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Abstract—In this paper, we consider a problem
of estimating a large loss probability of financial
derivatives portfolio, which are commonly modeled
as nested expectations. However, the cost of nested
simulation may be too expensive and thus multilevel
Monte Carlo (MLMC) method is recently used to
reduce the nested simulation complexity. When using
antithetic MLMC to solve the indicator function, we
get the complexity of O(ϵ−5/2). To decrease the compu-
tational burden, we use a Fourier transform method
to modify the form of indicator function. The new
estimator is sufficiently smooth and enables the anti-
thetic MLMC method to achieve a better complexity.
In addtion, we combine quasi-Monte Carlo (QMC)
with MLMC to reduce the variance of inner estimator.
Numerical results show that using the Fourier trans-
form method in both MLMC and MLQMC can attain
the optimal complexity O(ϵ−2).

Index Terms—nested simulation, multilevel Monte
Carlo, quasi-Monte Carlo, Fourier transform.

I. Introduction

ASSUMING we have a portfolio which consists of
some financial derivatives. Let V (t) denote the

present value of this portfolio at time t, where △t de-
notes the duration between successive points in time and
V (t+△t) represents the future value of the portfolio at
time t+△t. It is important to note that △t corresponds
to the period of time over which the portfolio will be
held or managed. In order to investigate the investment
issue, Deng, Lin and Zhuang [1] employed possibilistic
theory and fuzzy investment to address the uncertainty
of the portfolio. Conversely, we utilized a simulation
method to determine the likelihood of significant losses.
In this paper, the portfolio value loss is defined by
△V ≡ V (t) − V (t +△t). In this paper, we consider the
problem of estimating

F (c) = P(△V ≤ c) = E[I{△V ≤ c}] = E[I{E[X|Y ] ≤ c}],
(1)

where the inner expectation

△V = E[X|Y ], (2)

is the change of portfolio value and c is a predetermined
loss threshold, F (c) is the cumulative function (c.d.f) of
△V . For a given level of confidence α ∈ (0, 1), the value-
at-risk (VaR) is defined as follows:

ξα = F−1(α) = inf{α : F (x) ≥ α}. (3)

To estimate (1), nested simulation, also known as
two-stage stochastic-on-stochastic simulation, involving
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an outer and inner stage, can be employed straightfor-
wardly. In the outer stage, we simulate risk factors that
span a specific risk horizon known as Y . This is referred
to the scenarios. In the inner stage, for each scenario
Y , we generate numerous corresponding X values, which
are then used to estimate the conditional expectation
E[X|Y ], see Gordy and Juneja [2] and Broadie et al.
[3] for details. Similarly, regarding the financial risk
management problem, Li and Wen [4] based on federated
learning to obtain a credit risk measure.

The standard nested Monte Carlo simulation im-
poses a heavy computational burden. To address this
issue, Gordy and Juneja [2] analyzed the optimal al-
location of computational resources between the inner
and outer stages. By minimizing the root mean square
error (RMSE) ϵ of the resulting estimator, they obtained
the most appropriate computational cost allocation: the
outer stage sample size is N = O(ϵ−2) and the inner
stage sample size is M = O(ϵ−1), yielding in a total
cost of NM = O(ϵ−3). More efficiently, Broadie et al.
[3] developed a clever procedure to adaptively allocate
methods in the inner stage based on marginal changes of
the risk estimator in each scenario. Min, Han and Xiang
[5] has proposed a robust omega portfolio optimization
for solving the two-stage portfolio problem. Many work
have focused on reducing the computational burden of
the inner stage by using approximation techniques. For
example, Broadie et al. [6] introduced the least square
Monte Carlo method to estimate portfolio risk, and Hong
et al. [7] developed a kernel smoothing method.

