
 

 
Abstract—The purpose of this paper is to present a complete 

and simplified solution procedure for the inventory model 
under trapezoidal type demand, Weibull-distributed 
deterioration, and partial backlogging. A published paper 
already provide a solution approach for this kind of inventory 
models. However, we will show that his approach is too 
complicated that depending on the partition the domain of a 
trapezoidal type demand to result in three sub-optimal 
problems.  However, this paper will show that the already exist 
approach is correct but tedious. Moreover, a generalization of 
this kind of inventory systems from a trapezoidal type demand 
to any positive demand under a condition of generalized 
backlogged rate is also developed by this paper.  
 

Index Terms—exponential deterioration, inventory systems, 
backlogged rate, demand is dependent on inventory level 
 

I. INTRODUCTION 

LASSICAL economic inventory models have assumed 
that the demand is almost always stable such that Harris 

[1] used a constant demand for his well-known EOQ model. 
However, this assumption does not hold true for many real 
world situations as it is increasing competition in modern 
market that results in variation and uncertainty. Hence, many 
modifications are constructed by researchers to improve the 
inventory model of Harris [1]. For example, Henery [2] 
developed an inventory system with increasing demand. 
Murdeshwar [3] extended the results of Henery [2] with 
shortages. Hill [4] combined an increasing demand with a 
stable demand to construct a ramp-type demand for his 
inventory model. Cheng et al. [5] further extended the 
ramp-type demand of Hill [4] to a trapezoidal-type demand to 
indicate the declining phase of a product. Recently, there is 
also a trend where previously published papers are improved 
upon. For example, Lin et al. [6] construct a new solution 
method to simplify the complicated solution approach 
proposed by Deng et al. [7]. Deng and Chao [8] showed that 
the new approach proposed by Julian et al. [9] contained 
questionable findings such that Deng and Chao [8] provided 
an amendment. Lin [10] extended the inventory model of Lin 
[11] from linear deterioration rate to a deteriorated function 

 
Manuscript received October 30, 2023; revised February 9, 2024.  

    This work was supported in part by the Weifang University of Science and 
Technology, with the unified social credit code: 52370700MJE3971020.  
    Yu-Lan Wang is a Professor of the College of Teacher Education, 
Weifang University of Science and Technology, Shandong, China (e-mail: 
yulan.duker@gmail.com).  
    Chin Lin Wen is an Associate Professor in Weifang University of Science 
and Technology, Shandong, China (email: chinlin@cycu.edu.tw).  

Ming-Li Chen is an Associate Professor in the School of Intelligent 
Manufacturing, Weifang University of Science and Technology, Shandong, 
China (e-mail: a19600616@gmail.com). 

with a general expression. Lin et al. [12] applied a solution 
method from an operational management view to simplify 
the tedious derivation proposed by Yang et al. [13] based on 
differential system of calculus. Tung and Deng [14] rectified 
the incomplete solution procedure of Lin et al. [15] to include 
the optimal solution on the boundary. Chao et al. [16] 
improved Tung [17] to show that the optimal solution is 
independent of the distribution for the changing point of a 
ramp-type demand. Lin et al. [18] obtained a complete 
solution procedure to indicate that the assumption of Tung et 
al. [19], which was only supported by numerical examination, 
is unnecessary. Tung et al. [20] pointed out that the search for 
real solutions done in Yang et al. [21] is improper and 
presented an improved solution procedure. By following this 
trend, this paper will provide an extension for the inventory 
model of Zhao [22]. 

II. ASSUMPTIONS AND NOTATION 

To be compatible with Zhao [22], we adopt the same 
notation and assumptions as Zhao [22]. 

(a)  tI  the level of inventory at time t , Tt 0 .   

(b) T  the fixed length of each ordering cycle.    

(c) 1t  the time when the inventory level reaches zero for the 

inventory model.    

(d)  *
1t  the optimal point.    

(e) S  the maximum inventory level for each ordering cycle.  

(f)  *Q  the optimal ordering quantity.  

(g) 0A  the fixed cost per order. 

(h)  1c  the cost of each deteriorated item.  

(i)  2c  the inventory holding cost per unit per unit of time. 

(j)  3c  the shortage cost per unit per unit of time.   

(k) 4c  the lost sales cost per unit.     

(l)  1tCi  3,2,1i  the average total cost per unit time 

under different conditions, respectively.     

