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Abstract—This paper studies a class of fractional p-Laplacian
differential equations, characterized by mixed fractional d-
ifferential operators and multipoint boundary conditions at
resonance. Utilizing the extension of Mawhin’s continuation
theorem, we establish the result of existence of solutions.

Index Terms—Fractional differential equation, p-Laplacian
operator, Multipoint boundary condition, Resonance, Continu-
ation theorem.

I. INTRODUCTION

BOUNDARY value problems (BVPs) of ordinary d-
ifferential equations (ODEs) serve as a fundamental

pillar in the theoretical framework of differential equations,
exhibiting a wide array of practical implementations. For
example, during the early 19th century, the renowned French
mathematician Fourier utilized the technique of variable
separation to tackle the issue of heat conduction. This
approach culminated in the formulation of a two-point BVP
for second-order ODE:{

Φ′′($) + λk2Φ($) = 0,
Φ(0) = Φ(l) = 0,

(1)

where λ is a parameter [1].
The qualitative analysis concerning the existence of solu-

tions for BVPs in ODEs has persistently attracted substantial
scholarly interest [2]-[4]. For example, in [4], Lin and Zhang
employed the extension of Mawhin’s continuation theorem
to investigate the existence results for third-order differential
equation cointaining p-Laplacian operator with multipoint
boundary conditions at resoance as follow:

(
φp(ς

′′($))
)′

= Φ
(
$, ς($), ς ′($), ς ′′($)

)
, $ ∈ (0, 1)

φp
(
ς ′′(0)

)
=

r∑
i=1

δiφp
(
ς ′′(ζi)

)
,

ς ′(1) =
s∑
j=1

ϕjς
′(µj), ς ′′(1) = 0,

(2)
where φp(ε) = |ε|p−2

ε, p > 1, Φ : [0, 1] × R3 → R is a
continuous function, 0 < ζ1 < ζ2 < · · · < ζr < 1, δi ∈ R,
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i = 1, 2, · · · r, r ≥ 2; 0 < µ1 < µ2 < · · · < µj < 1,
ϕj ∈ R, j = 1, 2, · · · s, s ≥ 1.

Fractional differential equations (FDEs), constituted by
fractional-order derivatives, have piqued scholarly curiosity
since their origination by Liouville in 1832, drawing a global
array of researchers for investigation [5]-[7]. Currently, the
paradigm of FDEs pervades a multitude of research disci-
plines, boasting comprehensive applications in control theo-
ry, chemistry, viscoelasticity, and non-Newtonian mechanics
[8]-[9]. Owing to the expansive practical utility of FDEs,
the existence of solutions to fractional BVPs has surfaced
as a subject of considerable interest [10]-[12]. Over the
preceding 30 years, the progression of fractional calculus
theory and the requisites of practical problems have insti-
gated the proposition of numerous definitions of fractional
calculus. Among these, Caputo-type and Riemann-Liouville-
type fractional derivatives are predominantly utilized in the
examination of BVPs of FDEs.

On the other hand, to investigate the issue of turbulence
in porous media flow, Leibenson proposed a differential
equation model that incorporates a p-Laplacian operator [13].
In recent years, the existence results for BVPs of FDEs
which is containing p-Laplacian operator has captivated the
attention of a multitude of scholars [14]-[19]. Specifically,
BVPs of p-Laplacian FDEs at resonance have been a focal
point of discussion among some researchers [20]-[23]. Given
that the p-Laplacian operator is a quasi-linear operator, the
common theoretical underpinning for such discussions is the
generalized Mawhin’s continuation theorem as extended by
Ge and Ren (refer to preliminaries). For instance,

In 2023, Azouzi and Guedda [23] discussed the p-
Laplacian equation about existence results for BVPs of FDEs
at resonance as follows:


(
φp(Dν0+ς($))

)′
= Φ

(
$, ς($),Dν−1

0+ ς($)
)
, $ ∈ [0, 1]

ς(0) = Dν−1
0+ ς(1) = 0,

Dν−1
0+ ς(1) =

r−2∑
d=1

δdDν−1
0+ ς(%d),

(3)
where φp(ε) = |ε|p−2

s, p > 1, 1 < ν ≤ 2, 0 < %1 < %2 <
· · · < %r−2 < 1, δd ∈ R+, d = 1, 2, · · · r−2(r ≥ 3), Dν0+ is
Riemann-Liouville fractional derivative, Φ : [0, 1]×R2 → R
is a continuous function.

