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Extension and Generalization of Polynomial
Inequalities

Mayanglambam Singhajit Singh, Barchand Chanam

Abstract—In this paper, we extend and generalize an im-
proved bound on the unit circle || = 1 concerning polar
derivative of a polynomial of degree n having no zero in |z| < k,
0 < k£ <1 to an inequality involving the maximum modulus of
the polar derivative of the polynomial on circles of radii r, R
with 1 < r < R < oco. As consequences of our result, we are
able to extend and improve some known polynomial inequalities
as well.

Index Terms—polynomial inequalities, maximum modulus,
polar derivative.

I. INTRODUCTION

Let p(z) be a polynomial of degree n. Then, according to
a famous well-known classical result due to Bernstein [3],
max |p'(z)| < nmax |p(2)|. (D)
|z|=1 |z|=1
Inequality (1) is sharp and equality holds if p(z) has all its
zeros at the origin. If p(2) is a polynomial of degree n having
no zero in |z| < 1, then Erdds conjectured and later Lax [5]
proved that
, n
max |p'(z)| £ = max |p(z)]. 2)
max|p'(2)] < § mas [p(z)
Inequality (2) is best possible and equality holds for
p(z) = a + bz", where |a| = |b].

It was asked by R. P. Boas that if p(z) is a polynomial
of degree n not vanishing in |z| < k, k > 0, then how large
can

{1/ mo o2 f e 7
z|=1 z|=1
A partial answer to this problem was given by Malik [6],
who proved that if p(z) is a polynomial of degree n having
no zero in |z| < k, k > 1, then
max [p'(2)] < —— max |p(z)]. 3
max|p'(2)] < 1 max [p(2) )

In an attempt to obtain inequalities analogous to (3) for
the classes of polynomials having no zero in |z| < k, k < 1,
Govil [2] proved the following inequality by imposing a
strong restriction on the moduli of the derivatives of the
polynomial and its reciprocal polynomial regarding the at-
tainment of their maximum moduli at the same point on the
unit circle.

Theorem 1. If p(z) = Y .I_ a,z" is a polynomial of degree
n having no zero in |z| < k, k < 1, such that |p'(z)| and

Manuscript received October 23, 2023; revised February 8, 2024.

Mayanglambam Singhajit Singh is a PhD candidate of the Department
of Mathematics, National Institute of Technology Manipur, Langol-795004,
India (Corresponding author, e-mail: msinghasingho@gmail.com).

Barchand Chanam is a Professor of the Department of Mathematics,
National Institute of Technology Manipur, Langol-795004, India (e-mail:
barchand_2004 @yahoo.co.in).

|¢'(2)| attain their maxima at the same point on |z| = 1,
then n
max |p'(2)] < max |p(2)], 4
max [p(2)| < 7 maxp(z)) €

1
where here and throughout this paper q(z) = z"p <2>

By involving some coefficients of the polynomial, Singh
et al. [7] refined the bound (4) of Theorem 1. In fact, they
proved

Theorem 2. If p(z) = Y .._ a,z" is a polynomial of degree
n having no zero in |z| < k, k < 1, such that |p'(z)| and
|¢'(2)| attain their maxima at the same point on |z| = 1,

then
k™ (|ao| — [an|k™) }
/ < n _
{?\i’i'p('z)‘ = {1+k" (1 + &™) (Jao| + |an]k™)

X max [p(2)]- (5)

|z|=
Inequality (5) is best possible for p(z) = 2™ + k™.

For a polynomial p(z) of degree n, we now define the
polar derivative of p(z) with respect to a real or complex
number [ as

Dgp(2) = np(2) + (B — 2)p'(2).

This polynomial Dgp(z) is of degree at most n» — 1 and it
generalizes the ordinary derivative p/(z) in the sense that

lim 7D5p(2) =9p'(2)

)
B—o0

uniformly with respect to z for |z| < R, R > 0.

