
 

 
Abstract—In engineering, most sensors can only measure the 

intensity information of a signal, but without the phase 
information. The phase retrieval problem is to reconstruct the 
original signal only from intensity values, which is an ill-posed 
problem. To address this issue, we introduce sparse prior 
information to overcome the ill-posed problem and propose the 
sparse reweighted thresholded Wirtinger flow (SRThWF) 
algorithm. In the SRThWF algorithm, the original signal is 
reconstructed from Gaussian random measurements via 
intensity values. In particular, SRThWF carries on iteratively 
in two stages: In stage one, it works with initialization by 
truncated spectral method restricted on support recovery of 
sparse signal. In the second stage, the initial estimate is refined 
iteratively via hard-thresholding-based adaptive reweighted 
gradient descent. Furthermore, the convergence of the 
proposed algorithm has been proved. Experimental results 
show that the proposed algorithm is an effective sparse phase 
retrieval solver in the probability of success even if the sparsity 
level is unknown. Not only that, the proposed algorithm exhibits 
a faster convergence rate and shorter running time. In addition, 
SRThWF is robust to the noise. 
 

Index Terms—sparse phase retrieval, convergence, gradient 
descent, thresholded, reweighted 

I. INTRODUCTION 

A. Phase retrieval problem 

HASE retrieval (PR) is an inverse problem that 
reconstructs the original signal only from the intensity 

measurement values. This problem arises in various scientific 
and engineering fields, including microscopy [1], X-ray 
crystallography [2], and astronomy [3]. The mathematical 
model for the phase retrieval problem can be expressed as: 

 
2

, ,  1 , , ,i i iy i m      a x  (1) 

where nx   represents the original signal, 1{ }m n
i i a   are 

the measurement vectors, 1{ }m n
i iy    are the intensity 

values, 1{ }m
i i  are the noise, and m  corresponds to the 

number of measurements, also referred to as the sample size. 
In other words, the goal of the PR problem is to reconstruct 
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x  from 1{ }m
i iy  . 

In general, the PR problem involves reconstructing the 
original signal from either Fourier measurements or Gaussian 
random measurements. For instance, Fourier measurements 
can be attributed to the [4] and [5]. The Gerchberg-Saxton 
(GS) [4] algorithm is the first solution developed to solve the 
PR problem. Lan Li [5] demonstrates the connectivity of 
directed graphs and provides the necessary and sufficient 
conditions for recovering the phase from multiple short-time 
Fourier measurements. Furthermore, the PR problem is 
discussed in the context of random measurements. In the last 
few years, more and more optimization methods have 
emerged for addressing the PR problem from Gaussian 
random measurements. Among these methods, the Wirtinger 
flow (WF) [6] algorithm stands out as an effective solution. It 
employs Wirtinger derivatives in gradient descent to 
iteratively refine the initial estimate. Following the spirit of 
WF algorithm, the truncated Wirtinger flow (TWF) [7] 
algorithm adopts an adaptive gradient flow-based truncation 
rule. Unlike the TWF method, the reweighted Wirtinger flow 
(RWF) [8] algorithm introduces an indirect adaptive 
truncation strategy by adding weights. Nevertheless, it is a 
challenging problem to reconstruct the original signal x  

only from intensity values 1{ }m
i iy   without any prior 

information about x . 

B. Sparse prior information  

With the discussion of the previous section, it is essential 
to consider the role of prior information, such as sparsity [9] 
and neural network priors [10], in addressing the phase 
retrieval problem. Owing to the practical significance of 
sparse prior information, it is necessary to solve the sparse PR 
problem. Moreover, it has been demonstrated that 

4 1m k   measurements are necessary and sufficient to 
ensure the uniqueness of the PR problem for k  sparse real 
signals with a high probability [11]. A series of heuristic 
methods have been introduced to address the PR problem for 
sparse signals. 