Motivated by the above-indicted, through the use of
extension of Mawhin’s continuation theorem, this paper talk
about the existence results for BVPs of mixed FDEs with
p-Laplacian operators at resonance as follows:
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CDβ0+φp
(
Dα0+x(t)

)
= f

(
t, t2−αx(t),Dα−1

0+ x(t),
Dα0+x(t)

)
, t ∈ (0, 1),

φp
(
Dα0+x(0)

)
=

m∑
i=1

γiφp
(
Dα0+x(ξi)

)
,

Dα−1
0+ x(1) =

n∑
j=1

ωjDα−1
0+ x(ηj), Dα0+x(1) = 0,

(4)
where 0 < β ≤ 1, 1 < α ≤ 2, CDβ0+ represents Caputo
fractional derivative, Dα0+ represents Riemann-Liouville frac-
tional derivative, 0 < ξ1 < ξ2 < · · · < ξm < 1, γi ∈ R,
i = 1, 2 · · ·m, m ≥ 2, 0 < η1 < η2 < · · · < ηm < 1,

ωj ∈ R, j = 1, 2 · · ·n, n ≥ 1,
m∑
i=1

γi = 1,
n∑
j=1

ωj 6= 1,

f : [0, 1]×R3 → R is a continuous function.
The main novelties in this work are as follows:
On the one hand, we generalize the work of [4] to the

fractional-order case, in particular, when the α and β of the
BVP (4) are integers, the problem (4) reduces to the problem
(2). On the other hand, by proving Lemma 3.2 (see main
results), we avoid the need to add the extra condition that
the denominator is not zero when defining the projection
operator Q, which improves the results of existing literature
[23] to some extent.

II. PRELIMINARIES

In this section, we will introduce some definitions and
lemmas.

Definition 2.1 ([9]) The Riemann-Liouville fractional
integral of order κ > 0 of a function µ : (0,+∞) → R is
given by

Iκ0+µ($) =
1

Γ(κ)

∫ $

0

($ − σ)
κ−1

µ(σ)dσ.

Lemma 2.1 ([9]) Suppose that CDκ0+µ ∈ Cn[0, 1], κ > 0.
Then

Iκ0+
CDκ0+µ($) = µ($)+ε0+ε1$+ε2$

2+· · ·+εn−1$
n−1,

where εi = −µ
(i)(0)
i! , i = 0, 1, 2, · · ·n− 1, n = [κ] + 1.

Lemma 2.2 ([9]) Suppose that CDκ0+µ ∈ Cn[0, 1],
κ > 0. Then

Iκ0+
RDκ0+µ($) = µ($) + ε0$

κ−1 + ε1$
κ−2 + ε2$

κ−3

+ · · ·+ εn−1$
κ−n+1,

where εi = −µ
(i)(0)
i! , i = 0, 1, 2, · · ·n− 1, n = [κ] + 1.

Lemma 2.3 ([9]) Suppose that κ > 0, % > −1, $ > 0.
Then

Iκ0+$% =
Γ(%+ 1)

Γ(%+ 1 + κ)
$κ+%

Dκ0+$% =
Γ(%+ 1)

Γ(%+ 1− κ)
$%−κ = CDκ0+$%,

in particular Dκ0+$κ−r = 0, r = 1, 2, · · · s; CDκ0+$k = 0,
k = 0, 1, 2, · · · s− 1, where s = [κ] + 1.

Definition 2.2 ([2]) The spaces X and Y are both

Banach spaces, and the norms are ‖·‖X and ‖·‖Y . Denote
the operator

M : X ∩ domM→ Y

called quasilinear if
(i) ImM :=M(X ∩ domM) is closed subset of Y ,
(ii) KerM := {x ∈ X ∩ domM :Mx = 0} is linearly

homeomorphic to Rn, n <∞.

Definition 2.3 ([2]) Let X1 = KerM, and X2 is the
complement space of X1 in X , then X = X1 ⊕ X2. On the
other hand, presume that Y1 is a subspace of Y , and Y2 is
the complement space of Y1 in Y , so we have Y = Y1⊕Y2.
Let P : X → X1 and Q : Y → Y1 are two projectors,
Ω ⊂ X be an open and bounded set with origin % ∈ Ω,
where % is the origin of a linear space.