Among those who first extended some of the above
inequalities to polar derivative versions, Aziz [1] was one
who extended inequality (3) to polar derivative by proving
that if p(z) is a polynomial of degree n having no zero in
|z| < k,k > 1, then for any real or complex number S with
18] > 1,

Bl +k
1+k

Jmaxlo)l©

During recent decades, many different authors produced
a large number of results concerning the polar derivative
of polynomials. More information on classical results and
polar derivatives can be found in the books of Marden [11]
and Milovanovié et al. [12], and also see the references [8],
[9], [10], [13], [14].

max |[Dgp(z)| <n <
=1

|2|

Further, Singh et al. [7] extended Theorem 2 to the polar
derivative setting by proving the following result.
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Theorem 3. If p(z) = >."'_, a, 2" is a polynomial of degree
n having no zero in |z| < k, k < 1, such that |p'(z)| and
|¢'(2)| attain their maxima at the same point on |z| = 1,
then for any real or complex number [3 with |3| > 1,

max [ Dgp(z)|

2]
§ {num + k")
- 1+ k™

x max |p(z)|.
|z]=1

_ (B = D" (ao| - |ank")}
(14 &™) (Jao] + |an|k™)
)

II. LEMMA

The following lemmas are needed for the proof of the
theorem.

Lemma 4. ([4]) If p(z) is a polynomial of degree n, then
on |z| =1,

' (2)] + 14 (2)] < nmax Ip(2)]. 8)

z
Lemma 5. If p(z) = >_I'_, a,z" is a polynomial of degree
n having no zero in |z| < k, k < 1, such that for a real
or complex number o with o] < 1, |p/(2)| and |¢'(z) +
naz""tm|, where m = |H|lirllf |p(2)|, attain their maxima at
=

the same point on |z| = 1, then
1 E™(|ap + am| — |a,|k™)
/
< _
max el <

(lag + am| + [an|k™)
X (mayi Ip(2)] +ma|) :
z|l=

9

Proof: Since the polynomial p(z) = >_'_ a, 2" has no
zero in |z| < k, k < 1, for any real or complex number «
with |a] < 1, by Rouche’s theorem, the polynomial P(z) =
p(z) + am has no zero in |z| < k, k < 1, where m =
ﬁii}c Ip(2)].

Using Theorem 2 to P(z) = p(z) + ma, we have

max |P'(2)|

n_ k" (Jao + am| — |a,[k")
“1+k*  (1+E") (lap + am| + |a,|k™)
< [P,

z|=1

which gives

e P (2)]
z|=1

<! {n k" (lag + am| - k)}

T 14km (lap + am| + |a,|k™)

X ‘m‘a)i Ip(2) + mal. (10)

Suppose z; on |z| =1 is such that
max |p(2) +ma| = |p(e1) +mal. (D)

Now, we choose the argument of « such that

p(z1) + mal = |p(z1)] +mle] (12)

IN

max [p(z)| + ma.
|z|=1

Using (11) and (12) to (10), we get

max p'(2)]
< 1! {n ~ k"(lag + am| - |ankn>}
T 14k (lap + am| + |a,|k™)
« (maxlp()] + mlal ).
This completes the proof of Lemma 5. ]

Lemma 6. If p(z) = >.'_ a,z" is a polynomial of degree
n having no zero in |z| < k, k <1 and R > 1 such that
|p'(Rz)| and |q'(%)| attain their maxima at the same point

on |z| = 1, then for every real or complex number o with
la < 1
/

max |p'(z

ma [ (2)

< R _— E™(Jag + am| — |an| k™)

~ R+ kn R (lag + am| + |a,|k™)

« (maxlp(a)] + mial ). 13)

where m = min |p(z)|.
|z|=k

Proof: Since p(z) = >_'_, a,z" has no zero in |z| < k,
k < 1, the polynomial P(z) = p(Rz) has no zero in
2] < £, &£ <1.
Applying Lemma 5 to P(z) = p(Rz), we have

max |P'(2)]
z|=1

<

n

1+ (£

) [n ()" {lao + am| — Ja | R” (l’a)"}]

