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Abstract—The traditional modeling of dependence among
branches in non-life insurance has historically rested on the
assumption of independence between risks. However, recent
studies have brought to light that overlooking the interdepen-
dence between risks is not prudent. An illustrative example is
found in automobile insurance, where a discernible connection
exists between the number of claims in the Automobile Damage
branch and those in the Automobile Civil Liability branch.

This paper aims to delve into the utilization of copula
functions for modeling the interrelationships among claims
charges across diverse branches within a non-life insurance
portfolio. Moreover, it seeks to assess the consequential impacts
of these dependencies on the capital requirements of AXA
Insurance in the Moroccan market. Our research concentrates
on four pivotal branches within AXA Insurance, namely ”work
accidents”, ”automobile civil liability”, ”disability”, and ”fire,
marine, aviation, and transport”. Through a thorough analysis
encompassing dependency measurements, independence tests,
and various graphical representations, we have substantiated
the existence of interdependencies among the claim costs
associated with these four risk branches. Importantly, our
findings underscore that assuming independence leads to a
slight underestimation of the capital requirement needed for
effective risk accumulation management by the insurer.

Index Terms—dependence modeling, non-life insurance, fi-
nancial and insurance mathematics, copulas, risk measures,
actuarial science.

I. INTRODUCTION

IN the course of our lives, individuals confront a myriad
of risks, ranging from accidents and theft to illnesses and

natural disasters. To mitigate these uncertainties, people turn
to insurance companies, which shoulder these risks on their
behalf. Through the collection of premiums or contributions
and strategic investments in the financial market, insurance
companies play a crucial role in fortifying the economy.
While this financial prowess enhances the strength of in-
surance firms, they must possess the capacity to honor their
commitments.

In light of this, a robust legal framework is established
to ensure the safeguarding of subscribers’ interests. The
insurance sector in Morocco, like many other countries,
is subject to a comprehensive set of control mechanisms.
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The Risk-Based Solvency (SBR: Solvabilité Basée sur les
Risques) represents the latest Moroccan standard in pruden-
tial regulation. The capital requirement outlined in the current
Moroccan standard is codified in Article 239 of Dahir No.
1-02-238 dated 25 Rejeb 1423 (October 3, 2002), which
promulgates Law No. 17-99 [1].

Enacted through Law No. 64-12, which came into effect
on April 14, 2016, the creation of the Supervisory Authority
for Insurance and Social Welfare (ACAPS = Autorité de
contrôle des assurances et de la prévoyance sociale) marked
a significant stride in the ongoing modernization of the Mo-
roccan financial sector. According to its annual statistics [2],
in 2021, the premiums issued by insurance and reinsurance
companies demonstrated noteworthy figures, reaching 22.9
billion dirhams for life premiums with acceptances and 27.3
billion dirhams for non-life premiums.

Within the ”life” branch, the statistics reveal a substantial
32.2% surge in savings premiums (Support Dirhams and
Support Units of Account), surpassing 19 billion dirhams,
along with a 10.2% increase in death premiums, totaling
3.2 billion dirhams. Similarly, for the ”non-life” sector,
ACAPS reports an 8.6% upswing in motor insurance pre-
miums, reaching approximately 13 billion dirhams. Fur-
thermore, there is a noticeable uptick in the catastrophic
events segment, rising by 9.5% to 521.8 million dirhams.
Bodily accidents also saw an increase, reaching nearly 4.77
billion dirhams, reflecting an 8% rise, while technical risks
amounted to approximately 276.1 million dirhams, indicating
a substantial 59% increase.

These statistics underscore the pivotal role played by
insurance companies. Their impact extends beyond the so-
cial realm, where they promote well-being and compensate
for third-party losses. Additionally, they emerge as crucial
contributors to the nation’s economic growth.

Up until the early 1990s, insurance professionals predom-
inantly operated under the assumption of risk independence,
employing Gaussian models and Pearson correlation in their
historical operational methods. Actuaries essentially viewed
risk independence as a fundamental methodological prerequi-
site. Nevertheless, the evolution of financial markets over the
past few decades has unequivocally shown that dismissing
interdependence among risks is no longer tenable [3], [4],
[5], [6], [7], [8]. Practically speaking, the assumption of
risk independence is seldom realized. Take, for example, the
domain of automobile insurance, where it’s evident that the
frequency and severity of claims in the Automobile Damage
branch are intricately linked to those in the Automobile Civil
Liability branch. This realization has spurred a heightened
interest in embracing innovative models. In scenarios where
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modeling dependence structures becomes imperative, copula
functions become invaluable, enabling the construction of
non-Gaussian models.

A copula is a mathematical function that creates a con-
nection between marginal distributions to generate a joint
distribution. The application of copulas essentially embodies
a ”Bottom-Up” approach (refer to paragraph II-A-2), with
the primary goal of modeling dependence. The term ”cop-
ula,” derived from the Latin word meaning ”link,” was first
introduced by Sklar in 1959 [9].