Supposed that Nλ : Ω̄→ Y, λ ∈ [0, 1] is a continuous
operator. Denote N1 by N . Let Σλ = {u ∈ Ω̄ : Mu =
Nλu}. If Y1 ⊂ Y and dimY1 = dimX1, then Nλ is M-
compact in Ω̄. For λ ∈ [0, 1], the operator R : Ω̄×[0, 1]→ X
is continuous and compact,
(i) (I − Q)Nλ(Ω̄) ⊂ ImM⊂ (I − Q)Y,

(ii) QNλx = 0, λ ∈ (0, 1)⇔ QNx = 0,
(iii) R(·, 0) is the zero operator and R(·, λ)|Σλ = (I −

P)|Σλ ,
(iv) M[P +R(·, λ)] = (I − Q)Nλ.
Lemma 2.4 (Ge-Mawhin’s continuation theorem) ([2]) De-
fine two spaces X and Y , both thier are belong to Banach
spaces equipped with the norms ‖·‖X and ‖·‖Y . Ω ⊂ X is
an open bounded nonempty set. Assume that a quasilinear
operaror

M : X ∩ domM→ Y,

and define a nonlinear operator

Nλ : Ω̄→ Y, λ ∈ [0, 1],

Furthermore, the following condition are met
(C1) Mx 6= Nλx, ∀(x, λ) ∈ (domM∩ ∂Ω)× (0, 1),
(C2) QNx 6= 0, x ∈ domM∩ ∂Ω,
(C3) deg(JQN ,KerM∩ Ω, 0) 6= 0,

where N = N1, J : ImQ → KerM is a homeomorphism
with J (φ) = φ, then the equation Mx = Nx has at least
one solution in Ω̄.

III. MAIN RESULTS

Define two spaces Y = C[0, 1], with the norm ‖y‖Y =
‖y‖∞. X = {x : t2−αx(t), Dα−1

0+ x(t), Dα0+x(t) ∈ C[0, 1]},
with the norm ||x||X= max {||t||∞, ||t2−αx||∞, ||Dα−1

0+ x||∞,
||Dα0+x||∞}, where‖·‖∞= max

t∈[0,1]
|x(t)|. It is easily to check

that (X , ‖·‖X ) and (Y, ‖·‖Y) are two Banach spaces.
Define the quasilinear operator M : domM⊂ X→Y by

Mx = CDβ0+φp(Dα0+x), (5)

where

domM =

{
x ∈M :Mx = CDβ0+φp(Dα0+x(t)),

φp(Dα0+x(0)) =
m∑
i=1

γiφp(Dα0+x(ξi)),

Dα−1
0+ x(1)=

n∑
j=1

ηjDα−1
0+ x(ηj), Dα0+x(1) = 0

}
.
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Define the nonlinear operator Nλx by

Nλx(t) = λf
(
t, t2−αx(t), Dα−1

0+ x(t), Dα0+x(t)
)
, ∀t ∈ (0, 1).

Then boundary value problem (4) is equal to the operator
equation

Mx = Nλx, x ∈ domM.

Lemma 3.1. Let M : domM⊂ X → Y given by (5), then

KerM =
{
x ∈ X |x(t) = ctα−2, c ∈ R, t ∈ (0, 1)

}
, (6)

ImM =
{
y ∈ Y|

m∑
i=1

γi

∫ ξi

0

(ξi − s)β−1
y(s)ds = 0

}
, (7)

and M is the quasilinear operator.

Proof. By Lemma 2.1 and Lemma 2.2, we get
CDβ0+φp

(
Dα0+x(t)

)
= 0 has solution:

x(t) = c1t
α−1 + c2t

α−2 + Iα0+φq(c0), c0, c1, c2 ∈ R,

combining with the boundary conditions

Dα0+x(1)=0, Dα−1
0+ x(1)=

n∑
j=1

ηjDα−1
0+ x(ηj),

If y ∈ ImM, then there exists a function x ∈ domM such
that y(t) = CDβ0+φp

(
Dα0+x(t)

)
. By Lemma 2.1, we obtain

φp
(
Dα0+x(t)

)
= Iβ0+y(t) + c3, c3 ∈ R,

according to
m∑
i=1

γi = 1 and the boundary condition

φp
(
Dα0+x(0)

)
=

m∑
i=1

γiφp
(
Dα0+x(ξi)

)
,

we obtain
m∑
i=1

γi

∫ ξi

0

(ξi − s)β−1
y(s)ds = 0.