{|a0 + am| + |an|R" (%)"}
X (max|P(z)| +m|a|) )

~—

|z]=1

where

k

m = min |P(z)| = min [p(Rz)| = |H|m% Ip(2)],
lel=% =% 2=

=R

which on simplification gives

/
max [p’(z
ma [p'(2)
< R _— k™ (Jag + am| — |an|k™)
~ R4 kn R™(|ag + am| + |an|k™)
« (max ()| + ol ).
This ends the proof of Lemma 6. [ |

Lemma 7. If p(z) = >.'_ a,z" is a polynomial of degree
n having no zero in |z| <k, k <land 1 <r <t < R < o0
such that |p'(tz)| and |q'(%)| attain their maxima at the same
point on |z| = 1, then for every real or complex number «
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with |a| <1

max Ip(2)]

< max o2+ (maxlp(e)] + mlal

R tnfl
X | exp / m T kn

(o el | ]
t"(lao + am| + |a,|k™)

(14)

where m = lrrlm}c Ip(2)].

Proof: If p(z) = Y.I'_, a,z" has no zero in |z| < k,
k < 1, then for t > 1, P(z) = p(tz) has no zero in |z| < %,
LG

Applymg Lemma 5 to P(z) = p(tz), we have

glgIP (2)]
P SR
1+ (§) {|ao+am|+\an\t” (?)n}

« (max P+ mlal )

where

m= lrrlllq |P(2)] = ‘H‘ljg Ip(tz)] = ‘rzr‘li:r;c Ip(2)],

which is equivalent to

|m|a>§|p( z)|

< ot B k™(lap + am| — |an|k™)
Tt 4 kn t"(lap + am| + |a, k™)
« (maxlp(a)| + mlal )

Now, for 1 <r <t< R < oo and 0 < 0 < 27, we have

R
(") = plre)| < [ 12,

which implies

5)

R
Ip(Re®)| < [p(rei®)| + / Pt (16)

Since

R , R
/ |p’(t619)\dt§/ ma | (2]t
r r z|=t

using inequality (15) in (16), we get
p(Re™))|

< [p(re’)|
tn1 ( kE™(lap + am| —
n—

R i)
. |t ET t"(|lag + am| + |a, k™)

« (maxlo(s) + o }dt.

Taking maximum over 6 on both sides of the above inequal-
ity, we get

max [p(z)]

|z|=R

< max [p(2)|

|z|=r

tn—1 k™(|lag + am| —

[l i)

+ n—

- |tk t"(|lag + am| + |a, k™)

X (max |p(2)| + m|oz|) }dt.
z|=t

Let ¢(R) denote the right hand side of (17). Then

a7)

Rn—l
X <n _ k" (lag + am| — |an|k ))
R (lag + am] + [a,[k")

« (maxlp(a)| + mial ).

¢'(R) =

(18)

Since

¢(R),

max Ip(2)] <

inequality (18) can be written as
. k™(lag + am| — |a,|k™) )
R (Jag + am] + |ag k")
X {¢(R) + m|a} <0.

Rn—l

¢'(R) -
(19)

Multiplying both sides of (19) by

Rnl

eXP{ 7/7R"+k‘”

" (n k™ (lag + am| — |ap|k ))dR 7
R*(Jag + am| + |a, |k™)

we have

Rn—l

{o(R) + mlal} exp{ -

n
|a0—|—am| lan|k ))dR
"(lag + am| + |ay|k™)

4
dR
<0.