There are several families of copulas [10], [11], and there
exist many properties relating to the copulas [12], [13], [14],
[15], [16], [17]. Recently, this approach has drawn significant
attention across various fields. In 2016, Chunping Li et al.
[18] introduced a novel reliability model for two dependent
performance characteristics utilizing marginal distribution
functions and copula theory. Their emphasis on accounting
for dependence was demonstrated through a numerical ex-
ample using train wheels wear data. In 2018, Yuko Otani et
al. [19] analyzed the dependence structure of international
equity and bond markets employing a regime-switching
copula model. They identified asymmetric dependence in
equity markets, highlighting stronger dependency for neg-
ative returns compared to positive returns. Applying flexible
copulas in three country pairs (UK-US, Japan-US, and Italy-
US), their study revealed significant implications from the
empirical analysis. In 2019, Shaoqian Huang et al. [20]
proposed a method for expanding sample capacity in sce-
narios with limited or costly samples. Their approach, based
on the Distance-Trend Double Effects (DTDE), considers
sample component evolution and distances between samples.
More recently, Ghizlane Kouaiba et al. [21] investigated
the coherence of Value at Risk (VaR) as a risk measure
when applied to non-elliptical distributions. They focused on
elliptical copulas within a given portfolio, examining whether
VaR remains coherent in an elliptical or spherical space.

Copula theory has also attracted considerable attention in
various insurance framework applications. For instance, in
2012, Dorothea Diers et al. [22] demonstrated the modeling
of dependence structures for non-life insurance risks using
the Bernstein copula. The following year, Fang and Madsenb
[23] introduced the characteristics of the modified Gaussian
pseudo-copula, providing examples of its application in both
insurance and finance. In a more recent study in 2018,
Hanène Mejdoub and Mounira Ben Arab [24] explored
the sensitivity of risk capital estimation to the dependence
structure between losses from four non-life business lines of
a Tunisian insurance company, utilizing the D-Vine Copula
approach. Furthermore, in 2021, Li-Mei Qi et al. [25] em-
ployed a copula-stochastic optimization model to investigate
revenue insurance premium ratemaking for Jujube in the
Aksu region, Xinjiang, China. These studies underscore the
diverse and impactful applications of copula theory in the
field of insurance.

Our study is organized as follows: In Section II, we revisit
the primary definitions of copulas and the dependencies
between risks. Section III introduces the data being ana-
lyzed. Section IV delves into the interconnections among our
four risk branches, employing Pearson’s linear correlation
coefficient, Kendall’s Tau, and Spearman’s Rho. Section V
explores the application of copula functions in modeling

the relationships among claims charges within the four risk
branches. Finally, we conclude in the last section.

II. MATERIALS AND METHODS

A. Dependency types and measures

Definition 2.1: [10]
Let X and Y be two real random variables and let FX;Y

be the joint distribution function of X and Y .
We said that X and Y are independent if,

(∀x, y ∈ R) : FX;Y (x; y) = FX(x)FY (y).

For a significant period, Pearson’s correlation coefficient
has been the predominant tool for modeling dependence
between random variables. Nevertheless, practitioners are
now increasingly exploring alternative dependency measures,
such as Spearman’s Rho and Kendall’s Tau. [10], [26].

Definition 2.2: (Pearson’s correlation coefficient)
Let X and Y be two random variables with finite vari-

ances. The linear correlation coefficient between X and Y
is given by,

ρ(X;Y ) =
Cov(X;Y )√
V ar(X)V ar(Y )

.

From this definition, we can deduce the following points,
• ρ(X;Y ) = 0⇐⇒ The variables X and Y exhibit linear

independence.
• ρ(X;Y ) 6= 0 ⇐⇒ The variables X and Y are linearly

associated or correlated.
Definition 2.3: (Kendall’s Tau)
Let (X1;Y1) and (X2;Y2) be two continuous random vec-

tors independent and identically distributed. The Kendall’s
Tau is given by,
τ(X;Y ) = P[(X1 −X2)(Y1 − Y2) > 0]

−P[(X1−X2)(Y1−Y2) < 0].
From this definition, we can deduce the following points,
• Kendall’s Tau is symmetric.
• −1 ≤ τ ≤ 1.
• If X and Y are independents, then τ = 0.
Definition 2.4: (Spearman’s Rho)
Let X = (X1;X2; ...;Xn) and Y = (Y1;Y2; ...;Yn) be

two random vectors and let R = (R1;R2; ...;Rn) and S =
(S1;S2; ...;Sn) the random vectors of the ranks of X and Y
respectively. Spearman’s Rho is given by,

ρS(X;Y ) =
Cov(R;S)√
V ar(R)V ar(S)

.

Spearman’s Rho, developed by Charles Spearman in 1904,
is defined as the correlation between the ranks or orders of
observations. [27].
From this definition, we can deduce the following points,

• −1 ≤ ρS ≤ 1.
• If X and Y are independents, then ρS = 0.
Now, we can categorize two approaches: the top-down

approach and the bottom-up approach.
1) Top-Down approach: The essence of this approach lies

in deriving the marginal distributions FX and FY along with
the dependence structure from the joint distribution FX;Y

(See Fig. 1).
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Fig. 1. Top-Down approach.

