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Abstract—In this paper we employ Sinc functions as the basis
functions and call the resulting method Sinc wavelet collocation
method. The main distinguishing feature of the present method,
in contrast to the standard Sinc collocation method, is that
we do not use a mapping to transform the Sinc functions to
a finite domain on which the BVPs are defined to an infinite
domain in order to apply them. This results in a much simplified
algorithm which is easy to implement while maintaining the
high accuracy of the traditional Sinc collocation method. We
apply the Sinc collocation method to BVPs and the fractional
diffusion equation.

Index Terms—wavelets, Sinc functions, collocation method,
BVP, fractional diffusion equation.

I. INTRODUCTION

Two point boundary value problems (BVPs) are ubiquitous
in science and engineering. One of the simplest and most
popular methods for solving these problems numerically
are collocation methods [3], [9] . The classical collocation
methods involved orthogonal collocation which use orthog-
onal functions as basis functions, such as Legendre and
Chebyshev basis functions (see [12] and references therein).
They are specifically designed to solve problems involving
steep gradients. The main feature which sets these methods
apart from other collocation methods are their high order of
accuracy. In this paper we employ Sinc functions as the basis
functions and call the resulting method Sinc wavelet colloca-
tion method. The main distinguishing feature of the present
method in contrast to the standard Sinc collocation method
[1] [2], [10] and [11] is that the method mimics a wavelet
method and we do not use a mapping to transform the Sinc
functions to a finite domain on which the BVPs are defined
to an infinite domain in order to apply them. This results
in a much simplified algorithm which is easy to implement
while maintaining the high accuracy of the traditional Sinc
collocation method. We apply the Sinc collocation method
to BVPs and the fractional diffusion equation.

II. SINC SCALING FUNCTION AND WAVELETS

We consider the Sinc function which is defined by [10]:

ϕ(x) =
sinπx

πx
. (1)

The following formulae follow directly from (1):
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ϕ′(x) =
cosπx

x
− sinπx

πx2
, (2)

ϕ′′(x) =
2 sinπx

πx3
− π sinπx

x
− 2 cosπx

x2
,

ϕ′(0) = 0, ϕ′′(0) = −π
2

3
.

In the context of wavelets (1) is known as the scaling
function [4]. The functions

ϕj,k(x) = ϕ(2jx− k), (3)

have infinite support. It is well known that these functions
form a basis and Vj = span{ϕj,k(x) : k ∈ Z} ⊂ L2[a, b].
In particular, V3 is spanned by the functions ϕ(8x− k) and
support of ϕ(8x) ∼ [−5, 5] (see Figure 1).

The Sinc generating wavelet function can be obtained from
the Sinc scaling function as follows [4]:

ψ(x) = 2ϕ(2x)− ϕ(x), (4)

and the associated wavelets are given by the family of
functions:

ψj,k(x) = 2j/2ψ(2jx− k). (5)

In Figure 2 we illustrate some of the wavelet functions.
We observe that the functions ϕj,k(x) and the wavelet

functions ψj,k(x) are qualitatively very similar. Since, the
functions ϕ(x) are naturally defined in (−∞,∞) they can
be used directly to solve problems on unbounded domains.
There are essentially two ways of using the functions ϕj,k(x)
in collocation for problems on bounded domains: i) Domain
extension can be applied when the exact solution is assumed
to be zero outside the domain[a, b]. ii) Use of composition
mappings to transform the Sinc functions to a new basis
defined in [a, b]. These mappings are commonly referred to as
Single-Exponential transformation and Double-Exponential
transformations due to their exponential rates of convergence
[10]. In the next section we describe an alternative strategy
for solving problems posed on a bounded domain by using
the functions ϕj,k(x) instead of the scaling function (1)
which is normally utilized.

III. SINC WAVELET COLLOCATION METHOD

We consider the following class of two-point boundary
value problems (BVPs):

a(x)u′′(x) + b(x)u′(x) + c(x)u(x) = f(x), (6)
u(0) = 0, u(1) = 0, (7)

where a(x), b(x), c(x), f(x)) are continuous functions.
We present a collocation method for solving BVPs (6)-

(7) on the interval [0, 1]. It is straightforward to extend the
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Fig. 1: Sinc scaling function and the functions ϕj,0(x)

method to solve BVPs posed in [a, b] by using an appropriate
linear transformation.

In general, we truncate the support of ϕ(px) to [−L,L]
where L > 1 is an integer, p - integer. Hence [0, 1] ⊂
[−L,L].

Hence, ϕ(px−k) has support [k/p−L, k/p+L]. We note,
ϕ(px− k) = ϕ[p(x− k/p)] is centered at k/p.

Now

k/p+ L = 1 ⇒ k = (−L+ 1)p,

and

k/p− L = 0 ⇒ k = Lp.