However, the earlier methods mentioned have certain
limitations. In order to enhance computational efficiency,
Giles [8] used a multigrid idea that differs from Gordy
and Juneja [2], Broadie et al. [3] and Hong et al. [7].
Giles and Szpruch proposed a multilevel Monte Carlo
method (MLMC) to solve nested expectations denoted
by stochastic differential equations [9]. This work suc-
cessfully reduced the total cost of nested simulation
to O(ϵ−2 log ϵ2) under special circumstances. Recently,
Giles and Haji-Ali [10] employed the adaptive allocation
procedure of Broadie et al. [3] to address the risk esti-
mation problem and demonstrated that the complexity
of MLMC can be reduced to O(ϵ−2 log ϵ2) under spe-
cific conditions. Giles and Haji-Ali [10] showed that the
complexity of antithetic MLMC is O(ϵ−5/2) for the risk
estimation problem (1). Due to the discontinuity of the
indicator function, antithetic MLMC cannot achieve the
optimal complexity of O(ϵ−2) for the problem (1). For
some nested MLMC methods, we refer to Giles [11];
Giles and Goda [12]; Goda et al. [13] [14] and references
therein.

As mentioned earlier, the calculation complexity of
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the MLMC method can be almost reduced to O(ϵ−5/2)
for the risk estimation problem (1). We find that the
main challenge is the special character of the indicator
function I(· < c), which prevents MLMC from achieving
the optimal complexity of O(ϵ−2).

To address this difficulty, we consider to make indi-
cator function I(· < c) to a smooth function. In many
work [15] [16], Fourier analysis has been successfully
applied to pricing options. For example, Bakshi and
Madam [15] used the characteristic function of the state-
price density to analytically price options. Betas [16]
successfully used the characteristic function to deal with
Deutsche Mark options. We build upon the work of
Jin and Zhang [17] to address the indicator function
I(· < c), which is a special Fourier transform method.
The Fourier transform method not only alters the form
of the indicator function but also renders it a smooth
function. Through numerical studies, we find that the
Fourier transform method significantly reduces the cost
of MLMC for problem (1). Additionally, we discuss the
influence of different truncation points on the varied
Fourier transform integration. Next, in order to further
enhance the efficiency of the MLMC method, we focus
on using the quasi-Monte Carlo method. Compared to
the Monte Carlo method, the QMC method uses more
uniform point sequences, resulting in a smaller variance
of the estimator. Details of QMC method details refer to
Niederreiter [18]; Dick et al. [19]; L’Ecuyer and Lemieux
[20]. In pioneering work by Giles and Waterhouse [21],
a combination of the QMC method and the MLMC
method was proposed. Recently, we have referred to
some relevant work about the multilevel QMC method.
Kuo et al. [22][23] used the multilevel QMC method
to solve a class of elliptic partial differential equations
(PDEs) and lognormal diffusion problems. Dick et al. [24]
dealt with parametric operator equations, and Scheichl
et al. [25] computed an inverse problem of uncertainty
quantification, among other applications.

We use the randomized QMC (RQMC) method to
replace the Monte Carlo method in the inner simulation
stage. In simple terms, during the outer stage, we use the
Monte Carlo simulation to produce a large number of Y
samples, which represent all relevant risk factors.

In particularly, during the inner stage, we use the
RQMC method to generate the corresponding X. This
procedure is closely related to Giles and Haji-Ali’s work
[10], as well as Goda et al.’s work [13]. The former used
a nested multilevel Monte Carlo estimator to address
the beyond probability problem, while the latter used a
nested multilevel RQMC estimator to solve the expected
value of partial perfect information (EVPPI) problem.

The present work aims to improve the MLMC method
for financial risk management by utilizing the Fourier
transform method to tackle the indicator function. We
successfully transform the discontinuous form of prob-
lem (1) and ensured that the new form of the Fourier
transform function is sufficiently smooth, which yields
favorable performance in numerical tests regarding the
antithetic MLMC method. Furthermore, the potential
benefits of employing an antithetic MLMC approach
with RQMC to further enhance the efficiency of the

Fourier transform method. Our numerical studies demon-
strate that the Fourier transform multilevel quasi-Monte
Carlo (FMLQMC) method exhibits a superior perfor-
mance compared to the Fourier transform multilevel
Monte Carlo (FMLMC) method, both of which converge
towards an optimal complexity of O(ϵ−2). In Section 2,
we review nested simulation and the MLMC method.
After introducing the basic MLMC method, we develop
an antithetic MLMC estimator for problem (1). The
effects of the indicator function on nested simulation are
discussed. In Section 3, we refer to the Fourier transform
method and QMC method, with the former aimed at
overcoming the discontinuity of the indicator function
and the latter focused on reducing the variance of the
MC estimator. In Section 4, we use some numerical
experiments to test the validity of the Fourier transform
method and RQMC method. Finally, we conclude this
paper with some remarks in Section 5.