Inequality (20) implies that the function

(20)

n—1
{o(R) +m|a|}exp{ S
E™(Jao + am| — |an|k”))
— dR
(“ R*(lao + am| + [an|k")

is a non-increasing function of R in [1,00) and hence for
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1<r<R<o

n—1
(9(R) +m|a|}exp{ - [

k™ (Jao + am| — |a,|k™) )
— dR
” (” R(Jao + am| + [an k™)

Tnfl

< {¢<r>+ma|}exp{ - [
(- Bl z el el dr},

r*(|lag + am| + |a,|k™)
which simplifies to

{o(R) + mlal}
<A{o(r) + mlal}

R tnfl
X ex

y <n_ k" (Jag + am| — |ag|k ))dt}_

t*(lao + am| + |an k)

Using the value of ¢(R) which is the right hand side of
(17), putting ¢(r) = max |p(z)| and simplifying, the above

|z|=r

inequality becomes
_ k"(Jao + am| — |an|k:”))

R tn—l
/,. i+ k" (” t"(Jag + aml + |a, k™)

(s lo(2) + o }dt

< (ngg 1p(2) +ma|)

2|

R tTL—l
X [ exp / t"—l—kn
y (n_ k" (lao + am| — [ank )) dt} B 1]. o

t"(lag + am| + |an|k™)
Using (21) in (17), we are with the desired result and
the proof of Lemma 7 is complete. [ |

III. MAIN RESULT

In this paper, we obtain an extension and generalization
of Theorem 3 which improves and extends Theorem 1 by
involving some of the coefficients of the polynomial p(z)
and ‘n‘lil}c [p(2)]. In fact, we obtain

2=
Theorem 8. If p(z) = Y .I_ a,z” is a polynomial of degree
n having no zeroin |z| < k, k <land1 <r < R < oo such
that |p'(Rz)| and |q'(%)| attain their maxima at the same
point on |z| = 1, then for every real or complex numbers «,

B with o] <1, |8 >1
max |Dgp(z
mas | Dsp(z)|
(8] =1R"
<nil4 o
= "{ TR

k™(|lag + am| — |an,|k™)

1—
( an<|ao+am|+ankn>>}

| maxlp()] + (fnﬁx p(2)| + m|a|)

R tn—l
ool [ wrmm

y (n_ k" (|lao + am| |an|k”)> dt) - 1}]
t"(lap + am| + |an k™)
mnlal(18] — VR
(R™ + k")
% {1 _ kn(|a0 + Oém| — |an|kn) }
nR"(|lag + am| + |ap k™) |’

(22)

where m = min |p(z)].
|z|=k

Proof: For R > 1, £ < 1. Since p(z) has no zero in
|z| < k, k <1, the polynomial P(z) = p(Rz) has no zero
1
%, % < 1.IfQ(z) = z"P (z> then it can be
easily verified that

in |z| <

nP(z) — 2P'(2) = 2" 1Q'(2). (23)

For any complex number 8 with |3] > 1 and 0 < 6 < 27,
we have

DsP(z) =nP(z) + (8 — 2)P'(2),

which on using (23) implies for |z| =1

IDsP()] < [nP(z) - 2P'(2)] +1BI|P'(2)]
Q@) +IP()] - [P/(2)] +18II1P'(2)]
< nmax|P() + (8 - VIP'(), @4

|z|=1

where the last inequality is given by applying Lemma 4 to
P(z). Putting P(z) = p(Rz), (24) gives

[Dap(Rz)| < nmax|p(Rz)| + (18] = DR]' (R2)],

which is equivalent to

max |Dgp(z
mas [ Dsp(z)|

manaxt[p(R)| + (18] — 1) R max|p/(Rz)

|z|=1

IN

= 7 max \p(Z)I+(|ﬂ|*1)R|IZrllg>élp’(Z)l- (25)

|z|=R
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Applying Lemma 6 to (25), we get

max |Dgp(z
|Z|:R| sp(2)]

(8] —1R"
< m + - —
=" \z\i}}(% Ip(2)] (R™ + k™)