On the other hand, if y ∈ Y and satisfies
m∑
i=1

γi

∫ ξi

0

(ξi − s)β−1
y(s)ds = 0.

Let

x(t) = Iα0+φq(k(t)) +
tα−1

(1−
n∑
j=1

βj)Γ(α)

×
[ n∑
j=1

ωj

∫ nj

0

φq(k(t))dt−
∫ 1

0

φq(k(t))dt

]
,

where k(t)=Iβ0+y(t)−Iβ0+y(t)|t=1, then x(t)∈domM and
Mx(t)=y(t). Therefore, (3.2) holds. Clearly, dim KerM
=1<+∞, and ImM :=M(domM∩X ) is a closed subset
of Y . So, we can obtain that M is the quasilinear operator.

Lemma 3.2 If
m∑
i=1

γi = 1, then there exists l ∈ {0, 1, 2, · · · ,

m− 1} such that
m∑
i=1

γiξ
l+β
i 6= 0.

Proof. Using the method of proof to the contrary, assuming

that the above conditions are not established, then for any

l ∈ {0, 1, 2 · · ·m− 1}, we have
m∑
i=1

γiξ
l+β
i = 0. That is

γ1ξ
β
1 + γ2ξ

β
2 + γ3ξ

β
3 + · · ·+γmξβm=0,

γ1ξ
β+1
1 + γ2ξ

β+1
2 + γ3ξ

β+1
3 + · · ·+γmξβ+1

m =0,

γ1ξ
β+2
1 + γ2ξ

β+2
2 + γ3ξ

β+2
3 + · · ·+γmξβ+2

m =0,
...

γ1ξ
β+m−1
1 +γ2ξ

β+m−1
2 +γ3ξ

β+m−1
3 + · · ·+γmξβ+m−1

m =0,
(8)

the coefficient determinant of the equations (8) is∣∣∣∣∣∣∣∣∣∣∣∣

ξβ1 ξβ2 ξβ3 · · · ξβm
ξβ+1
1 ξβ+1

2 ξβ+1
3 · · · ξβ+1

m

ξβ+2
1 ξβ+2

2 ξβ+2
3 · · · ξβ+2

m
...

...
... · · ·

...
ξβ+m−1
1 ξβ+m−1

2 ξβ+m−1
3 · · · ξβ+m−1

m

∣∣∣∣∣∣∣∣∣∣∣∣
= Πm

i ξ
β
i

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
ξ1 ξ2 ξ3 · · · ξm
ξ2
1 ξ2

2 ξ2
3 · · · ξ2

m
...

...
... · · ·

...
ξm−1
1 ξm−1

2 ξm−1
3 · · · ξm−1

m

∣∣∣∣∣∣∣∣∣∣∣
Clearly, the right end of the above equation is the Vander-
monde determinant. Due to 0 < ξ1 < ξ2 < · · · < ξm < 1, we
can get γ1 = γ2 = · · · = γm = 0, which is contradiction

with
m∑
i=1

γi = 1. So, the conclusion is proof.

Lemma 3.3 Suppose that Ω ⊂ X is an open bounded
subset, then Nλ is M-compact.

Proof. Define the projection operators P : X → KerM
and Q : Y → ImQ as follow

Px(t) =
(

lim
t→0+

t2−αx(t)
)
tα−2, ∀t ∈ (0, 1),

Qy(t) =
1

m∑
i=1

γiξ
β+l
i

Γ(l + β + 1)

Γ(β)Γ(l + 1)

×
( m∑
i=1

γi

∫ ξi

0

(ξi−s)β−1
y(s)ds

)
tl, ∀t∈(0, 1),

where l satisfies Lemma 3.2. By the definition of projection
operator P , it can see that ImP=KerM and Px(t)=P2x(t),
for any x ∈ X , we have x=(x−Px)+Px, then

X = KerP + KerM.

Besides, we can easily proof that KerP∩KerM= {0}. Then
we have

X = KerP ⊕KerM.