2) Bottom-Up approach: The essence of this approach is
to infer the joint distribution FX;Y from the marginal distri-
butions FX and FY along with the dependence structure. In
other words, this approach operates in contrast to the Top-
Down approach (See Fig. 2).

Fig. 2. Bottom-Up approach.

B. Copulas

The copula serves as a function that connects individual
marginal distributions to construct the joint distribution,
making its application a quintessential ”Bottom-Up” ap-
proach with the primary objective of modeling dependence
relationships.
The following definitions, related to copulas, can be found
in [13], [14], [15], [16], [17].

Definition 2.5: Let X and Y be two uniform random
variables. We call copula (of dimension 2 or 2-dimensional)
any joint cumulative distribution function C whose marginals
are the uniform distribution on [0; 1]. It is defined by,

(∀(x; y) ∈ [0; 1]2) : C(x; y) = P(X ≤ x;Y ≤ y).

Definition 2.6: The density c of a bivariate copula func-
tion C, if it exists, is defined as follows,

(∀(x; y) ∈ [0; 1]2) : c(x; y) =
∂2C(x; y)

∂x∂y
.

Theorem 2.1: (Sklar’s Theorem [9])
Let X and Y be two random variables with joint distri-

bution function FX;Y and FX , FY the marginal distribution
functions of X and Y respectively.
There exists a bi-copula C such that, for all element (x; y)
in R2, FX;Y (x; y) = C(FX(x);FY (y)).
If FX and FY are continuous, then C is uniquely defined.

Remark 2.1:
1) The function defined above is a joint cumulative dis-

tribution function of marginals FX and FY .

2) If FX and FY are continuous, then,

C(x; y) = FX;Y (F
−1
X (x);F−1

Y (y)).

3) By direct calculation, if FX;Y is an absolutely contin-
uous function, then the density f of FX;Y is given, for
almost all (x; y) ∈ R2, by,

f(x; y) = c(FX(x);FY (y))fX(x)fY (y).

Therefore, the density of a random vector (X;Y ) can
be expressed as a function involving the density of its
copula and the cumulative distribution functions of its
marginals.

Theorem 2.2: (Invariance theorem)
Let C be the copula function associated with the random

vector (X;Y ). Let f and g be two strictly increasing
functions on Im(X) and Im(Y ) respectively.
We can therefore establish the following equality,
C(f(X); g(Y )) = C(X;Y ).

This study primarily employs three copulas: Gumbel cop-
ula, Frank copula, and Clayton copula, as documented in
references [10] and [11]. The parameter θ signifies the degree
of dependence between the variables.

• A higher θ corresponds to a more pronounced depen-
dence.

• Positive values of θ indicate a positive dependence
induced by the copula.

1) Gumbel copula: The Gumbel copula is employed in
insurance to analyze the effects of high-intensity events on
the correlation between risk levels. It is defined by,
(∀θ > 1)(∀x; y ∈]0; 1]) :

C(x, y) = exp{−[(− lnx)θ+(− ln y)θ]
1
θ }.

This copula enables the consideration of positive depen-
dencies and the representation of risks characterized by a
more pronounced dependence structure in the upper tail.

2) Frank copula: The Frank copula is defined by,
(∀θ 6= 0)(∀x; y ∈ [0; 1]) :

C(x, y) = − 1
θ ln

(
1 + (e−θx−1)(e−θy−1)

(e−θ−1)

)
.

This copula allows the modeling of negative dependencies.
However, the latter does not present any dependence on the
distribution tails.

3) Clayton copula: The Clayton copula allows for the
consideration of positive dependencies and the representation
of risks characterized by a more pronounced dependence
structure in the lower tail. It is defined by,

(∀θ > 0)(∀x; y ∈ [0; 1]) : C(x, y) = (x−θ + y−θ − 1)
−1
θ .

III. PRESENTATION AND PREPARATION OF THE DATA TO
BE STUDIED

In the context of this research, the dataset available to
us includes information from a leading insurance company
in the Moroccan market, specifically ”AXA Insurance,”
covering data for individuals, professionals, and companies.
The utilized database contains claims from the years 2005 to
2018, offering a detailed overview via a 13-year occurrence
histogram.

Our research primarily centers on evaluating the risk
associated with variations in the claims burden within the
portfolio, a pivotal factor that can substantially influence
the financial stability of a non-life insurance company. To
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exemplify the dataset, we have considered a randomly se-
lected sample comprising 105 data points. Our sample is
limited to four crucial branches within AXA Insurance: work
accidents (AT), automobile civil liability (AUTO), disability
(INCAPACITE), and fire, marine, aviation, and transport
(AUTOFLOT). The selection of these specific branches
stems from their significant relevance in comprehending and
addressing potential threats to the insurer’s solvency. The
sample was chosen randomly, ensuring the inclusion of data
from all accident years, thereby avoiding bias toward either
the most recent or the oldest years. This random approach
was adopted to ensure that the observed correlation within
the sample accurately mirrors the correlation present across
the entire dataset. The functions of the R code are accessible
from [28], [29].