II. Nested simulation and Multilevel Monte
Carlo

A. Nested Simulation
Our goal is to estimate the probability of future loss

less than a given threshold c. As mentioned earlier, this
probability can be computed using a nested simulation.
In problem (1), we set F (c) = E[I{△V ≤ c}]. Frist, in
the outer layer simulation, we produce N independent
and identically distributed (i.i.d) copies of Y . Then we
can get the

F̂ (c) =
1

N

N∑
i=1

I{△V̂ (Yi) ≤ c}. (4)

In the inner layer, we base Yi to generate the corre-
sponding Xj . Through (2), the future loss △V is deter-
mined by variables Y and X, where △V̂ (Yi) = E[X|Yi].
Thus, we can obtain the expression of the estimator:

△V̂M (Yi) =
1

M

M∑
j=1

Xj(Yi). (5)

By substituting (5) for (4), the standard statistic in the
nested simulation is given by:

F̂N,M (c) =
1

N

N∑
i=1

I{ 1

M

M∑
j=1

Xj(Yi) ≤ c}. (6)

Specially, △V (Yi) = E[X|Yi] is a conditional expecta-
tion. Referring to Broadie et al. [3], when using the
standard Monte Carlo method to calculate the statistic,
we need a sampling number of N that is O(ϵ−2) and a
matching number of M that is O(ϵ−1), in order to achieve
a root mean-squared error of ϵ. The total calculation
cost is N ×M = O(ϵ−2) × O(ϵ−1) = O(ϵ−3). Giles and
Haji-Ali [10] proved that to estimate problem (1), the
computational complexity is decreased to O(ϵ−2| log ϵ|2).

B. MLMC Estimators
In the subsection, we will follow the work of Giles

and Haji-Ali [10] to briefly review the main concept of
the MLMC method. Our target is to efficiently measure
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F (△V ) = E[I{△V ≤ c}]. Let P = I{△V ≤ c} for
a random output variable P , and every sample of P
requires a finite cost to calculate. Unlike two-level stan-
dard Monte Carlo nested simulation, we do not directly
evaluate P . Considering a sequence of random variables
P0, P1, · · · with increasing approximation accuracy to P ,
and the computational cost also rises with the addition
of subscripts in P . We define the ℓth level estimator of P
is Pℓ = I{△V̂mℓ

≤ c}. In the inner simulation △V̂mℓ
, we

set mℓ = mℓ+ℓ0
0 with m0 = 2 and ℓ0 ≥ 0. By the linearity

of expectation, we have

E[PL] = E[P0] +
L∑

ℓ=0

E[Pℓ − Pℓ−1]. (7)

Assume a sequence of random variables Zℓ, ℓ = 0, 1, · · ·
which satisfies Z0 = P0 = I{△V̂m0 ≤ c} if ℓ = 0,

Zℓ = Pℓ − Pℓ−1

= I{△V̂mℓ
≤ c} − I{△V̂mℓ−1

≤ c} if ℓ > 0.

For reducing the variance of Zℓ, we use a strategy
[10]: using an antithetic form for coupling the consecutive
levels, i.e.,

Zℓ =I{△V̂mℓ
(Y ) ≤ c} − 1

2
(I{△V̂ (1)

mℓ−1
(Y ) ≤ c}

+ I{△V̂ (2)
mℓ−1

(Y ) ≤ c}),
(8)

where

△V̂ (i)
mℓ−1

(Y ) =
1

mℓ−1

imℓ−1∑
j=1+(i−1)mℓ−1

Xj(Y ), i = 1, 2.

