x102 6.8842x102 5.1639x102 7.2869x102 7.1444x102 
mean rank 2 4 3 6 5 1 

9 mean 1.8095x102 4.1047x101 4.0321x102 8.4084x101 1.6430x102 4.8890 

std deviation 4.1437x101 1.0241x101 6.0488x101 2.5798x101 5.0772x101 6.3793 
mean rank 5 2 6 3 4 1 

10 mean 6.4208 7.0680 8.0799 2.3669 4.0514 0.1634 

std deviation 1.2437 1.6667 1.1876 0.2709 0.6600 0.0991 
mean rank 4 5 6 2 3 1 

11 mean 1.0078x101 9.6762 1.6941x101 1.4357 3.7119 0.2529 

std deviation 3.6954 2.7918 5.7041 0.1610 1.2336 0.2251 
mean rank 5 4 6 2 3 1 

12 mean 1.6864x102 1.4487x101 1.9487x104 1.3326 4.0603 1.0396 

std deviation 7.2867x102 2.8425x101 5.0775x104 0.2593 1.8224 0.0910 
mean rank 5 4 6 2 3 1 

13 mean 2.5787x104 2.1288x104 4.7040x105 5.3925 1.2007x102 3.5035 

std deviation 2.7943x104 4.3858x104 7.06831x105 1.1211 3.1206x102 0.1712 

mean rank 5 4 6 2 3 1 

 
TABLE IV 

PERFORMANCE EVALUATION REGARDING TEN FDM FUNCTIONS 

F Parameter COA [7] ASBO [29] CLO [11] TIA [26] OOA [9] GBWA 

14 mean 9.8117 7.7597 8.5985 1.7542x101 9.8587 6.9324 

std deviation 5.6911 4.3037 4.1532 2.7773x101 5.2495 4.1514 

mean rank 4 2 3 6 5 1 
15 mean 0.0146 0.1114 0.0216 0.0109 0.0158 0.0054 

std deviation 0.0187 0.0369 0.0158 0.0143 0.0166 0.0105 

mean rank 3 6 5 2 4 1 
16 mean -1.0103 -0.0545 -1.0162 -1.0086 -1.0065 -1.0287 

std deviation 0.0235 0.1927 0.0159 0.0427 0.0272 0.0060 

mean rank 3 6 2 4 5 1 
17 mean 0.5203 1.5819 0.6105 1.6286 0.4661 0.4347 

std deviation 0.3669 2.3113 0.6234 2.2443 0.15932 0.0971 
mean rank 3 5 4 6 2 1 

18 mean 7.6897 1.5500x101 7.8656 2.4145x101 1.3955x101 1.2998x101 

std deviation 8.3094 5.7282x101 9.5166 2.4549x101 2.2565x101 1.3142x101 

mean rank 1 5 2 6 4 3 

19 mean -0.0495 -0.0495 -0.0495 -0.0495 -0.0495 -0.0495 

std deviation 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
mean rank 1 1 1 1 1 1 

20 mean -2.8134 -0.8035 -2.7745 -1.9985 -2.7845 -2.8728 

std deviation 0.1815 0.4663 0.3036 0.4795 0.2421 0.2293 
mean rank 2 6 4 5 3 1 

21 mean -2.2640 -1.8789 -1.9033 -1.5961 -1.6516 -3.1369 

std deviation 1.2584 1.7740 0.8282 1.1761 1.0794 1.7915 
mean rank 2 4 3 6 5 1 

22 mean -1.9182 -2.1539 -1.8842 -1.8682 -2.0006 -3.7708 

std deviation 0.9708 1.6965 0.6596 0.8550 1.0165 1.7586 
mean rank 4 2 5 6 3 1 

23 mean -2.4329 -2.4678 -2.1912 -1.8718 -1.9591 -2.8361 

std deviation 1.0192 2.1375 0.7356 0.9275 0.7060 1.1751 

mean rank 3 2 4 6 5 1 

 
TABLE V 

CLUSTER BASED COMPARISON RESULT OF GBWA 

Cluster 

Number of Functions Beaten by GBWA 

COA 

[7] 

ASBO 

[29] 

CLO 

[11] 

TIA 

[26] 

OOA 

[9] 

1 6 6 6 6 6 

2 6 6 6 6 6 
3 8 9 8 9 9 

Total 20 21 20 21 21 

 

Table 5 shows the superiority of GBWA compared to its 

comparators. This superiority is based on the number of 

functions where GBWA is better than the related comparator. 