Based on the definition of projection operator Q, we obtain

Q2y = Q(Qy)

=
1

m∑
i=1

γiξ
β+l
i

Γ(l + β + 1)

Γ(β)Γ(l + 1)

×
( m∑
i=1

γi

∫ ξi

0

(ξi − s)β−1Qy(s)ds
)
tl

= Qy.
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For any y∈Y , we have y=(y−Qy)+Qy, where y−Qy ∈
KerQ,Qy ∈ ImQ. Due to KerQ = ImM and Q2y = Qy,
we know that ImQ∩ ImM = {0} . Hence

Y = ImQ⊕ ImM.

Defined R : Ω̄× [0, 1]→ KerP by

R(x, λ)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1
φq(h(s))ds+ c1t

α−1,

where

c1 =
1

(1−
n∑
j=1

βj)Γ(α)

n∑
j=1

βj

∫ nj

0

φq
(
h(s)

)
ds

−
∫ 1

0

φq
(
h(s)

)
ds,

h(s) =
1

Γ(β)

∫ s

0

(s− τ)
β−1

(I − Q)Nλx(τ)dτ

− 1

Γ(β)

∫ 1

0

(1− τ)
β−1

(I − Q)Nλx(τ)dτ.

Since f ∈ C
(
[0, 1]×R3,R

)
, we can easy know that R(x, λ)

is continuous on Ω̄× [0, 1]. We proof that Nλ isM-compact
on Ω̄ by the following four steps.

Step 1. We prove that (i) in Definition 2.3 holds. By the
definition of Q, we obtain Q2y = Qy, so Q(I−Q)Nλ(Ω̄) =
0. On the other hand, for any y ∈ ImM, clearly Qy = 0,
then y = y −Qy = (I − Q)y, so y ∈ (I − Q)Y . Hence

(I − Q)Nλ(Ω̄) ⊂ ImM⊂ (I − Q)Y.

Step 2. We prove that (ii) in Definition 2.3 holds. Due to
QNλx = λQNx, it is easily to check that QNλx = 0, λ ∈
(0, 1) ⇔ QNx = 0, ∀x ∈ Ω.

Step 3. We prove that (iii) in Definition 2.3 holds. Evi-
dently R(·, 0) = 0. Besides, for any x ∈ Σλ = {x ∈ Ω̄ :
Mx = Nλx}, we get

R(x, λ)(t)

=
1

Γ(α)

∫ t

0

(t− s)α−1
φq
(
h(s)

)
ds+

tα−1

(1−
n∑
j=1

βj)Γ(α)

×
n∑
j=1

ωj

∫ ηj

0

φq
(
h(s)

)
ds−

∫ 1

0

φq
(
h(s)

)
ds

= Iα0+Dα0+x(t) + c1t
α−1

= x(t)− tα−1

Γ(α)
Dα−1

0+ x(0)−
(

lim
t→0+

t2−αx(t)
)
tα−2

+
tα−1

Γ(α)
Dα−1

0+ x(0)

= x(t)−
(

lim
t→0+

t2−αx(t)
)
tα−2

=
[
(I − P)x

]
(t).

Step 4. We prove that (iv) in Definition 2.3 holds. ∀ x ∈ Ω̄,

we get

M
[
Px+R(x, λ)

]
(t)

= CDβ0+φp

[
Dα0+

((
lim
t→0+

t2−αx(t)
)
tα−2

+
1

Γ(α)

∫ t

0

(t− s)α−1
φq
(
h(s)

)
ds+ c1t

α−1
)]

= CDβ0+φp

[
Dα0+Iα0+φq

(
Iβ0+(I − Q)Nλx(t)

)]
=
[
(I − Q)Nλx

]
(t).

Thus, Nλ is M-compact on Ω̄.

Theorem 3.1 Presume that f : [0, 1] × R3 → R is a
continuous function and meets following conditions

(H1) There exists non-negative function ψ, ι, ϑ ∈ Y such
that for all (ν, υ, ω) ∈ R3, % ∈ [0, 1],

|f(%, ν, υ, ω)| ≤ φp
[
ψ(%) |ν|+ ι(%)|υ|+ ϑ(%)|ω|+ σ(%)

]
.

(H2) There is a constant A > 0, such that ∀x ∈ domM,
t ∈ [0, 1], either |t2−αx(t)| > A or |Dα−1

0+ x(t)| > A, we
have QNx(t) 6= 0.