By substituting Zℓ into (7), we have

E[PL] =
L∑

ℓ=0

E[Zℓ]. (9)

In the MLMC method, we independently estimate the
right hand side of (9). Let µ̂ℓ be the Monte Carlo
estimator of E[Zℓ] with Nℓ samples:

µ̂ℓ =
1

Nℓ

Nℓ∑
i=1

Z
(i)
ℓ , (10)

where Z
(1)
ℓ , · · · , Z(Nℓ)

ℓ are i.i.d samples of Zℓ for ℓ =
0, · · · , L. The MLMC estimator is given by

F̂MLMC =
L∑

ℓ=0

µ̂ℓ. (11)

Denote the variance and the cost of Zℓ by Vℓ and Cℓ,
respectively. We get the mean-squared error (MSE) of
F̂MLMC :

E[(F̂MLMC − E[P ])2] =E[(
L∑

ℓ=0

µ̂ℓ − E[P ])2]

=
L∑

ℓ=0

Vℓ

Nℓ
+ E[(PL − P )2].

(12)

In this case, the total cost of F̂MLMC estimator is C =∑L
ℓ=0 NℓCℓ.

By Giles [8], he proved the following complexity theo-
rem for the MLMC method.

Theorem 1. Suppose there are constants α, β, γ, c1, c2,
c3 such that α ≥ min(β, γ)/2 and

• |E[Pℓ − P ]| ≤ c1m
−α
ℓ ,

• E[Zℓ] =

{
E[P0] ℓ = 0,

E[Pℓ − Pℓ−1] ℓ > 0.

• Vℓ ≤ c2m
−β
ℓ ,

• Cℓ ≤ c3m
γ
ℓ ,

then there exists a constant c4 ≥ 0 such that for any
ϵ < 1/e, there are value L and Nℓ for which the
MLMC estimator F̂MLMC has a mean square error bound
E[(F̂MLMC − P )2] ≤ ϵ2 with a total computational cost
C with bound

C =


c4ε

−2, β > γ

c4ε
−2(log ε)2, β = γ

c4ε
−2−(γ−β)/α, β < γ.

(13)

In Theorem 1, the constant α represents the bias de-
creasing rate, commonly refer as weak convergence. The
constant β describes the variance decreasing rate and is
generally known as strong convergence. Finally, the con-
stant γ controls the increasing rate of computing budget
for each sample. We try to make the estimator F̂MLMC

in the O(ϵ−2) regime as much as possible, with β > γ.
In the risk estimation problem (1), the computational
complexity of the antithetic MLMC method is O(ϵ−5/2),
which was proved by Giles and Haji-Ali [11]. In order to
reduce the total cost of antithetic MLMC about problem
(1), we will introduce a Fourier transform method and
quasi-Monte Carlo method in the next section.

III. Fourier transform method and
quasi-Monte Carlo method

A. Traditional Option Transform Method
Fourier analysis is successfully employed to price in-

dividual options. If the characteristic function ϕT (u) of
the stock return process is known, then the price of an
European call option is

C = SΠ1 −Ke−rTΠ2,

where Π2 is the risk-neutral in-the-money probability in
the form of Fourier inversion

Π2 = Pr(ST > K)

=
1

2
+

1

π

∫ ∞

o

Re(
e−iu ln(K)ϕT (u)

iu
)du, (14)

and Π1 is the delta of the option determined through

Π1 =
1

2
+

1

π

∫ ∞

0

Re(
e−iu ln(K)ϕT (u− i)

iuϕT (−i)
)du, (15)

Re(x) is the real part of complex number x. Indeed, the
traditional Fourier analysis method has some flaws:

• In generally, we cannot obtain the characteristic
function of the portfolio value change analytically.

• Supposing we have the characteristic function, it is
not straightforward to transform (14) and (15).

• The integrand of the traditional approach [15] [16]
is highly oscillating around zero.
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B. Fourier Transform Method
Different from the traditional methods [15] [16], we

focus on simulating the evolution of portfolio value.
The Fourier transform utilizes the distribution function
related to (1) to obtain:

F (c) =
1

2
− 1

π

∫ ∞

0

E[Re(
eiu(△V−c)

iu
)]du. (16)

And approximating the integral:∫ ∞

0

E[Re(
eiu(△V−c)

iu
)]du ≈

∫ T

0

E[Re(
eiu(△V−c)

iu
)]du,

(17)
for a suitable chosen T , which is truncation point about
the integration. Each Si(t) is assumed to be equal to
a smooth function of a Brownian motion, and the ge-
ometric Brownian motion is smooth with respect to a
uniform random variable, which results in the integrand
Re( e

iu(△V −c)

iu ) being smooth on [0, 1]d+1.
It is noteworthy that the selection of truncation point