In Table 5, the superiority is grouped based on the group of 

functions so that there are three groups for each comparator.  

Table 5 indicates that in general, GBWA is still superior to 

its comparators. GBWA is better than COA, ASBO, CLO, 

TIA, and OOA in 20, 21, 20, 21, and 21 functions 

consecutively. Overall, GBWA is superior in solving all three 

groups of functions. The superiority of GBWA compared to 

its comparators is followed by a significant performance gap 

in the first and second groups of functions. Meanwhile a close 

performance gap takes place in the third group of functions 

although GBWA is still superior. 

The result of the second evaluation is presented in Table 6. 

As there are four searches in GBWA, then there are four 

individual searches evaluated in this work. In this second 

evaluation the parameter is the average fitness score. The best 

result for each function is written in bold font. 

 

 

 

IAENG International Journal of Applied Mathematics

Volume 54, Issue 4, April 2024, Pages 614-622

 
______________________________________________________________________________________ 



 

TABLE VI 
SINGLE SEARCH ASSESSMENT RESULT 

F 
Average Fitness Score 

1st search 2nd search 3rd search 4th search 

1 1.7736x102 1.0377x102 1.7321x105 1.5048x105 
2 0.0000 0.0000 1.0750x1089 0.0000 

3 2.2269x104 1.8944x104 9.7830x105 5.3092x105 

4 1.1916x101 3.1211x101 9.7000x101 9.1906x101 
5 5.0221x103 4.3189x103 7.8769x108 6.3055x108 

6 1.9544x102 1.0595x102 1.7640x105 1.4319x105 

7 0.1429 0.1450 7.9055x102 5.8870x102 
8 -2.6620x103 -2.2227x103 -2.9418x103 -3.7681x103 

9 1.1796x102 1.5064x102 1.0264x103 9.0765x102 

10 3.4059 2.9504 2.0078x101 2.0781x101 
11 0.1719 0.3014 1.8989x103 1.3566x103 

12 2.4510 2.1046 1.9976x109 1.4164x109 

13 8.7248 7.4720 4.0673x109 2.7336x109 
14 2.2107x101 2.6632x101 2.1912x102 3.0855x101 

15 0.0414 0.0263 1.2586 0.0809 

16 -0.8804 -0.8154 1.1690x102 -0.0495 
17 4.2884 3.9010 6.1218 3.7443 

18 4.3698x101 7.5125x101 4.3272x102 3.0364x101 

19 -0.0495 -0.0495 -0.0495 -0.0117 

20 -2.0379 -2.0410 -1.1048 -1.7446 

21 -1.1765 -1.0175 -0.3298 -0.7786 
22 -1.7324 -1.4462 -0.4604 -0.9565 

23 -1.5400 -1.2761 -0.6314 -1.3927 

 

Table 6 shows the dominance of the first and second 

searches in GBWA. In Schwefel 2.22, the first and second 

can find the global optimal solution. Meanwhile, in Hartman 

3, the first, second, and third searches achieve the same result. 

The first search is the distinct best of nine functions. The 

second search is the distinct best of nine functions. The fourth 

search is the distinct best of only three functions. Meanwhile, 

the third search never becomes the distinct best. This result 

shows the equal contribution of the first and second searches. 

 
TABLE VII 

SINGLE SEARCH ASSESSMENT RESULT 

F 
Average Fitness Score 

tm = 20 tm = 40 

1 0.0000 0.0000 

2 0.0000 0.0000 

3 9.5572x101 0.0036 

4 0.0028 0.0000 

5 5.8917x101 5.8919x101 

6 1.3076x101 1.2947x101 

7 0.0147 0.0056 

8 -5.0217x103 -5.6280x103 

9 0.0040 0.0000 

10 0.0002 0.0000 

11 0.0075 0.0003 

12 0.9889 0.6881 

13 3.1097 3.0889 

14 6.5781 4.8327 

15 0.0042 0.0053 

16 -1.0313 -1.0316 

17 0.4120 0.3981 

18 1.0755x101 6.2401 

19 -0.0495 -0.0495 

20 -2.9981 -3.0324 

21 -5.3959 -7.1506 

22 -5.9673 -7.7913 

23 -4.8683 -7.5229 

 

There are two tests regarding the hyperparameter test. The 

first test is conducted to assess the impact of the increase of 

maximum iteration on the average fitness score. There are 

two values on the maximum iteration: 20 and 40. The result 

is presented in Table 7. Meanwhile, the second test is 

conducted to assess the impact of the increase of swarm size 

on the average fitness score. There are two values on swarm 

size: 10 and 20. The result is provided in Table 8.  