Sparse AltMinPhase [12] algorithm alternately updates 
between phase information and the candidate solution with 
resampling. Inspired by the generalization of WF, the authors 
present thresholded Wirtinger flow (ThWF), sparse 
Wirtinger flow (SWF), and sparse truncated amplitude flow 
(SPARTA) algorithms in [13] [14] [15], respectively. In 
particular, SPARTA has a higher probability of success and a 
faster convergence rate than ThWF and sparse AltMinPhase. 
However, the performance of SPARTA is significantly 
impacted by the sparse prior information, and the truncated 
process might fail to consider some valuable information. In 
contrast, SWF demonstrates greater robustness to unknown 
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sparse levels compared to SPARTA. 
In this work, a sparse reweighted thresholded Wirtinger 

flow (SRThWF) algorithm is proposed to solve the sparse 
phase retrieval problem. The initialization stage uses an 
analytically well-justified rule to estimate the support of the 
sparse signal. Then, the initialization is obtained via the 
truncated spectral method that is approximate to the original 
sparse signal. Eventually, weights are added to the gradient 
descent based on hard thresholding. Our innovations in this 
work are as follows: 

A sparse reweighted thresholded Wirtinger flow 
(SRThWF) algorithm merges the ideas from adding weights 
and the SWF algorithm. Adaptive weights are induced during 
the gradient descent process to accelerate the convergence 

rate. Specifically, when the weight 1{ }m

i iw   values are equal to 

1, this is a generalization of SWF [14]. On the theoretical side, 
this paper offers a convergence proof for the proposed 
algorithm. 

Concerning the standard notation consistently employed in 
this paper, the bold uppercase and lowercase letters indicate 
matrices and vectors, respectively. 0  represents the 

number of non-zero elements. T illustrates transpose. The 
inner product of vector a  and vector b  is defined as 

,a b .   denotes absolute value.    returns the smallest 

integer greater than or equal to the given number. Let S  be 

the support set for a k -sparse signal. \B P shows the 
differences between two sets B  and P . 

II. THE PROPOSED ALGORITHM AND CONVERGENCE PROOF 

In this section, the sparse PR problem is tackled with the 
introduction of the SRThWF algorithm. There are mainly two 
stages: In stage one, the support estimation of sparse signal 
needs to be performed from the law of large numbers. In 
addition, a truncated spectrum method for initialization is 
obtained via measurement vectors restricted on the support; 
and in stage two, the approach of reweighting is employed for 
the gradient descent process to update the initialization. Next, 
we will provide a detailed elaboration on these two stages. 

A. SRThWF Algorithm 

The mathematical model for the sparse PR problem is as 
follows: 
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        ,
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where z  represents an approximation of the original signal 

x , and k  represents the number of non-zero elements of the 

signal z . Nevertheless, the 0l -norm problem is NP-hard. 

Consequently, the sparse reweighted thresholded Wirtinger 
flow model can be expressed: 
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where 1{ }m
i iw   are weight parameters. 

Stage1: initialization restricted on support estimation 
The number of elements in the support set S  is indicated 

by its cardinality S  as S k n  . The j -th element of 

vector ia  is defined as ,i ja , and we have the following 

formula: 

 2 2
, , , 1 , , ,  1 , , ,i j i i jQ y a i m j n     (4) 

Note that the vectors ia  i.i.d. ( , )n0 I . According to the 

rotational invariance of the Gaussian distribution, ,i jQ  have 

the following equation: 

 
22

, 2
( ) 2 ,i j jQ x x   (5) 

where ( )  expresses expectation. From the formula (5), for 

all j , the support set S  can be obtained when 22
j

x  is 

sufficiently large. Then, Ŝ  is fixed as the set of 

corresponding indices of k  largest values in 
, ,

1

1ˆ
m

i j i j
i

Q Q
m 

  . 

As m  increases, ,
ˆ

i jQ  is approximately equivalent to ( ),Qi j . 

Therefore, we can estimate the support using the formula: 
 

, 1
ˆˆ 1 | index of top-  instances in{ { } }.n

i j jQS j n k    (6) 

Assume that ˆ,i S
a  is the update of ia  on the Ŝ . Next, the 

truncated spectral method is exploited to make an initial 

estimate value 0z  that is closer to the original sparse signal 
x . Let Y  be a semidefinite Hermitian matrix, and the 

eigenvector z  corresponding to the leading eigenvector of 
Y  is computed: 

 T

1
2 2ˆ ˆ, , { }

1
,

m

i i y
i i S i S y

y
m 


 Y a a 1 ≤α  (7) 

where 
1

2 1 m

i
im

y


  , y  is the predetermined truncation 

threshold. The initial estimate can be obtained by 0 =z z . 
Stage 2: reweighted gradient descent for sparse signal 

For the t  -th iteration of the reweighted gradient descent, 
the formula is given by: 

 
2

1 µ
( ),t t tt f   


z z z  (8) 

where µt  is variable step size. 