(m)  1tTC  the average total cost per unit time.     

(n) The demand rate,  tD , which is positive and 

consecutive, is assumed to be a trapezoidal type 
function of time; that is, 
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where 1  is time point changing from the increasing 

Inventory Systems with an Exponential 
Deterioration Rate 

Yu-Lan Wang,   Chin Lin Wen,   Ming-Li Chen 

C 

IAENG International Journal of Applied Mathematics

Volume 54, Issue 4, April 2024, Pages 663-670

 
______________________________________________________________________________________ 



 

demand function  tf  to constant demand 0D , and 

2  is time point changing from the constant demand 

0D  to the decreasing demand function  tg . 

(o) The replenishment rate is infinite; that is, replenishment is 
instantaneous.     

(p) The deterioration rate of the item is defined as Weibull 

  ,  that is the deterioration rate is  

  1  tt ,                           (2.2) 

for 0,0,0  t . 

(q) Shortages are allowed and they adopt the notation used in 
Abad [23], where the unsatisfied demand is backlogged 
and the fraction of shortages backordered is  

te  ,                                     (2.3) 
where t  is the waiting time up to the next 

replenishment. We also assume that  
tte  ,                                      (2.4) 

is an increasing function, which had appeared in Skouri 
et al. [24]. 

III. REVIEW OF PREVIOUS RESULTS 

For an inventory model with trapezoidal type demand, 
Weibull-distributed deterioration, and partial backlogging, 

depending on the relations among 1 , 2  and 1t , Zhao [22] 

developed three objective functions. In the following, direct 
quotes of the inventory models constructed by Zhao [22] are 
shown. For interested readers please refer to original 
derivations of Zhao [22]. They constructed three objective 
functions, for three different domains as follows. First, for 
domain, 0 ൑ tଵ ൑ µଵ. 
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Second, for domain, µଵ ൑ tଵ ൑ tଶ, 
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Third, for domain, µଶ ൑ tଵ ൑ T, 
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and then they assumed an auxiliary function, hሺtଵሻ, to simplify the expressions, 

            1 1 1 11
1 1 2 3 1 40

1 1
t t t t T t Tth t c e c e dt c t T e c e

              .                       (3.4) 

 
Based on (3.1-3.3), Zhao [22] constructed his objective 

function,  1tTC ,  
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Zhao [22] derived that for 110  t , 
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for 211   t , 
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 ,                     (3.7) 

and for Tt  12 , 

     1
1

11
1

th
T
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dt

d
 .                        (3.8) 

Zhao [22] obtained that 

  00 h ,                               (3.9) 

  0Th ,                             (3.10) 

and 

  01
1

th
dt

d
,                          (3.11) 

under the condition that tet   is an increasing function. 

Hence, there is a point, say *
1t , satisfying   0*

1 th , Zhao 

[22] then concluded the following replenishment policy, 
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IV. OUR GENERALIZED SOLUTION PROCESS 

By reviewing the solution approach of Zhao [22], it is 
realized that the solution approach must have been divided 
into three different parts, because the demand is a trapezoidal 

type function with two changing point 1  and 2  such that 

the expression of demand has three different expressions 

 tf , 0D  and  tg  as denoted in (1). To obtain a 

simplified derivation for the model of Zhao [22], the abstract 

expression,  tD , is used for demand. The differential 

system governing the inventory level is expressed as follows, 

for 10 tt  ,  

     tDtIttI
dt

d
 1 ,                (4.1) 

for Ttt 1 , 

     tDetI
dt

d tT   ,                   (4.2) 

with   01 tI . We derive the inventory level,  tI , as 

follows for 10 tt  , 

    1t

t

xt dxexDetI
  ,               (4.3) 

for Ttt 1 , 

       1t

t

xT dxxDetI  .                (4.4) 

The maximum inventory level, S , is obtained as 

    1

0
0

t x dxexDIS
 .               (4.5) 

The total number of deteriorated items, TD , is derived as 
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0
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The total number of inventory, TH , is computed as 
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The total shortage quantity, TB , is evaluated as 
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The total number of lost sales, TL , is estimated as 

    dttDeL
T
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The average total cost per unit time is found as 
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(4.10) 
Based on Equation (4.10), we calculate that 
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where  1th  is defined as Equation (3.4), because by the 

Leibniz rule, 
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     1

1 1
T tT t D t e     .               (4.13) 

Now, by comparing Equation (4.11) with Equations 
(3.6-3.8) it can be shown that our generalization derives the 
same result as Zhao [22] but our approach is much more 
simplified than that of Zhao [22]. 