Table 7 shows that there are only six functions where the 

average fitness score improves significantly due to the 

increase of maximum iteration from 20 to 40. These functions 

are Schwefel 1.2, Schwefel 2.21, Quartic, Rastrigin, Ackley, 

and Penalized 2. All these functions are high dimension 

functions where the first three functions are unimodal, and the 

rest are multimodal. Meanwhile, in some cases where there is 

not any improvement, the final solution has reached or near 

to the global optimal like in Sphere, Schwefel 2.22, Six Hump 

Camel, Branin, and so on. 

 
TABLE VIII 

SINGLE SEARCH ASSESSMENT RESULT 

F 
Average Fitness Score 

n(S) = 10 n(S) = 20 

1 0.0084 0.0006 

2 0.0000 0.0000 

3 5.6633x102 3.9174x101 

4 0.1414 0.0302 

5 5.9021x101 5.8896x101 

6 1.2474x101 1.1701x101 

7 0.0164 0.0061 

8 -4.7970x103 -4.8957x103 

9 0.0530 0.0020 

10 0.0162 0.0039 

11 0.0187 0.0013 

12 0.9208 0.8509 

13 3.2653 3.1789 

14 6.8505 3.8001 

15 0.0044 0.0024 

16 -1.0313 -1.0316 

17 0.3989 0.3982 

18 5.3554 3.0032 

19 -0.0495 -0.0495 

20 -3.0014 -3.1010 

21 -4.4230 -5.2858 

22 -4.4545 -4.9468 

23 -3.4306 -4.6758 

 

Table 8 shows that there are only seven functions where the 

average fitness score improves significantly due to the 

increase of swarm size from 10 to 20. These functions are 

Sphere, Schwefel 1.2, Schwefel 2.21, Quartic, Rastrigin, 

Ackley, and Griewank. Like in the first hyperparameter test, 
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all these seven functions are high dimension. Four of them 

are unimodal, and the rest of three are multimodal.  

V.    DISCUSSION 

The result of the first evaluation proofs that GBWA is a 

competitive metaheuristic that can perform well during the 

low-swarm size and low-maximum iteration scenario. In 

general, GBWA is superior in solving unimodal and 

multimodal functions. Moreover, GBWA is also superior in 

solving whether high dimension functions and fixed 

dimension functions. Its superiority in solving high 

dimension unimodal functions shows that GBWA has good 

exploitation capability while its superiority in solving high 

dimension multimodal functions shows that GBWA has good 

exploration capability. Meanwhile, the superiority of GBWA 

in solving the fixed dimension multimodal functions shows 

that GBWA has balanced exploration and exploitation 

capability. 

The superiority of GBWA among its comparators shows 

that GBWA can be a breakthrough in the development of 

metaheuristics. All these metaheuristics are developed based 

on swarm intelligence. Except TIA [26], all of them deploy 

multiple search strategies. Moreover, all these metaheuristics 

implement a strict acceptance approach. This approach is 

successful in beating other metaheuristics without strict 

acceptance approach, such as GWO [31], MPA [33], SMA 

[34], GSO [30], and so on. But this approach can be evaluated 

or modified to overcome the recent metaheuristics that use 

this approach. The existence of neighborhood search with 

reduction of the search space during the iteration can also be 

evaluated.  

The directed motion toward the best swarm member and the 

resultant of better swarm members contributes equally in 

GBWA. The contribution of these two searches is also higher 

than the third and fourth searches. This result strengthens the 

importance of the best swarm member and the resultant of 

better swarm members as the references in the directed 

search. Meanwhile, the result in the individual search 

evaluation also shows that moving toward the better place is 

more effective than avoiding the worse solution for the 

improvement effort. 

The jump search to the opposite area within space is 

designed to improve the exploration capability of GBWA 

where this search is designed to avoid the swarm member 

search near its current location. Unfortunately, its 

contribution is least significant. It means that the modification 

of this jump search is needed to make this search more 

competitive. In GBWA, the jump search is performed in the 

fourth search as an alternative to the neighborhood search. 