Figure 3 provides an excerpt of the dataset, offering a
concise yet informative snapshot of the data.

Fig. 3. Data extract.

The data extracted from the claims database comprises
claim amounts that have not undergone revaluation. To
ensure consistency across diverse claim costs, we opted to
standardize all payment amounts to a common reference
date: the year 2018. This adjustment leads to an ”as if”
statistic, rendering the data comparable to the evaluation
years. The process involves indexing the claims and applying
the insurance conditions from the valuation year to align the
dataset. The underlying principle is that a claim of 100,000
MAD in 2005 is not directly comparable to a claim of
100,000 MAD in 2018 due to the influence of economic
developments and inflation on claim costs over time. To
rectify this, we adjusted the claims using a pertinent index
as a reference point, specifically utilizing the consumer price
index, accessible at [30].

Let n be the year of listing, Ik be the index of year k,
Sk be the value of a claim in year k and Snk be the ”as if”
value of a claim for year k seen in year n. We have then,

Snk = Sk ×
In
Ik

.

As an example, we have,
”as if” value =

Claim cost in 2005× Consumer price index in 2018

Consumer price index in 2005
.

The ”as if” statistics are derived for each claim base amount,
representing what would be paid if the claims had occurred
in 2018. All subsequent analyses, including descriptive statis-
tics, are conducted based on these adjusted amounts.

Figure 4 presents a snippet of the ”As if” data, providing
a succinct yet informative overview of the dataset.

Fig. 4. ”As if” data.

In a particular segment of the insurance industry, a dis-
cernible characteristic is identified concerning the net claim
amounts: their independence and consistent adherence to
a uniform distribution persist from one fiscal year to the
subsequent. This observation suggests that the statistical at-
tributes governing the net claims, including their probability
distribution and interdependence, maintain stability over time
within the specified branch. Such steadfastness in distribution
and independence is fundamental for ensuring the reliability
of models and analyses in the realms of risk assessment and
evaluations of financial stability.

IV. DEPENDENCY RESEARCH

This section aims to elucidate the interrelationships among
our four risk branches from a statistical perspective. Pear-
son’s linear correlation coefficient, Kendall’s Tau, and Spear-
man’s Rho are three metrics employed to assess the extent
of dependence existing among our four variables.
To further validate the presence of dependence, we subjected
our data to rigorous statistical tests of independence [31].
These tests served to either affirm or negate the observed
dependence. To visually represent these dependencies, we
utilized two graphical tools: a dendrogram and a scatter plot.
These visualizations effectively illustrated the predominant
dependency structures within our data. Finally, a Kendall plot
(or K-plot) [32] made it possible to specify and validate the
dependence structures.
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A. Dependency measures

Tables I, II, and III showcase the results of Pearson’s linear
correlation, Spearman’s Rho, and Kendall’s Tau analyses,
respectively. These tables offer valuable insights into the
intricate relationships among our four risk branches.

TABLE I
PEARSON’S LINEAR CORRELATION.

AT INCAPACITE AUTO AUTOFLOT
AT 1 0.6301000 0.9067453 0.8125878

INCAPACITE 1 0.5369057 0.2496704
AUTO 1 0.8811172

AUTOFLOT 1

TABLE II
SPEARMAN’S RHO.

AT INCAPACITE AUTO AUTOFLOT
AT 1 0.6744039 0.9004147 0.8470350

INCAPACITE 1 0.5585009 0.3740411
AUTO 1 0.9067800

AUTOFLOT 1

TABLE III
KENDALL’S TAU.

AT INCAPACITE AUTO AUTOFLOT
AT 1 0.5054945 0.7542125 0.6681319

INCAPACITE 1 0.3717949 0.2542125
AUTO 1 0.7593407

AUTOFLOT 1

Highlighting the statistical relationships within our data,
we observe a strong linear correlation, with a Pearson coef-
ficient of 0.9067453, between the branches AT and AUTO.
Conversely, there appears to be no discernible linear correla-
tion between the INCAPACITE and AUTOFLOT branches.

In alignment with the robust Pearson linear correlation
coefficient observed between AT and AUTO, we also find
substantial values for both Spearman’s Rho (0.9004147)
and Kendall’s Tau (0.7542125), further emphasizing the
strong association between these branches. Conversely, when
examining the connections between the INCAPACITE and
AUTOFLOT branches, we notice relatively weaker values for
Spearman’s Rho (0.3740411) and Kendall’s Tau (0.2542125),
indicative of a less pronounced relationship.

To comprehensively assess the significance of these find-
ings, it is imperative to conduct statistical tests of indepen-
dence. These tests will determine whether the aforemen-
tioned coefficients significantly differ from zero, providing
critical insights into the underlying dependencies within our
data.

B. Statistical tests of correlation

Tables IV, V, and VI present the P-values obtained for
correlation tests at a significance level of 5%. These P-values
serve as indicators to assess the statistical significance of
the observed correlations, aiding in the interpretation of the
strength and reliability of the relationships within the dataset.