By changing weights during the gradient descent, we can 
adaptively control the update direction. This not only 
accelerates the convergence rate but also contributes to 
obtaining a more optimal solution. The reweighted gradient is 

  2 T T

1

1
( ) ( ) ,

m
T
ii i i i

i

t t tf w y
m 

  z a z a x a  (9) 

and 1{ }m
iiw   are determined by 

 
2 2

1
, 1, , ,t

i
T t T
i i

w i m 
 a z a x

  (10) 

where tz  is the optimal value in the t -th iteration, the 

proposed algorithm updates tz  from an appropriate 

initialization 0z .   is a fixed parameter, and specific 

instructions regarding it are provided below. The weight 

1{ }m
i iw   vary with tz  for each iteration. Therefore, a weight 

value is recalculated with each update.  
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To reduce the dimensional freedom and limit the searching 

domain, a thresholding operator k  is applied to 1tz . 

 1 1( ).t t
k

  z z  (11) 

This means that 1tz  keeps the k  elements of 1tz  with 

the largest absolute value, and the rest elements of 1tz  are 
zero. The algorithmic details of SRThWF can be summarized 
in Table I. 

To intuitively establish the convergence of SRThWF, we 
define relative mean square error (RMSE) as follows: 

 
2

dist( , )
RMSE := ,

z x

x
 (12) 

where z  is the numerical estimation of x , dist( , )z x  

represents the Euclidean distance from estimation value z  to 

the solution x ,  2 2
dist( , ) : min ,  z x z x z x . 

 
TABLE I  

THE DETAILS OF THE PROPOSED ALGORITHM 

Algorithm 1: SRThWF 
1: Input： 

 
1

,
m

i i i
y


a : Gaussian random vectors and intensity values 

k : the sparsity of x  
 : the accuracy required 

tµ : the step size 

y : truncation threshold 

T : the maximum iterative time 
 : the fixed parameter 

2: initialization restricted on support recovery 

Ŝ  includes indicators corresponding to the largest index of 

k  in 
2

1

m
i i

i

y

m
 a  

2 2
T

ˆ, { }1
ˆ,

1

yi

m

i S
i

i yi Sm
y


 Y 1a a

≤α
 

0 =z z  
3: Reweighted gradient descent 
For 1t t   z z  and Tt   do 

 21 T 2 T T
2

1

µ 1
( ( ) ,

m
t t

i i i i i
i

t
k

t tw y
m





 
  

 
 
 z z a z a x a )  

where 2 2

1
, 1, , ,t

i
T T

i i

t
w i m 

  


a z a x
 

1t t   

4: Output: tz :the final estimated signal 

 
As depicted in Fig.1, different   have different 

convergence rates for SRThWF. Next, we can theoretically 
establish the convergence of the proposed algorithm. 

B. Convergence Proof 

Lemma 1. Let tz  be the t -iteration value of the algorithm 1, 
1tS  and Ŝ  are the support of 1tz and k -sparse real 

solution x  by SRThWF, respectively. Assume 
1 1 ˆt tS S   , for all t , then 1 2t k  . 
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Fig.1. RMSE versus iteration for 1000Rx   

with 3m n   fixed 

Lemma 2. Under the condition of Lemma 1, let 
jt t t

e  h z x ,
 0,arg min jt t e 

   z x .If 1 1\ )t tt  ∩(   , 

then we have 
1 1\

2t t t
t t t
    h h h . 

Theorem 3. Consider a k -sparse vector nx  .
2

,iiy   a x , 

1, , ,i m 
n

i a   and ia  are i.i.d. ( , )n0 I . If there exists 

a constant 0 1v   in t -iteration of the algorithm 1, we 
have 

1t tvh h≤ . 