The probability of jump search is higher in the early iteration 

while the probability of neighborhood search is higher in the 

end of iteration. The modification can be performed in many 

ways, such as equal opportunity between two searches or 

making these two searches as dedicated searches. The 

modification can also be taken by performing the jump search 

as an alternative when the stagnation occurs. 

The hyper parameter test shows that the increase of 

maximum iteration gives more significant impact rather than 

the increase of swarm size. This result can be observed by 

comparing Table 7 and Table 8. Meanwhile, significant 

improvement occurs mostly in high dimension functions, 

whether they are unimodal or multimodal due to the increase 

of swarm size or maximum iteration. The improvement in the 

fixed dimension multimodal functions is less significant. 

Meanwhile the significant improvement occurs only half of 

the high dimension functions. 

The computation complexity of GBWA can be traced from 

the number of loops in its process. In this context, there are 

different number of loops performed during the initialization 

and iteration. In the initialization, there is a nested loop 

consisting of two loops. The outer loop is the loop for whole 

swarm members. The inner loop is the loop for whole 

dimension. Based on this explanation, the complexity of the 

initialization can be presented as O(n(S).d). Meanwhile, in the 

iteration, there is a nested loop consisting of four loops. The 

sequence of the loops from outer to inner is as follows. The 

first loop is the loop until the maximum iteration. The next 

loop is the loop for whole swarm members in the context of 

performing the searches. Once again, the loop for whole 

swarm members is performed to find the better swarm 

members and worse swarm members where this loop is 

performed by each swarm member. The last loop is the loop 

for whole dimension. Meanwhile, there are four sequential 

searches performed by each swarm member in each iteration. 

Based on this explanation, the computational complexity in 

the iteration can be presented as O(tm.n(S).(4+n(S)).d). 

There are limitations regarding this work or the proposed 

GBWA although this metaheuristic has shown the acceptable 

performance through superiority among the recent swarm-

based metaheuristics. First, the contribution of the third and 

fourth searches are still minimal. It makes avoiding the 

resultant of the worse swarm members, as third search, should 

be evaluated or replaced with more powerful search. 

Meanwhile, the existence of the neighborhood search where 

the local search space declines through the iteration can also 

be evaluated. Second, GBWA is still inferior to other recent 

metaheuristics in the third group of functions although it is 

superior in the high dimension functions. This circumstance 

can be used as a new path for further improvement for the 

modification of GBWA so that it is superior in all groups of 

functions. Meanwhile, as stated in the NFL theory, 

superiority in all groups does not mean that the future 

metaheuristic will be superior in all functions. Third, there are 

five searches accommodated in GBWA. Meanwhile, there are 

a lot of other searches already exist in many recent 

metaheuristics. The improvement of GBWA can be used by 

adopting some of these searches or hybridizing the GBWA 

with ASBO as its strongest comparator. Fourth, many 

metaheuristics focus on the searching but do not give 

appropriate attention to the worst swarm member and 

stagnation. In the future, adding mechanisms to handle the 

worst swarm member or improving the exploration during the 

stagnation can also be chosen as alternative.   

VI. CONCLUSION 

This paper has presented a novel swarm-based 

metaheuristics with the main strategy is moving toward the 

resultant of the better swarm members and avoiding the 

resultant of the worse swarm members called group better-

worse algorithm (GBWA). Besides, GBWA is also enriched 

with the motion toward the best swarm member, 

neighborhood search, and jumping to opposite location 

within the space. Through the comparative evaluation, 

GBWA is proven superior to its comparators with fierce 

competition. GBWA is better than COA, ASBO, CLO, TIA, 

and OOA in 20, 21, 20, 21, and 21 functions consecutively in 

solving the set of 23 classic functions. This superiority occurs 
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in all groups of functions. Meanwhile, through the individual 

search evaluation, there is equal contribution between the 

motion toward the best swarm member and the motion toward 

the resultant of better swarm members. The contribution of 

the random search as fourth search is less significant. 

This work, especially the GBWA, has opened several tracks 

for possible future studies. Inventing a new kind of search, 

whether it is based on the swarm intelligence or random 

search is still challenging due to the fierce competition in 

developing new metaheuristics. More use cases, especially 

the practical ones are important to evaluate various new 

metaheuristics more comprehensively. It is also challenging 

to hybridize the GBWA with various optimization methods 

from the deterministic ones to the stochastic ones. 
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