Hence, ϕ(px − k), k = (−L + 1)p, ..., Lp, all have
support that intersects [0, 1] (see Figure 3). In particular, we
note that the values on the y− scale of the functions ϕ3,k(x)
becomes small as k increases.

Hence, we assume a solution of the form:

-10 -5 5 10

-0.5

0.5

1.0

ψ(x)

-10 -5 5 10

-0.5

0.5

1.0

ψ(2 x)

-10 -5 5 10

-0.5

0.5

1.0

ψ(8 x)

Fig. 2: Sinc generating wavelet function and the wavelet
functions ψj,0(x)

y(x) =

Lp∑
k=(−L+1)p

ckϕ(px− k) (8)

Clearly, using (8) in (6) - (7) yields c0 = cp = 0 and

a(x)p2
Lp∑

k=(−L+1)p

ckϕ
′′(px− k)

+ b(x)p

Lp∑
k=(−L+1)p

ckϕ
′(px− k)

+ c(x)

Lp∑
k=(−L+1)p

ckϕ(px− k) = f(x).

There are 2pL− p+ 1 unknowns minus 2 boundary condi-
tions. Hence, we require 2pL−p−1 collocations points. We
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Fig. 3: Shifted Sinc functions ϕ3,k(x).

choose xj ∈ (0, 1) equally spaced points:

xj =
j

2pL− p
, j = 1, 2, ..., 2pL− p− 1. (9)

Hence, we solve the linear system:

Lp∑
k=p(1−L)

k ̸=0,p

ck[p
2a(xj)ϕ

′′(pxj − k) +

pb(xj)ϕ
′(pxj − k) + c(xj)ϕ(px− k)] = f(xj),

j = 1, 2, ..., 2pL− p− 1. The derivative functions are easily
evaluated using the equations defined in (3).

In the next section, we consider a series of examples which
are standard in the literature e (see e.g. [3], [9]).
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Fig. 4: Example 1: Solution (top). Errors for p = 1 (middle)
and p = 4 (bottom).

IV. EXAMPLES FOR BVPS

Example 1: Consider a polynomial exact solution:

a(x) = 2, b(x) = 0, c(x) = 1,

with right hand side:

f(x) = x− x10 − 180x8,

and exact solution:

u(x) = x− x10.

The solution and errors for p = 1 and p = 4 are shown in
figure 4.

Example 2: Consider an exact solution containing
trigonometric functions:

a(x) = −1, b(x) = 0, c(x) = 1,

with right hand side:

f(x) = (1 + π2) sin(πx)

and exact solution:

u(x) = sin(πx).

The solution and errors for p = 1 and p = 4 are shown in
figure 5.

Example 3: Consider an exact solution with hyperbolic
trigonometric functions:

a(x) = 1, b(x) = 0, c(x) = 4,

with right hand side:

f(x)) = 4 cosh(1),
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Fig. 5: Example 2: Solution (top). Errors for p = 1 (middle)
and p = 4 (bottom).

and exact solution:

u(x) = cosh(2x− 1)− cosh(1).

The solution and errors for p = 1 and p = 4 are shown in
figure 6.

Example 4: Consider an exact solution having a com-
bination of a polynomial and trigonometric functions. Here
we take:

a(x) = 1, b(x) = 0, c(x) = 0,

with right hand side:

f(x) = 2 sin2(6x)+12(2x−1) sin(12x)+72x cos(12x)(x−1),

and exact solution:

u(x) = x(x− 1) sin2(6x).

The solution and the errors for p = 1 and p = 4 are shown
in figure 7.

Example 5: Consider an exact solution with fractional
power. Here we take:

a(x) = 1, b(x) =
1

6x
, c(x) =

−1

x2
,

with right hand side:

f(x)) = −19

√
x

6
,

and exact solution:

u(x) = x3/2(1− x).

The solution and errors for p = 1 and p = 4 are shown in
8.
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Fig. 6: Example 3: Solution (top). Errors for p = 1 (middle)
and p = 4 (bottom).

Example 6: Consider an exact solution with exponen-
tials:

a(x) = −1, b(x) = 20, c(x) = 10,

with right hand side:

f(x) = 1

and exact solution:

u(x) = c1 exp(λ1x) + c2 exp(λ2x) + 0.1,

where
λ1 = 10 +

√
110, λ2 = 10−

√
110,

and

c1 = 0.1
exp(λ2)− 1

exp(λ1)− exp(λ2)
, c2 = 0.1

1− exp(λ1)

exp(λ1)− exp(λ2)
.

The solution and errors for p = 1 and p = 4 are shown in
figure 9.

In Examples 1-6 above we see that the Sinc wavelet
collocation method using p = 4 produces a highly accurate
solution (in some cases with machine accuracy) as compared
to the standard Sinc collocation method p = 1.