Proof. For the t -iteration of Algorithm 1, we have  

  
1

1

1

1

11

1 1

1 1

1 1 1

11

,

t

t

t

t

tt

t t

jt t

jt t t

tjt e e

e















 

 

  

  

   




 

h x z x

z z x z

z ≤

      ≤
  (13) 

where 1
21 1 1

1 µ
( )t

t t t
t tt f

  
  


z z z
  
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From the result of Lemma 1, 11

1 1 1
1 1 1tt

t t t
jt t te  
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(14) 

If there exists a constant iw , 2 1 1, , ,iw i m        and 

from [16] and [17], there exist 1 1    , we get the 

following inequality 
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Fig.2. Probability of success versus sparsity level k  
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Then, there exists 2 1    and 1 1, , ,iw i m      we 

obtain  
22

1 22 2
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Similarly, for any fixed 3 1    and 1 1, ,iw i m     , 

we have (17) and (18) 
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Combining from (15) to (18), we obtain 
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From Lemma 2, 1\
2t
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 holds, it is substituted 

to (18), and following the reference [13] there exist 4 1    , 
22 2

4 41 )x         holds. We have the following 

conclusion, 
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By choosing a feasible tµ , there exists (0 1)v v  , then  

 1 .t th v h ≤  (21) 

This completes the proof of the proposed algorithm.   

Specifically, if 1{ } 1m
i iw   , this is the algorithm in [14]. 

III. EXPERIMENT AND ANALYSIS  

A. Evaluation Metrics and Experimental Settings 

To assess the practical effectiveness of the SRThWF 
algorithm, we conduct several numerical experiments. All  

 
Fig.3. Probability of success versus sample rate /m n  

 
Fig.4. Probability of success versus sample rate /m n  

 
tests are carried out on a system running the win10x64-bit 
operating system, with an AMD Ryzen 5 pro 2.0 GHZ CPU, 
and 8GB RAM, the experimental platform is MATLAB 
2018b. 

We employ various metrics to assess the performance of 
the algorithm, such as the probability of success over 100 
independent Monte Carlo trials [18], running time, and the  
RMSE. A trial is considered successful if the RMSE is below 

510 . 
In all simulation tests, we set 1000n  , truncation 

threshold 3y α , nx  , 1{ }m
i ia are i.i.d. ( , )n0 I  and run 

100 power iterations to obtain the initialization. Similar to 
reference [6], all simulation tests opt for a variable step size  

/330min((1 ), 0.22)t
t e   to prevent the algorithm from 

getting trapped in a local minimum during its initial stages. 

B. Experiment Analysis 

Let the sample rate / 1.5m n  , and the sparsity level k  
range from 10 to 100. As shown in Fig.2, it is evident that WF 
consistently fails to reconstruct the original signal. When 

60k  , ThWF can recover the signal but the probability of 
success is less than 50%. On the other hand, SWF, sparse 
AltMinPhase, and the proposed algorithm can successfully 
recover the original signal by approximately 90% when 
sparsity level 55k  . With the sparsity level k  increasing, 
especially 60k  , SRThWF algorithm outperforms SWF 
and sparse AltMinPhase with a better probability of success. 
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In Fig.3, 10k   is known, and the sample rate takes value 
{1, 2,3} . It can be seen that ThWF can recover the signal even 

when 1.1m n  in certain cases, but it cannot stably achieve 
a 100% probability of success for all sample rates. Sparse 
AltMinPhase achieves a 100% probability of success only 
when 1.1m n≥ . WF needs 2.6m n≥  to achieve a 100% 
probability of success. Both SRThWF and SWF achieve a 
100% probability of success when 0.7m n≥ , but SRThWF 
consistently demonstrates a higher probability of success at 
lower sample rates. 

Suppose the sparsity level k is unknown. Set k  is the 

theoretically tolerable upper limit n  , and keep other 
experimental settings the same as those for the known 
sparsity condition. From Fig.4, we can observe that SRThWF 
still has the same high probability of success when k  is 
unknown correctly. This observation highlights the benefits 
of integrating weighted factors into sparse phase retrieval 
problem. 

 

 
Fig.5. Phase transition for different algorithms. 

 
Furthermore, Fig.5 depicts the phase transitions of both the 

advanced SWF algorithm and the SRThWF algorithm. The 
sparsity levels k  ranges from 10 to 100, and the sample size 
m ranges from 100 to 1500, with grid size of 100. The 
probability of success is depicted by the gray level of each 
block: a white block signifies a 100% successful recovery 
rate, a black block represents 0%, and a gray block represents 
a rate between 0% and 100%. The results indicate that the 
proposed algorithm demands fewer measurements than the 
SWF algorithm while achieving the same successful recovery 
rate. In light of this, it can be confidently stated that the 

SRThWF algorithm surpasses the state-of-the-art SWF 
algorithm. 