T is critical. Jin and Zhang [17] proposed an algorithm
for selecting T . Generally, we select T = 2, which is
sufficient for a wide range of functions. To estimate
the distribution function F (c), we use the following
simulation-based estimator:

F̂T,n(c) =
1

2
− T

π

1

n

n∑
i=1

[Re
eiti(△Vi−c)

iti
], (18)

where ti is a sampling from the interval [0, T ], and △Vi

is a sampling of the portfolio value change.
Next, Jin and Zhang [17] developed an alternative ap-

proach to estimate F (c) via Fourier transform. Consider
the Fourier transformation of e−kcF (c) to replace F (c),
where k > 0,

f(t) =

∫ +∞

−∞
e−kcF (c)e−i2πtcdc (19)

We assume that e−kcF (c) is integrable over (−∞,+∞)
and

lim
c→−∞

e−kcF (c) = 0, k ≥ k0,

for some k0 > 0. Applying integration by parts yields
that

f(t) =

∫ +∞

−∞

e−(k+i2πt)c

k + i2πt
dF (c) =

E[e−(k+i2πt)△V ]

k + i2πt
.

Assume that F (c) is continuous at c. Inverting the
preceding function (1) yields that

F (c) =

∫ +∞

−∞
ekcf(t)ei2πtcdt

=

∫ +∞

−∞
ekc

E[e−(k+i2πt)△V ]

k + i2πt
ei2πtcdt

=

∫ +∞

0

2

k2 + (2πt)2
E[ek(c−△V )(k cos(2πt(c−△V ))

+ 2πt sin(2πt(c−△V )))]dt. (20)

By the (3), ξα is determined by the demand of risk
management at the function F (c) in this paper. Jin and

Zhang [17] proposed a method to normalize △V − c as
follows:

F (c) ≡ P[
△V − c

ξα
≤ 0]

=

∫ +∞

0

2

k2 + (2πt)2
E[ekVc(k cos(2πtVc)

+ 2πt sin(2πtVc))]dt,

(21)

where
Vc =

c−△V

ξα
.

In the Fourier transform form, if k is a larger value,
then the variance of the random variable ekVc is also
larger, which results in larger variances of the estimator.
Supposing k is smaller, although it leads to a reduction
in the variance of the estimator, it also results in a larger
truncation point, which causes t/k2 + (2πt)2 to converge
more slowly to zero for smaller k. Referring the work of
Jin and Zhang [17], k = 2 is a good choose in terms of
the above work. Now function F (c) becomes

F (c) =

∫ +∞

0

1

1 + π2t2
E[e2Vx(cos(2πtVx)

+ πt sin(2πtVx))]dt.
(22)

Nevertheless, the function (22) does not possess a
closed-form expression. Thus, finding a method to ap-
proximate the function F (c) directly is a viable approach.
To this end, rewriting (22), we have

F (c) =

∫ +∞

0

1

1 + π2t2
{E[e2Vc cos(2πtṼ )]

× (cos(2πt)− πt sin(2πt))
− E[e2Vc sin(2πtṼ )]

× (sin(2πt) + πt sin(2πt))}dt.

(23)

where Ṽ = △V /ξα and ξα is defined by (3). Now, we
approximate F (c) by

FT (c) =

∫ T

0

1

1 + π2t2
{E[e2Vc cos(2πtṼ )]

× (cos(2πt)− πt sin(2πt))
− E[e2Vc sin(2πtṼ )]

× (sin(2πt) + πt sin(2πt))}dt,

(24)

which T > 0 is a truncation point. For any fixed
truncation error ϵ, the problem of truncating integral
(23) is to find a point Tϵ such that

|FTϵ(c)− F (c)| = |F̃Tϵ(c)| ≤ ϵ, (25)

where F̃Tϵ
(c) is the remainder integral and is defined by

F̃Tϵ(c) =

∫ +∞

Tϵ

1

1 + π2t2
{E[e2Vc cos(2πtṼ )]

× (cos(2πt)− πt sin(2πt))
− E[e2Vc sin(2πtṼ )]

× (sin(2πt) + πt sin(2πt))}dt.

(26)

To satisfy (25), Jin and Zhang [17] proved that |F̃Tϵ(c)| ≤
ϵ for T ≥ Tϵ.