TABLE IV
P-VALUE OF THE PEARSON CORRELATION TEST.

AT INCAPACITE AUTO AUTOFLOT
AT 8.019e-13 < 2.2e-16 < 2.2e-16

INCAPACITE 6.639e-09 0.0102
AUTO < 2.2e-16

AUTOFLOT

TABLE V
P-VALUE OF THE SPEARMAN CORRELATION TEST.

AT INCAPACITE AUTO AUTOFLOT
AT < 2.2e-16 < 2.2e-16 < 2.2e-16

INCAPACITE 8.481e-10 0.0001783
AUTO < 2.2e-16

AUTOFLOT

TABLE VI
P-VALUE OF THE KENDALL CORRELATION TEST.

AT INCAPACITE AUTO AUTOFLOT
AT 1.513e-14 < 2.2e-16 < 2.2e-16

INCAPACITE 1.9e-08 0.0001814
AUTO < 2.2e-16

AUTOFLOT

The significance tests were conducted using the cor.test
function within the R software, providing a robust statistical
framework for assessing the significance of correlations in
our analysis [28].

In every conducted test, we have firmly rejected the null
hypothesis (H0) of independence, as indicated by P-values
consistently falling below the 5% threshold. This compelling
evidence leads us to conclude a substantial correlation among
the Pearson, Kendall, and Spearman coefficients within the
six pairs under scrutiny.

C. Graphical dependency analysis

The statistical study provided information only on the
intensity of the positive or negative dependence of the various
correlations. The next step involves conducting a graphical
analysis to delve deeper into characterizing the dependencies
among these four branches of risk.
Scatter plots.

Scatter plots involve graphically representing the cloud of
points (xi; yi), with i = 1; 2; ...;n.
In cases where data points align along a diagonal line, it
signifies a scenario characterized by a linear correlation.
Conversely, if the points are uniformly scattered across the
plane, this suggests a state of independence.

Figure 5 provides a visual representation through a Scatter
diagram, offering a comprehensive view of the relationships
within the four couples that have been subject to study. This
graphical depiction allows for a nuanced examination of the
patterns and correlations present among the variables under
investigation.

Although the number of observations is limited for these
pairs of risk branches studied, a notable dependency structure
becomes apparent. The diagram in figure 5 shows a fairly
strong concentration of data points, indicating the presence
of interdependence among these six pairs. Nevertheless, the
scatter plot analysis alone doesn’t provide a more in-depth
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Fig. 5. Scatter diagram for the couples studied.

understanding. It is through the examination of dependo-
grams that we anticipate gaining richer insights into these
dependencies.
The dependograms.

The dependogram of the real random variables X and Y
is the cloud of points (Fn(xi);Gn(yi)), for all i = 1; 2; ...;n,
where Fn and Gn are the empirical distribution functions of
X and Y respectively defined by,

∀i ∈ {1; 2; ...;n} : Fn(xi) =
Rang(xi)

n
∈ [0; 1],

and ∀i ∈ {1; 2; ...;n} : Gn(yi) =
Rang(yi)

n
∈ [0; 1].

According to figure 6, it is evident that, in the context
of the AT/AUTO pair, there is a subtle concentration of
data points along the upward diagonal, while the upper-
left and lower-right corners exhibit an absence of points.
This particular distribution implies a mild linear dependence
between these branches.

In contrast, when analyzing the other three pairs, we
observe strictly positive dependencies, characterized by a
distinct alignment of data points along the ascending di-
agonal. Furthermore, noteworthy tail dependencies exist be-
tween specific branches, such as a ”top-right” tail depen-
dency between the AUTO/AUTOFLOT branches and the
AT/AUTOFLOT branches. This suggests simultaneous oc-
currences of substantial claims loads between these branches.
The K-Plot:

The graphical depiction presented in figure 7 elucidates
the K-plot for the four pairs currently under scrutiny. This
visual representation not only offers a comprehensive view of
the interactions and interdependencies within the examined
couples but also serves as a valuable tool for discerning
patterns and trends in the data. The K-plot proves to be
instrumental in unraveling the intricacies of relationships,
providing a practical utility in analyzing and understanding
the dynamics at play.

Upon analyzing the insights gleaned from the presented
K-plot, it becomes apparent that a conspicuous positive

dependence prevails across all branches. The graphical rep-
resentation vividly illustrates the robust interconnection and
mutual influence characterizing the relationships among the
various elements under scrutiny.

D. Discussion and conclusion

The confirmation of dependencies among claim costs
associated with the four risk branches under examination has
been established through meticulous dependency measure-
ments, independence tests, and various graphical representa-
tions. Notably, within the portfolio, a prominent observation
emerges: all pairs of branches exhibit significant interde-
pendence. These dependencies, predominantly positive, are
highlighted by dependograms that subtly emphasize the
upper tails, with no discernible accentuation of dependence
observed in the lower tails.