In Zhao [22],  1th  is already proved to have a unique 

solution for   01 th , for Tt  10 . Owing to   01 th , 

for *
110 tt   and   01 th , for Ttt  1

*
1 , by (21), it 

yields that   01
1

tC
dt

d
, for *

110 tt   and 
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  01
1

tC
dt

d
, for Ttt  1

*
1  such that *

1t  is the 

minimum point and the minimum value is  *
1tC . Based on 

the above discussion, a generalized model of Zhao [22] is 
provided to extend from a trapezoidal type demand to any 
positive demand that will help researchers develop new 
inventory models. 

V. A RELATED PROBLEM OF CENTROIDS 

In this section, we provide a short patchwork for Shieh 
[25]. Wang et al. [26], Abbasbandy and Asady [27], Chu and 
Tsao [28], Cheng [29], and Pan and Yeh [30] had applied 
centroid-based distance to rank fuzzy numbers. For 

trapezoidal fuzzy number, denoted as  ;,,, dcbaA   

with the left-hand wing, 

 
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ax
xAL 


 ,                           (5.1) 

for bxa   and the right-hand wing, for dxc  , 
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
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and for cxb  , 

  xA .                                (5.3) 

Wang et al. [26] developed the centroids,     AyAx oo , , 

as 
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where    baAL ,,0:1    and    dcAR ,,0:1    are 

the inverse functions of LA  and RA , defined in Equations 

(a.1) and (a.2), respectively. 
Wang et al. [26] claimed the following two properties of 
correct centroids formulae: 
(P1) If A  and B  are fuzzy numbers with their membership 

functions  xA  and  xB  have the relation of 

   xAbxB  , then 

   AxbBxo 0 ,                          (5.6) 

and 

   AyBy 00  .                            (5.7) 

(P2) If A  and B  are fuzzy numbers with their membership 

functions  xA  and  xB  have the relation of 

   xAxB  , then 

   AxBxo 0 ,                            (5.8) 

and 

   AyBy 00  .                         (5.9) 

 
Cheng [29] defined that 
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Chu and Tsao [28] assumed that 
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Shieh [25] constructed that 

 

  

 





0

0

dA

dA
Ayo ,                  (5.12) 

where A  is the length of the  cut. 

If A  is a crisp set with   0xA  and   0xA , if 

0xx   then its centroids is defined by  ,0x . It is 

well-known that  ,0x  satisfies properties (P1) and (P2). 

 

Remark 1. The functions LA  and RA  for a fuzzy number 

need not be invertible, for instance, 

45.03125.015.0 A ,               (5.13) 

where   5.0xAL , for 2,1x  that results is the 

left-hand wing is not one-to-one function and then it is 
invertible. 
 
We proposed the following question: For the fuzzy number in 

Remark 1, how to compute  



dxxA ? Our question is 

related to in Fuzzy set theory, how to handle discrete case? 

VI. A SIMPLIFICATION OF PREVIOUS RESULTS 

    Our second question: The fuzzy number in Remark 1 is not 
a convex fuzzy set. We may predict that the definition of the 
left-hand wing should be added the following condition: 

  5.0xAL ,                              (6.1)    

for 21  x . 
Shieh [25] cited several well known results, 

    yxAxyA RR  sup1 ,                 (6.2) 

and 

    yxAxyA L
L

 inf1

_
,                 (6.3) 

to imply that 

   yAyAA
L

R
y 11 



  .                    (6.4) 

We can simplify his approach to directly defined that yA  is 

the length of y cut to simplify the computations of 

Equations (6.2-6.4). 
For two fuzzy numbers A  and B , have an x-axis shift, that 

is    xAyB   for all baxy  , then we recall the 

following well-known result of  cut, 
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Lemma 1 of Shieh et al. [25]. baAB   . 
 