In Table II, the bold font represents the current best value 
for different sample ratios. Iteration count and running time 
are compared between the proposed SRThWF algorithm and 

SWF when the RMSE is below 1510 . SRThWF takes 50 
fewer iterations than SWF. Not only that, SRThWF is 0.8 
seconds faster than SWF in terms of running time. Notably, 
weights are added to the gradient descent to adaptively 
control the updated direction of parameters. Hence, the 
SRThWF algorithm outperforms the SWF algorithm in 
convergence rate and running time. 
 

TABLE II  
THE COMPUTATIONAL COST BETWEEN SWF AND SRTHWF FOR THE 

DIFFERENT SAMPLE RATE. 
 

/m n  Algorithm iterations Time(s) 

1 
SWF 140 1.419 
Ours 86 0.82956 

2 
SWF 113 2.167 
Ours 65 1.1826 

3 
SWF 98 2.698 
Ours 49 1.5453 
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Fig.6. Comparison of convergence rate for different 

algorithms 
 

At a sample rate / 3m n   and with a sparsity level 
10k  , as shown in Fig.6, it becomes evident that the 

SRThWF algorithm outperforms SWF with respect to 
convergence rate. Specifically, the proposed algorithm 

achieves an RMSE of 1510  in only 76 iterations, in stark 
contrast to SWF, which demands 128 iterations to attain the 
same RMSE level. 

For 10k  , to test the robustness of SRThWF in the 
presence of the Gaussian random noise, the RMSE varies 
from the different signal-to-noise (SNR) values in dB. The 
SNR in dB ranges from 5 dB to 55 dB, and the ratio /m n  
takes values 1 to 3. Fig.7 shows the robustness of SRThWF 
under Gaussian random noise for different sample rates. 

Table III lists the RMSE values obtained at different 
sample rates for various SNR values. Especially, the RMSE 
of the SRThWF algorithm is below 57.35 10  when the 
SNR value is higher than 45 dB and / 1m n  . As the sample 
rate increases to 2, the SNR value increases to 50, and the 
RMSE of the proposed algorithms is 57.22 10 . When the 
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SNR is 45 dB, and / 3m n  , the RMSE of the proposed 

algorithms is 54.40 10 . From Table Ⅲ , the numerical 
results analysis also confirms the robustness of the proposed 
algorithm. 
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Fig.7. RMSE versus SNR/dB for SRThWF  

with the AWGN model. 
 

TABLE Ⅲ 
SRTHWF WITH DIFFERENT SAMPLE RATES AND SNR ON RMSE. 

 

/m n  
SNR 

1 2 3 

5 21.67 10  36.70 10  33.85 10  

10 37.04 10  33.39 10  32.14 10  

15 33.84 10  32.10 10  31.37 10  

20 32.34 10  31.49 10  31.01 10  

25 31.14 10  48.47 10  46.11 10  

30 47.68 10  45.63 10  43.85 10  

35 44.75 10  43.16 10  42.01 10  

40 43.02 10  41.53 10  41 10  

45 41.44 10  57.22 10  54.40 10  

50 57.35 10  53.7 10  52.40 10  

55 54.20 10  52.10 10  51.40 10  
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Fig.8. RMSE versus SNR/dB for different algorithms 

 

Finally, we assess the robustness of different algorithms by 
varying the SNR from 5dB to 55dB while keeping 10k   
and / 1.5m n   constant. The results are illustrated in Fig.8. 
It is evident that the SRThWF algorithm exhibits greater 
resilience to noise compared to SWF. Moreover, the 
proposed algorithm consistently achieves a lower RMSE than 
the SWF algorithm. 

IV. CONCLUSION 

This paper presents an adaptive reweighted thresholded 
algorithm designed to tackle the sparse PR problem. The 
proposed algorithm adopts the truncated spectral 
initialization strategy to generate a reasonable initial estimate. 
During the gradient descent process, the application of 
weights can assist the proposed algorithm in searching for the 
global minimum solution and accelerating the convergence 
rate. Experimental results show that compared with other 
state-of-the-art algorithms, the proposed algorithm has a 
higher probability of success even when the sparsity level is 
unknown, a faster convergence rate, and less running time. 
Moreover, it maintains robustness in the presence of 
Gaussian noise. Going forward, we will further investigate 
Fourier ptychographic microscopy for the sparse PR 
problem. 
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