Consequently, with this understanding, we can confidently
proceed by narrowing our focus to Archimedean copulas for
modeling these dependencies. This deliberate choice allows
us to exclude elliptical copulas, specifically designed for
symmetrical dependencies, as they are deemed less suitable
given the observed asymmetry in the interdependence pat-
terns within the claim costs.

V. DEPENDENCY MODELING AND COPULA ESTIMATION

For each of the four branches, it has been noted that the
annual net claims charges demonstrate interdependence and
exhibit similar distribution patterns. This observation allows
us to propose adjustments to the legislation governing the
annual charges associated with these branches. This step is
pivotal, as we incorporated these distributions in simulating
copulas, subsequently refining them for the portfolio.

The distributions typically employed in non-life insurance
to model claims costs encompass the Normal distribution,
Log-Normal distribution, Exponential distribution, Gamma
distribution, Pareto distribution, and Weibull distribution.
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Fig. 6. Dependogram for the couples studied.

Fig. 7. K-plot for the couples studied.

This parametric exploration entails approximating and
estimating the distribution followed by the variable repre-
senting claims costs, utilizing well-established probability
distributions. We have opted to evaluate the data’s compati-
bility with various distributions commonly used in practical
applications, selecting the one that maximizes the Log-
likelihood as the preferred choice. The initial estimation
involves calculating the densities for each risk branch, as
illustrated in figure 8.

The overall shape of the curves permits us to confine our
examinations to the following distributions:
F = {Normal, Log −Normal,Gamma,Weibull}.
Utilizing the maximum likelihood method within the R
environment, we have derived the outcomes, as showcased

in table VII.

TABLE VII
LOGL VALUE.

Distro tested AT INCAPACITE AUTO AUTOFLOT
Normale -1804.681 -1489.07 -1862.983 -1674.072

Log-Normale -1832.595 -1495.197 -1887.942 -1681.132
Gamma - - - -
Weibull -1808.228 -1484.538 - -1668.712

The Gamma distribution adjustment proves inadequate for
meeting the specific requirements of this context, making
it unsuitable for application. Shifting our focus to the dis-
tribution with the higher Log-likelihood, we discern the
appropriate distribution and its associated parameters.
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Fig. 8. Estimated density of the four branches.

• The costs associated with the AT branch conform to
a Normal distribution with a mean of 13354374 and a
variance of 7049728.

• The costs related to the INCAPACITE branch adhere
to a Weibull distribution with parameters 1.996363e+00
and 7.547724e+05.

• The costs tied to the AUTO branch are modeled by a
Normal distribution with a mean of 29572843 and a
variance of 12283369.

• The costs affiliated with the AUTOFLOT branch follow
a Weibull distribution with parameters 1.916060e+00
and 4.245075e+06.

Upon juxtaposing the graphs in figure 8 with the esti-
mated densities, a noteworthy disparity becomes evident.
Consequently, we conducted a quality assessment of the
adjustment using the Kolmogorov-Smirnov test (see table
VIII), employing a significance threshold of 5%.

TABLE VIII
TEST RESULT OF KOLMOGOROV-SMIRNOV.

Adjustment Test statistics P-value
AT Normale 0.86667 <2.2e-16

INCAPACITE Weibull 0.06808 0.7152
AUTO Normale 0.094121 0.3101

AUTOFLOT Weibull 0.095587 0.2927

The Kolmogorov-Smirnov test is a hypothesis test used
here to determine whether a sample follows a given distri-
bution known by its continuous distribution function.
The null hypothesis H0, which posits that the costs associated
with our branches adhere to such a distribution, remains unre-
futed in all cases except for the AT branch, where we obtain a
P-value significantly below 5%. As a result, the adequacy of
this adjustment is deemed insufficient, prompting us to resort
to estimating the couples using a semi-parametric method.
This choice is driven by our inability to accurately model
the marginal distributions, leading us to assume an absence
of knowledge regarding their specific forms.

A. Calibration and estimation of the copula

The purpose of this paragraph is to assess the parame-
ters of candidate copulas for modeling the interdependence
among the risk branches under consideration. The investi-
gation employs a set of Archimedean copulas, denoted as
Cθ = {Clayton;Gumbel;Frank}.

To address the limitations associated with the parametric
form of the marginals and thereby mitigate modeling risks,
we have opted for the non-parametric maximum likelihood
method. This approach allows the estimation of parameters
independently of the parametric forms of the marginals,
a flexibility facilitated by the copulas. It is essential to
emphasize that a copula serves to distinguish the structure
of dependence between variables induced by the copula
from the marginal laws. The estimation process utilizes
the lcopula package in the R software, employing the
fitCopula function and the mpl method, as detailed in [28].
Method used.

The following outlines the procedure utilized for the
calibration and estimation of the copula.

1) Select the copula family to be tested, denoted as C,
with C ∈ Cθ.

2) Estimate the parameter θ of the copula using the
maximum likelihood method.

3) Identify the statistic, in this case, a distance metric.
4) Choose the copula that minimizes this distance as the

retained copula.
Estimation of the parameters of the tested copulas.

The parameters obtained via the maximum likelihood
method are detailed in table IX, showcasing the outcomes
of our rigorous statistical analysis.