If A  is a trapezoidal fuzzy number,  ;,,, dcbaA  , 

then the centroids satisfy the next findings, 











bacd

abdc
dcbaAxo 3

1
)( ,   (6.5) 

and  

  









bacd

bc
Ayo 1

3


.             (6.6) 

VII. DISCUSSION FOR DEGENERATED CASES 

Our third question: For degenerated cases, then how to 
express the results of centroids. In the following, we present 
some findings. 
If cb  , then for a triangular fuzzy number, 

 dbaAxo 
3

1
)( ,                       (7.1) 

and 

 
3


Ayo .                                 (7.2) 

If cb  , and dba  , that is a crisp fuzzy number, 

 ;,,, 0000 xxxxA  , then 

oo xAx )( ,                               (7.3) 

and 

 
3


Ayo .                              (7.4) 

For the crisp fuzzy number, Shieh [25] directly defined 

  Ayo ,                              (7.5) 

that is not consistent with the limiting case of his own 

formula for  Ay0  

 
For trapezoidal fuzzy number, if we apply another formula of 
Chu and Tsao  [28] as Equation (5.11), owing to 

   



  cddabaA





 , ,      (7.6) 

such that we compute that 

     dacbdaAA RL  


 11 ,   (7.7) 

and then we obtain 

      


0

11 dyyAyAy LR   cbda  2
6

2
, (7.8) 

and 

      


0

11 dyyAyA LR  cbda 
2


.    (7.9) 

For a trapezoidal fuzzy number, we derive that 

  









cbda

cb
Ayo 1

3


.          (7.10) 

For a triangular fuzzy number, cb  , 

  








bda

b
Ayo 2

2
1

3


.           (7.11) 

For a crisp fuzzy number, cb   and bda  , 

 
2


Ayo .                             (7.12) 

We may claim that the adjust factor for  Ayo  of Wang et al. 

[26] and Shieh [25] is 3  and the adjust factor for  Ayo  of 

Chu and Tsao [28] is 2. Based on our above discussion, we 
compare different definitions of Shieh [25] and Chu and Tsao 
[28] to help researchers understand the concept of centroids.  

VIII. A RELATED PROBLEM WITH INVENTORY MODEL 

In this section, we study an EOQ model with ramp-type 
demand, shortage, and Weibull deterioration distribution that 
was studied by Giri et al. [31]. We will point out some 
questionable results in their paper in this section, and then we 
will present our improvements in the next section.  

Giri et al. [31] assumed that 1t , and constructed two 

models depending on the relationship between   and   : (a) 

  , and (b)   .  

For the first model with   , Giri et al. [31] implicitly 

assumed that 1t  such that Giri et al. [31] overlooked the 

case for   1t . 

We know that 

  00  Af ,   (8.1) 

such that the demand rate in Figure 1 of Giri et al. [31] is 
questionable. To save the precious space of this journal, we 
will not duplicate Figure 1 of Giri et al. [31] in this paper. For 
those interested readers, please directly refer to Giri et al. 
[31]. 

For the inventory level, we know that there are two 
different results in Giri et al. [31], 

   10  tbe
b

AQ
tq ,                     (8.2) 

and 

   10  tbe
b

A
Qtq .                  (8.3) 

The cost of shortage occurred in the interval  Tt ,1  is 

denoted as follows, 

  
T

t

b dttTeAC
1

2
 .                   (8.4) 

In the Proposition 1 of Giri et al. [31], they added an extra 
condition: 

 
Te

b

bC

C

C

CC b 





 

  
2

1
2

1

2

21 .   (8.5) 

In their proof of Proposition 1, Giri et al. [31] mentioned 
that 

  00 G .                          (8.6) 
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IX. OUR IMPROVEMENT 

We claim that for any given K   10  K , under the 

assumption TKTt  1 , hence the value of T  

cannot be too small so the minimum value of T  equals 
K


. 

Therefore, to evaluate at  0G  in their proof of Proposition 

1 is meaningless. 
We compute 

3

2

21
2 1

1

2
C

K
CCe

A

K
TG b 
















 






    .  (9.1) 

Based on the numerical example in Giri et al. [31], we 

know that 200A , 08.0b , 2.0 , 31 C , 

52 C , 3.0 , 903 C . 

Consequently, we derive that 

0





 

K
TG


,                         (9.2) 

if and only if 
K46.0 .                             (9.3) 

From the optimal solution of Giri et al. [31], they obtained 
that 

43.0*
1 t ,                              (9.4) 

and 

69.0* T .                            (9.5) 
Hence, we derive that 

46.062.0
69.0

43.0
K ,               (9.6) 

and then the inequality of Equation (9.2) is verified through a 
numerical method. 