{ k™(lag + am| — |a,|k™) }
x<n—

R™(Jag + am| + |a,|k™)
X <max |p(2)] +ma|> ,

|z|=R

which implies

max |Dgp(z
ma [ Dp()

(sl = 1DR"

X (1 _ (a0 + am| - an|k") ) max [p(z)]
nR"(lag + am| + |an|k™) ) | 1zI=R
mn|a|(|8] — 1)R"
(i + )
{ k™(lag + am| — |a,|k™) }
x9q1—
nR"(|lag + am| + |a,|k™)

Now, using Lemma 7, the last inequality gives

max [Dap(2)|
([ -1R"

E™(lag + am]| — |an,|k™)

1—
g ( nR*(ag + am| + k))}

>< Lml_x () + (maxlp(a)] + el )

|z

R tnfl
x{exp</r 7(t”+k”)

" (n— k™(lao + am| — |an|k )>dt 1
t7(|ao + am] + |an| k")
mn|a|(|8]| — 1)R"
{ k™ (lag + am| — |an|k™) }
xq1l—
nR"(|lag + am| + |a,|k™)

This concludes the proof of Theorem 8. ]

Remark 9. Dividing both sides of (22) of Theorem 8 by |3
and letting |3| — oo, the following corollary is obtained.

Corollary 10. If p(z) = >.I'_, a,z" is a polynomial of de-
gree n havingno zero in |z| <k, k <land1 <r < R < o0
such that |p'(Rz)| and |q'(%)| attain their maxima at the
same point on |z| = 1, then for every real or complex number
a with |a) < 1

/
max [p(2)]

nR"1
< — (1
= Rtk

s (2] + (max ()] + ol

|2l |2l

B E™(|ap + am| — |a,|k™)
nR"(|lag + am| + |a,|k™)

X

tn—l

(o Kl om ) )
t"(lag + am| + |a,|k™)
mn|a|R" 1
( + i)
{ k™(lao + am]| — |ay|k™) }
x<¢1l— ,
nR™(|lag + am| + |a, k™)

(26)

where m = min |p(z)|.
|z|=k

Remark 11. Putting r = R, Theorem 8 reduces to the
following result which further reduces to Theorem 3 when
a=0and R=1.

Corollary 12. If p(z) = Y.I_,a,z" is a polynomial of
degree n having no zero in |z| <k, k<land 1 < R < 00
such that |p'(Rz)| and |q'(%)| attain their maxima at the
same point on |z| = 1, then for every real or complex number

a, B with || <1, |8] > 1
max |Dgp(z
wmax [ Dap(2)

(I8 - 1HR"

< 14+ —————

—”{ R )

< k™ (lag + am| — |a, k™) )
x 11—

nR™(|lag + am| + |an|k™)
mn|a|(|8] — 1)R"

(Rn +kn)

k™ (lag + am| — |a,|k™) }

1— @7

% { nR"(lag + am| + |a, k™) @7

X ma z
max [p(2)] +

where m = min |p(z)].
|z|=k

Remark 13. Dividing both sides of (27) of Corollary 12 by
|B| and letting |B| — oo, we have the following interesting
corollary which further reduces to Theorem 2 when o = 0
and R = 1.

Corollary 14. If p(z) = Y.I_,a,z" is a polynomial of
degree n having no zero in |z| <k, k <1 and R > 1 such
that |p'(Rz)| and |q'(%)| attain their maxima at the same
point on |z| = 1, then for every real or complex number o
with |a| < 1
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/

max |p'(z
mas 9/

an—l
< v
- Rn 4 km

k™(lag + am| — |an|k™)

1_

% ( nR"™(|lag + am| + |a, k™) \g\li}z(% [p(2)]

mn|a|R" 1 (1 _ k"(Jao + am| — |an|k") )
R™ + km nR"(lag + am| + |a,|k™) )’
(28)

where m = min |p(z)].
|z|=k

Remark 15. When o = 0, Corollary 14 yields an improve-
ment and generalization of Theorem 1.
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