(H3) There exists a constant B > 0, such that either

h
m∑
i=1

γi

∫ ξi

0

(ξi − s)β−1
f(s, h, 0, 0)ds < 0, ∀t ∈ [0, 1], |h| > B,

or

h
m∑
i=1

γi

∫ ξi

0

(ξi − s)β−1
f(s, h, 0, 0)ds > 0, ∀t ∈ [0, 1], |h| > B,

when

φq

( 2

Γ(β + 1)

)(2||ψ||∞
Γ(α)

+ ||ι||∞ + ||ϑ||∞
)
< 1. (9)

Then the problem (4) at least one solution.

Lemma 3.4 Assume that (H1), (H2) establish, the
following set

Ω1= {x ∈ domM\KerM|Mx = Nλx, λ ∈ [0, 1]}

is bounded.

Proof. For x ∈ Ω1, we have Mx = λNx, then Nx ∈
ImM = KerQ, so QNx = 0. Form (H2), we know that
there exists t0, t1 ∈ [0, 1] such that |t2−α0 x(t0)| ≤ A,
|Dα−1

0+ x(t1)| ≤ A. Since

x(t) = Iα−1
0+ Dα−1

0+ x(t) + ctα−2,

then
t2−αx(t) = t2−αIα−1

0+ Dα−1
0+ x(t) + c.

Take t = t0, then we have

c = t2−α0 x(t0)− t2−α0 Iα−1
0+ Dα−1

0+ x(t0).

Hence,

|c| ≤
∣∣t2−α0 x(t0)

∣∣+
∣∣t2−α0 Iα−1

0+ Dα−1
0+ x(t0)

∣∣
≤ A+

∣∣∣∣ t2−α0

Γ(α− 1)

∫ t0

0

(t0 − s)α−2Dα−1
0+ x(s)ds

∣∣∣∣
≤ A+

t2−α0

Γ(α− 1)

∥∥Dα−1
0+ x

∥∥
∞

∫ t0

0

(t0 − s)α−2
ds

≤ A+

∥∥Dα−1
0+ x

∥∥
∞

Γ(α)
.
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That is, ∥∥t2−αx∥∥∞ ≤ A+
2
∥∥Dα−1

0+ x
∥∥
∞

Γ(α)
. (10)

On the other hand,

Dα−1
0+ x(t) =

∫ t

t1

Dα0+x(s)ds+Dα−1
0+ x(t1),

therefore∣∣Dα−1
0+ x(t)

∣∣ ≤ ∣∣∣∣∫ t

t1

Dα0+x(s)ds

∣∣∣∣+
∣∣Dα−1

0+ x(t1)
∣∣

≤ A+ ‖Dα0+x‖∞. (11)

Combine (10) with (11), we get∥∥t2−αx∥∥∞ ≤ (1 +
2

Γ(α)

)
A+

2

Γ(α)
‖Dα0+x‖∞. (12)

By Mx = λNx, we get

CDβ0+φp
(
Dα0+x(t)

)
= λf

(
t, t2−αx(t),Dα−1

0+ x(t),Dα0+x(t)
)
,

then
Dα0+x(t) = φq

(
λIβ0+f − λIβ0+f |t=1

)
.

Form (H1), we have

|Dα0+x(t)|
≤ φq

(
λIβ0+ |f |+ λIβ0+ |f | |t=1

)
≤ φq

[ 1

Γ(β)

∫ t

0

(t− s)β−1
ds+

1

Γ(β)

∫ 1

0

(1− s)β−1
ds
]

×
(
‖ψ‖∞

∥∥t2−αx∥∥∞ + ‖ι‖∞
∥∥Dα−1

0+ x
∥∥
∞

+‖ϑ‖∞‖D
α
0+x‖∞ + ‖σ‖∞

)
≤ φq

( 2

Γ(β + 1)

)(
‖ψ‖∞

∥∥t2−αx∥∥∞ + ‖ι‖∞
∥∥Dα−1

0+ x
∥∥
∞

+‖ϑ‖∞‖D
α
0+x‖∞ + ‖σ‖∞

)
.