 
We may predict that if we change the value of the 

parameter, from 104 C  to a small value, then we expect 

that the percentage of items in the stock will reduce. 
Consequently, we may construct an example that K46.0  
is invalid. 

Based on our above discussion, we can list the following 
directions for future researchers: 

(i) Change to the exact holding cost, HC1  that is not to use 

the approximation 1
10

2
CD

tQ






  . 

(ii) Using the approximation 1
10

2
CD

tQ






  , to prove 

 Tt ,11  convex with the following approach: (a) 

Positive definite at critical point, (b) Existence and unique 
of critical point, or (c) Discussion of the case of 

  1t . 

X. OUR PROPOSED EXACT MODEL 

    We derive the exact total cost per unit time, denoted as 

 Tt ,1  in the following, 

   






  2

124131 2

1
, tTeC

A
DCHCC

T
Tt b ,  (10.1) 

where we assume three abbreviations: 0Q , H , and D  to 

simplify our expressions: 

   1
1

0 











   



 

 b
t

tb e
b

A
dteAeQ ,   (10.2) 

     2
20 11    bb e

b

A
be

b

A
QH  

 2
2

  be
A

 

     
1 1t t

t

xtb dtdxeeAe


 

,          (10.3) 

and 

     10 1 tAee
b

A
QD bb .     (10.4) 

We obtain the partial derivatives with respect to 1t  and T , 

   






















  


 
1

1
1

1

t
ttb dteeCe

T

A

t
, 

    124 11 tTCeC t    ,          (10.5) 

and 

   3122

1
CtTTAeC

TT
b 


  , 

 


 2

1241 2
tTeC

A
DCHC b .      (10.6) 

We further derive the second derivatives with respect to 1t  

and T , 

    214
1

12
1

2

CCCte
T

A

t
b 


   ,   (10.7) 

with two abbreviations: 

 

and H , where 
   1te ,                          (10.8) 

and 

 










   



 
1

1

t
t dteC .               (10.9) 

  















12442
1

2

tCCCe
T

A

tT
b


 ,     (10.10) 

and  





 


 2

1241332

2

2

2
te

A
CDCHCC

TT
b .    (10.11) 

Based on 0


T

of Equation (10.6), we derive that 

  DCHCCtTeC
A b

413
2
1

2
22

 .    (10.12) 

Based on Equation (10.5), from 0
1




t

, then we show that 
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    









  



 
1

1

2

1

t
tt dtee

C

C
, 

   Tte
C

C t 
1

2

4 11
 .           (10.13) 

How to solve the system consisting Equations (10.12) and 
(10.13) will be an interesting research topic in the future. 

XI. DIRECTION FOR FUTURE RESEARCH 

In this section, a possible direction for the future research 

is provided. Zhao [22] used xxe   as an increasing function, 

that is  xxB  increases where  xB  is the backlogged rate, 

which was mentioned in Hung [32][32]. Lin et al. [33] 
relaxed the condition of Lin [10] to remove the condition 
proposed by Hung [32]. Consequently, Lin et al. [33] derived 
that the critical points for the first derivative of the objective 
function is not unique. Future researchers can remove the 

condition of xxe   as an increasing function thus allowing 
an interesting direction for the future research.  

There are several important papers that were recently 
published.  We list them in the following to point our possible 
directions for future research: Li et al. [34] developed a 
service supply chain to reduce carbon emissions. Wan et al. 
[35] examined a location strategy for electric commerce 
warehouse.  Chen et al. [36] studied a revised optimization 
procedure for renewable energy. Unyapoti and Pochai [37] 
combined a wave crest model with a shoreline evolution. 
Purwani et al. [38] showed the secant method superior to the 
Newton method. Alomari and Massoun [39]obtained 
numerical solutions for some specific equations. Yang et al. 
[40] constructed a new model with vector continued fractions. 
Tang et al. [41] executed a numerical examination to analyze 
customer behavior during the Chinese new year. Petcharat 
[42] developed a control chart to study seasonal moving 
average procedure.   

XII. CONCLUSION 

By extending the inventory model of Zhao [22] from a 
trapezoidal type demand to a positive demand, the three 
complicated objective functions proposed by Zhao [22] is 
simplified to one objective function. Our derivation will help 
researchers realize inventory models with Weibull distributed 
deterioration and negative exponential partial backlogging. 
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