B. Fit testing

In the subsequent analysis, we fitted a copula to each
pair of branches exhibiting significant dependence and
juxtaposed the overall claim distributions under both
dependent conditions (simulated using the fitted copula) and
independent scenarios.
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TABLE IX
PARAMETERS ESTIMATED FROM THE MAXIMUM LIKELIHOOD METHOD.

Copula AT/INCAPACITE AT/AUTO AT/AUTOFLOT INCAPACITE/AUTO
Clayton 2.02 3.815 3.027 1.358
Gumbel 1.518 2.933 2.34 1.361
Frank 5.001 13.57 9.395 3.875

Copula INCAPACITE/AUTOFLOT AUTO/AUTOFLOT
Clayton 0.9745 4.528
Gumbel 1.192 3.263
Frank 2.424 12.36

TABLE X
CRAMÉR-VON MISES STATISTIC VALUE.

Copula AT/INCAPACITE AT/AUTO AT/AUTOFLOT INCAPACITE/AUTO
Clayton 0.071544 0.08002 0.077774 non-finie
Gumbel 0.32849 0.080816 0.099357 0.32033
Frank 0.1653 0.02415 0.05133 0.19681

Copula INCAPACITE/AUTOFLOT AUTO/AUTOFLOT
Clayton non-finie 0.074506
Gumbel 0.18854 0.069484
Frank 0.12342 0.051382

The Cramér-Von Mises statistic is defined by,
n∑
i=1

[
Cθn

(
Ri
n+ 1

;
Si

n+ 1

)
− Cn

(
Ri
n+ 1

;
Si

n+ 1

)]2
,

where Cn be the empirical copula and Cθn be the copula
with parameter θn, simulated thanks to the function
pcopula under R. Sn gauges the disparity between the
empirical copula and the one subjected to testing and fitting.
Consequently, a diminished distance signifies superior
adjustment, making the copula associated with the smallest
distance the preferred choice. The results are succinctly
summarized in table X.

This test can be performed using the gofCopula function
of the Copula package of the R software [28].

Remark 5.1:
1) In the copula evaluations for the AT/INCAPACITE

pair, Clayton’s copula stands out as the most appro-
priate choice.

2) Frank’s copula demonstrates superior performance
in the assessments conducted for the AT/AUTO,
AT/AUTOFLOT, INCAPACITE/AUTOFLOT, INCA-
PACITE/AUTO, and AUTO/AUTOFLOT pairs.

These results are not surprising if we refer to the de-
pondogram. The adequacy of these results was checked
with the BiCopSelect function of the Copula package un-
der the R software [28]. This function makes it possible,
for given ranks, to return the best copula in the sense
of the Akaike information criterion (AIC). The identical
outcomes for the copulas AT/INCAPACITE and AT/AUTO
were achieved using this integrated function within R. For
the other copulas, the function favors the Gumbel copula
for the couple AT/AUTOFLOT, Clayton’s copula for the
couple INCAPACITE/AUTO, Clayton’s copula for the cou-
ple INCAPACITE/AUTOFLOT, and Gumbel’s copula for the
couple AUTO/AUTOFLOT.

C. Context and modeling assumptions

Actuaries face a fundamental challenge in determining
the minimum equity value objectively. To achieve this, it is
crucial to construct a robust mathematical model known as
the risk model. This model involves depicting the company’s

financial status or capital at the conclusion of a period based
on the probability of ruin accepted by the insurer.
Model description.

In this model, we denote:
- S: the total claims burden of the portfolio over the period.
- FP : the capital or reserve available at the start of the

period.
- P : the pure premium for the period associated with S.
- π: the risk premium for the period associated with S.
- B: the technical benefit.
- RF : the financial result or the capital at the end of the

period.
Model assumptions.

We adopt the following assumptions:
- The time horizon under consideration is one year, cor-

responding to the calendar year.
- The sole random variable in the model is the annual

claims burden, and it is considered gross of reinsurance.
- The insurance company commences operations at the

onset of the period with an initial reserve or equity amounting
to FP monetary units (where FP > 0), assumed to be
equivalent to the solvency margin.

- The combined cost of claims associated with two risk
branches is, in reality, the total of the claim costs associated
with each of these two branches.

We have then, P = E(S); π = P + loads = (1 + 7%)P
and B = π − S.

The annual result called X is given by,

X = technical profit+ financial result

= π − S + (2%× FP + 3%× π − 1.5× S)
= 0.02× FP + 1.03× π − 1.015× S.

It is important to note that the initial equity level at the
start of the period has minimal effect on the variable X . X is
a stochastic variable with an undisclosed distribution, and its
behavior is approximated empirically through the conducted
simulations.
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D. Comparison of the distributions obtained by considering
the dependence and independence

To contrast the distributions obtained when considering
the dependence between branches with those assumed to be
independent, we assessed each scenario through:

• Empirical features of the induced distributions.
• Outcomes of the capital requirement assessment model,

computed using risk measures such as VaR (Value at
Risk) and TVaR (Tail Value at Risk).