V. APPLICATION TO THE FRACTIONAL
DIFFUSION EQUATION

We consider the time-fractional Diffusion equation which
maybe reduced to a system of BVPs of the form (6) after
discretization in time. For this purpose we solve the following
equation:

∂2u(x, t)

∂x2
=
∂αu(x, t)

∂tα
+ f(x, t) x ∈ (0, 1), 0 < t < 1,

(10)
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Fig. 7: Example 4: Solution (top). Errors for p = 1 (middle)
and p = 4 (bottom).

x

0.0 0.5 1.0

0.00

0.05

0.10

0.15

sol

0.0 0.5 1.0

-0.0010

-0.0005

0.0000

0.0 0.5 1.0

-8.0×10⁻⁵
-6.0×10⁻⁵
-4.0×10⁻⁵
-2.0×10⁻⁵

0

Fig. 8: Example 5: Solution (top). Errors for p = 1 (middle)
and p = 4 (bottom).
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Fig. 9: Example 6: solution (top). Errors for p = 1 (middle)
and p = 4 (bottom).

subject to the following initial and boundary conditions:

u(x, 0) = g(x), x ∈ (0, 1),

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 1,

where α is the order of the time-fractional derivative. The
Caputo fractional derivative of order α (see [5] [7], [8], and
references therin) is used in (10) and is defined by:

∂αu(x, t)

∂tα
=

1

Γ(1− α)

∫ t

0

∂u(x, t)

∂s

ds

(t− s)α
, 0 < α < 1.

(11)
For the temporal discretization of (10) we use a standard

finite difference approach [6]. We intoduce the grid points
tk = k∆t, k = 0, 1, ...,K, where ∆t = 1/K is the time
step and replace the fractional derivative (11) by the discrete
approximation:

∂αu(x, tk+1)

∂tα
=

1

Γ(2− α)

K∑
j=0

bj
u(x, tk+1−j − u(x, tk−j)

∆tα
,

(12)
where bj = (j + 1)1−α − j1−α, j = 0, 1, ..., k. The
approximate solution is given by:

u(x, tk) =

Lp∑
q=(−L+1)p

ckqϕ(px− q), k = 0, 1, 2, ...,K

(13)
Clearly upon substitution of (13) into (10) results in a

system of BVPs of the form (6) with an appropriately
defined right hand side and boundary conditions. By using
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Fig. 10: Example 7: 3D plots of solution and errors

the collocation points at t = 0 we obtain

u(x, t0) =

Lp∑
q=(−L+1)p

c0qϕ(pxj−q), j = 1, 2, ..., p(2L−1)−1,

(14)
and together with the two boundary conditions a linear
system which is solved for c0q .

In the next section we provide numerical examples to
demonstrate the efficacy of the Sinc wavelet collocation
method for solving the fractional diffusion equation.

Example 7: As a first example for the time fractional
Diffusion equation we consider the following test case [6]:

u(x, t) = t2 sin(2πx),

f(x, t) =
1

Γ(3− α)
t2−α sin(2πx) + 4π2t2 sin(2πx).

Fig. 11: Example 8: 3D plots of solution and errors

We use α = 0.5 and K = 200.
The top plot in figure 10 depicts a 3D mesh plot of

the exact solution superimposed on the surface plot of the
approximate solution. There is a perfect matching between
the exact and approximate solutions. A 3D plot for the errors
for p = 1 (middle plot) and p = 2 (bottom plot) are given in
Figure 10, respectively. Clearly, the error is much better for
the case p = 2 as compared to the conventional Sinc method
using p = 1.

Example 8: As a second example, we consider the
following test case [6]:

u(x, t) = t2(x(1− x)(2− x))
16
3 ,
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f(x, t) =
2

γ
t2−α(3− α)(x3 − 3x2 + 2x)

16
3 −

16

3
t2(x3 − 3x2 + 2x)

10
3 (

13

3
(3x2 − 6x+ 2)2 +

(x3 − 3x2 + 2x)(6x− 6))

We use α = 0.5 and K = 200.
The top plot in Figure 11 depicts a 3D mesh plot of

the exact solution superimposed on the surface plot of the
approximate solution. There is a perfect matching between
the exact and approximate solutions. A 3D plot for the errors
for p = 1 (middle) and p = 4 (bottom) are given in Figure
11, respectively. Clearly, the error is much better for the case
p = 4 as compared to the conventional Sinc method using
p = 1.

VI. CONCLUSION

In the past, Sinc collocation methods have been applied
successfully to solve problems on unbounded domains using
domain extension [1], [2]. In this case the solution has to
decay to zero outside [a,b]. In the case of bounded domains
several composition mappings, such as the single-exponential
and double exponential mappings, have been employed to
transform the Sinc basis to a bounded domain [10]. In
this paper, we presented a powerful numerical method for
problems on bounded domains using Sinc scaling functions
which do not require the solution to decay to zero and the
use of composition mappings. The Sinc wavelet collocation
method performed better than the standard Sinc collocation
method for solving BVPs and the time-fractional diffusion
equation. The authors plan to extend the method to other
fractional PDEs.
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