IAENG International Journal of Applied Mathematics

Volume 54, Issue 4, April 2024, Pages 730-741

 
______________________________________________________________________________________ 



In the next, rewriting (24):

FT (c) =

∫ T

0

1

1 + π2t2
E[e2Vc×

(cos(2πtVc) + πt sin(2πtVc))]dt. (27)

The inner expectation is

g(△V ) = e2Vc(cos(2πtVc) + πt sin(2πtVc)). (28)

Because the function g(△V ) is a smooth function, the
complexity of MLMC is expected to be O(ε−2). In section
IV, we perform numerical study to verify this point.

C. Quasi-Monte Carlo Method
In this work, we use the quasi-Monte Carlo method

to replace the Monte Carlo method within the random
variables Zℓ, resulting in a multilevel quasi-Monte Carlo
(MLQMC) estimator.

When we want to approximate the integrals of func-
tion, which is defined over the multi-dimensional unit
cube [0, 1)d

I(u) =
∫
[0,1)d

h(u)du,

and choose M points set: { u1, · · · , uM}. We approximate
I(u) by:

ÎM (u) = 1

M

M∑
j=1

h(uj),

where the Monte Carlo method was the random points
set. However, QMC methods generate low discrepancy
point sequences that are deterministically chosen from
[0, 1)d and are more uniformly distributed than randomly
chosen uniform points. QMC methods have two main
families of point sets: (t, d)-sequence [18] and lattice rules
[26]. In this paper, we use the former with the antithetic
MLMC estimator.

In our model, we assume that given Yi = y, X can be
generated by

X(y) = φ(u; y). (29)

In the situation, the inner estimator (5) is substituted
by

△V̂mℓ
(y) =

1

mℓ

mℓ∑
j=1

φ(uj ; y). (30)

Now, by combining MLMC and QMC, we have

Zℓ =I{△V̂mℓ
(Y ) ≤ c} − 1

2
I{△V̂ (1)

mℓ−1
(Y ) ≤ c}

− 1

2
I{△V̂ (2)

mℓ−1
(Y ) ≤ c},

(31)

where

△V̂ (i)
mℓ−1

(Y ) =
1

mℓ−1

imℓ−1∑
j=1+(i−1)mℓ−1

φ(uj ; y), i = 1, 2.

In the work of Goda et al. [13] and Giles and Goda’s
work [12], they demonstrated that antithetic sampling
can significantly reduce variance. However, when dealing
with a discontinuous function, the antithetic sampling

method should be used with caution. It is essential that
the equation

P[{△V̂ (1)
mℓ−1

(Y ) ≤ c}|Y ] = P[{△V̂ (2)
mℓ−1

(Y ) ≤ c}|Y ]

is used to ensure the telescoping representation (7) under
the RQMC scheme. We note that the left half RQMC
points u1, · · · , umℓ−1

have the same joint distribution as
the joint distribution of the right half RQMC points
umℓ−1+1, · · · , umℓ

in the point sequence selection.
In this paper, we use Owen’s scrambling method

(Owen [27]) to construct (t, d)-sequence in base b = 2,
which have low discrepancy points. The RQMC method
reduces the variance of the estimator, which enhances the
efficiency of Fourier transform method. The effectiveness
of the RQMC method will be demonstrated in the next
section IV.

IV. Numerical study
In this study, we present numerical results that demon-

strate the advantage of using the Fourier transform
method in portfolio management. Specifically, our fo-
cus is on an European option portfolio comprising d
stocks whose price dynamics follow a geometric Brow-
nian motion process. The Fourier transform proves to
be highly effective in capturing the underlying patterns
and trends in stock prices, thereby facilitating informed
investment decision-making. For simplicity, we assume
that stock return are the same, denoted by µ, and risk-
free interest rate is r. Price dynamics of the stocks
St = (S1

t , S
2
t , · · · , Sd

t ) written according to

dSi
t

Si
t

= µ
′
dt+

d∑
j=1

σijdW i
t , i = 1, 2, · · · , d

where µ
′
= µ under the real-world probability measure

P, and µ
′
= r under the risk-neutral probability measure

Q. Let Wt = (W 1
t ,W

2
t , · · · ,W d

t ) denote a standard d-
dimensional geometric Brownian motion which repre-
sents d risk factors in the portfolio model. Let S0 =
(S1