Tables XI and XII present the empirical characteristics of
the distributions obtained with the copulas selected in section
V-B, along with comparisons to the scenario where branches
are treated as independent.

TABLE XI
MEAN AND STANDARD DEVIATION OF AGGREGATE CLAIMS

DISTRIBUTIONS (DEPENDENT CASE).

Dependent case Mean (in MAD) Standard deviation
AT/INCAPACITE 7021957 8106885

AT/AUTO 21327521 12705221
AT/AUTOFLOT 8536537 7066780

INCAPACITE/AUTO 15015863 16641610
INCAPACITE/AUTOFLOT 2202613 2122780

AUTO/AUTOFLOT 16654465 15567569

TABLE XII
MEAN AND STANDARD DEVIATION OF AGGREGATE CLAIMS

DISTRIBUTIONS (INDEPENDENT CASE).

Independent case Mean (in MAD) Standard deviation
AT/INCAPACITE 7038903 8123682

AT/AUTO 21437890 12829351
AT/AUTOFLOT 8541502 7076901

INCAPACITE/AUTO 15065758 16787444
INCAPACITE/AUTOFLOT 2229621 2142270

AUTO/AUTOFLOT 16662892 15596804

It’s worth noting that considering dependence through an
Archimedean copula between the costs of two branches in

determining the distribution of their aggregate loss load has
the following effects:

- Decreases the mean of the aggregate claims charge.
- Diminishes the standard deviation of the distribution.
Table XIII provides a comprehensive depiction of the

outcomes derived from the capital requirement assessment
model. These results are meticulously calculated employing
two prominent methodologies: Value at Risk (VaR) and Tail
Value at Risk (TVaR). Through this table, we delve into a de-
tailed analysis of the implications of these methodologies on
our capital requirements, offering insights into the potential
risks associated with our operations.

Discussion and conclusion.
Let us delve into a specific example, focusing on the
AT/INCAPACITE pair within a scenario that accounts for
dependency. In this case, the one-year horizon Value at Risk
(VaR) is computed as 4700226 MAD with a 99% confidence
level. This implies a 99% probability that the portfolio will
not incur a loss exceeding 4700226 MAD over the next year.
Conversely, there exists only a 1% chance that the loss will
surpass this threshold. In contrast, under the independent
scenario, the VaR amounts to 3058069 MAD.

These findings indicate that integrating dependency mod-
eling via copula theory results in a marginal increase in
the capital requirement. This observation remains consistent
across two pivotal risk metrics (VaR and TVaR) and various
confidence thresholds (99% and 99.9%).

VI. CONCLUSION

This paper addresses a practical scenario involving the
consideration of dependencies among risks within a non-
life insurance portfolio. Utilizing copula theory, we inves-
tigated the impact of dependencies between claims costs
across different insurance branches on the insurer’s capital
requirement.

TABLE XIII
COMPARISON OF THE VALUES (IN MAD) OF RISK MEASURES OF THE AGGREGATE LOAD DISTRIBUTIONS IN THE DEPENDENT AND INDEPENDENT

CASE FOR THE COUPLES STUDIED.

COUPLE (Copula) V aR99% V aR99.9% TV aR99% TV aR99.9%

AT/INCAPACITE (Clayton’s copula)
Dependent case 4700226 11139383 7465478 13258919

Independent case 3058069 8177050 5355384 10028852
Difference (in %) 53.7% 36.2% 39.4% 32.2%

AT/AUTO (Frank’s copula)
Dependent case -1440575 9248083 3254814 12517139

Independent case -9963186 1362474 -5135628 5025902
Difference (in %) 85.5% 578.77% 163.37% 149.05%

AT/AUTOFLOT (Frank’s copula)
Dependent case 10284096 16545389 13081034 18599346

Independent case 5753096 12298494 8548691 14499514
Difference (in %) 78.76% 34.53% 53.02% 28.28%

INCAPACITE/AUTO (Frank’s copula)
Dependent case -80879.02 9014534.00 4084426 12486668

Independent case -973469.5 8307161.9 3130036 11891462
Difference (in %) 91.7% 8.52% 30.49% 5.01%

INCAPACITE/AUTOFLOT (Frank’s copula)
Dependent case 10411388 13839275 11867860 14952250

Independent case 10007899 12989761 11413690 14306610
Difference (in %) 4.03% 6.54% 3.98% 4.51%

AUTO/AUTOFLOT (Frank’s copula)
Dependent case 6174742 15766206 10448113 19301208

Independent case 757697.2 11162957.3 5217391 14343313
Difference (in %) 714.94% 41.24% 100.26% 34.57%
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Our findings revealed that when the assumption of inde-
pendence is not validated, the insurer tends to marginally
underestimate the capital requirement for risk aggregation,
particularly in cases where risks exhibit positive dependence.
This discrepancy underscores the need to reevaluate the sig-
nificance of incorporating dependencies among risk branches
within the studied portfolio.

REFERENCES

[1] Bulletin officiel, No5054− 2 Ramadan 1423 (7-11-2002).
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