Thus

‖Dα0+x‖∞ ≤ φq
( 2

Γ(β + 1)

)[
‖ψ‖∞

(
1 +

2

Γ(α)

)
A

+
2

Γ(α)
‖Dα0+x‖∞‖ψ‖∞ + ‖ι‖∞

(
‖Dα0+x‖∞ +A

)
+‖ϑ‖∞‖D

α
0+x‖∞ + ‖σ‖∞

]
,

then

||Dα0+x||∞ ≤ ∆−1φq

( 2

Γ(β + 1)

)[
‖ψ‖∞

(
A+

2A
Γ(α)

)
+A‖ι‖∞ + ‖σ‖∞

]
:= M1. (13)

where ∆ = 1− φq( 2
Γ(β+1) )

(
2||ψ||∞

Γ(α) + ‖ι‖∞ + ‖ϑ‖∞
)

By (11), (12) and (13), we have∥∥t2−αx∥∥∞ ≤ (1 +
2

Γ(α)

)
A+

2M1

Γ(α)
:= M2. (14)∥∥Dα−1

0+ x
∥∥
∞ ≤ A+M1 := M3. (15)

Combine (13), (14) with (15), we get

‖x‖ = max
{∥∥t2−αx∥∥∞,∥∥Dα−1

0+ x
∥∥
∞, ‖D

α
0+x‖∞

}
≤ max {M1,M2,M3}=M.

Hence, Ω1 is bounded.

Lemma 3.5 Assume that (H3) establish, the following set

Ω2= {x ∈ KerM|Nx ∈ ImM}

is bounded.

Proof. Let x ∈ Ω2, then x(t) = ctα−2, c ∈ R and Nx ∈
ImM. So we obtain

m∑
i=1

γi

∫ ξi

0

(ξi − s)β−1
f(s, c, 0, 0)ds = 0.

By (H3), we know that

‖x‖ = max
{∥∥t2−αx∥∥∞,∥∥Dα−1

0+ x
∥∥
∞, ‖D

α
0+x‖∞

}
=
∥∥t2−αx∥∥∞ = |c| ≤ B.

Hence, Ω2 is bounded.

Lemma 3.6 Assume that the first part of (H3) establish,
then the set

Ω3 = {x ∈ KerM|(1− λ)QNx− λJ x = 0, λ ∈ [0, 1]}

is bounded, where J : KerM→ ImQ is a homeomorphism
defined by

J (ctα−2) = ctl, c ∈ R.

Proof. Take x ∈ Ω3, then x(t) = ctα−2, c ∈ R and

(1− λ)
m∑
i=1

γiξ
β+l
i

Γ(l + β + 1)

Γ(β)Γ(l + 1)
(16)

×
( m∑
i=1

γi

∫ ξi

0

(ξi − s)β−1
f(t, c, 0, 0)dt

)
tl − λctl = 0.

If λ = 0, then QNx = 0. By (H3) of Theorem 3.1, we
get |c| ≤ B. If λ = 1, then c = 0. Or else, in the event of
|c| > B, we have

c(1− λ)
m∑
i=1

γiξ
β+l
i

Γ(l + β + 1)

Γ(β)Γ(l + 1)

×
( m∑
i=1

γi

∫ ξi

0

(ξi − s)β−1
f(t, c, 0, 0)dt

)
tl − λc2tl < 0.

Which is contradictory to (16). Hence, Ω3 is bounded.

Remark 3.1 Assume that the latter part of (H3) establish,
the following set

Ω′3 = {x ∈ KerM|(1− λ)QNx+ λJ x = 0, λ ∈ [0, 1]} .

is bounded.

Proof of Theorem 3.1 Set Ω={x∈X |‖x‖X<max {M,B}+
1}. Based on Lemma 3.1 and 3.3, we can obtain that M is
the quasilinear operator and Nλ is M-compact on Ω̄. Based
on Lemma 3.4 and 3.5, the following conditions are met
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(C1) Mx 6= Nλx, ∀(x, λ) ∈ (domM∩ ∂Ω)× (0, 1),
(C2) QNx 6= 0, x ∈ domM∩ ∂Ω.

Let
H(x, λ) = λJ x+ (1− λ)QNx.

By Lemma 3.6, we know that H(x, λ) 6= 0, x ∈ KerM∩
∂Ω. According to the homotopy property of degree, we attain

deg(QN|KerM,Ω ∩KerM, 0)

= deg
(
H(·, 0),Ω ∩KerM, 0

)
= deg

(
H(·, 1),Ω ∩KerM, 0

)
= deg

(
I,Ω ∩KerM, 0

)
6= 0.

Hence, the condition (C3) of Lemma 2.1 is satisified. Ac-
cording to Lemma 2.1, we can obtain that the BVP (4) has
at least one solution in X . The proof is complete.
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