0 , S
2
0 , · · · , Sn

0 ) are the initial prices of stocks. By the
Black-Scholes model, we have

Si
t = Si

0 exp{(µ
′
−1

2

d∑
j=1

σ2
ij)t+

d∑
j=1

σijW
i
t }, i = 1, 2, · · · , d,

T denotes the maturities, which are the same for all
the European options in the portfolio. In many finan-
cial applications, researchers are interested in measur-
ing the portfolio risk at a future time τ(τ < T ). In
the simulation, we firstly simulate the random variable
Y = Sτ = (S1

τ , S
2
τ , · · · , ) under the real-world probability

measure P, which means that at the risk horizon τ the
stocks prices as the outer sample. Based on the given
value of Y , we simulate the inner samples in the next
step, i.e. ST = (S1

T , S
2
T , · · · , Sd

T ) under the risk-neutral
probability measure Q which is stocks prices at maturity.
We use V0 =

∑d
i=1 v

i
0 to denote the initial value of the

portfolio, where every vi0 is known by the Black-Scholes
formula(Hull [28]). Then the portfolio value revenue is

△V := V0 − E[VT (ST )|Y ], (32)
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where VT (ST ) is the discounted payoff of the portfolio to
initial time 0 at maturity time T , thus VT is a function
of ST .

Our objective is to gain the probability: F (c) =
P[△V < c], for a given threshold value c. Next, we will
compare various methods, including MLMC, FMLMC,
and FMLQMC, in each example.

A. Single Asset

In this initial instance, we will focus on a put option
scenario where the portfolio consists of a single option,
i.e. d = 1. This example was previously investigated by
Broadie et al. [3].

The underlying asset follows a geometric Brownian
motion with an initial price of S0 = 100. The drift of
this process under the real-world distribution used in
the outer stage of simulation is µ = 8%. The annualized
volatility is σ = 20%. The risk-free rate is r = 3%. The
strike of the put option is K = 95, and the maturity is
T = 0.25 years (i.e., three months). The risk horizon is
τ = 1/52 years (i.e., one week). With these parameters,
the initial value of the put option is v0 = 1.6691 which
given by the Black–Scholes formula.

In the simulation, the outer random variable is gener-
ated by

Y := Sτ = S0 exp{(µ− σ2/2)τ + σ
√
τZ}, (33)

where the real-valued risk factor Z is a standard normal
random variable. The portfolio value change is

△V = V0 − E[e−r(T−τ)(K − ST (Y,W ))+|Y ], (34)

where the expectation is taken over the random variable
W , which is a standard normal random variable indepen-
dent with Z, and ST (Y,W ) is given by

ST (Y,W ) = Y exp{(r − σ2/2)(T − τ) + σ
√
T − τW}.

(35)
Notice that outer stage scenarios are generated using the
real-world distribution governed by the drift µ, while
inner stage scenarios used to generate future put option
prices are generated using the risk-neutral distribution
governed by the drift r.

Now let X = v0 − e−r(T−τ)(K − ST (Y,W ))+. For a
given value of Y = y and combined with (35), X can be
generated by

X(y) =φ(u; y)

=v0 − e−r(T−τ)(K − y exp{(r − σ2/2)(T − τ)

+ σ
√
T − τΦ−1(u)})+.

(36)
where W = Φ−1(u). In the inner simulation, we use
scrambling (t, 1)-sequence in base b = 2.

By the definition of (34), we have △V = E[X|Y ]. For
this example, the VaR is given by (3), and Theorem
1 shows that F (c) is a strictly increasing continuous
function. Therefore, the cumulative function of △V (Y )

can be computed easily, namely,

P[△V (Y ) ≤ c]

= P{V0 − E[e−r(T−τ)(K − ST (Y,W ))+] ≤ c}

= P{
∫ T

0

1

1 + π2t2
E[e2Vx(cos(2πtVx)

+ πt sin(2πtVx))]dt ≤ c}.

(37)

We choose c = −ξα = −0.859 to correspond to the
loss probability α of 10% which is computed explicitly
using the Black-Scholes formula. In the context of this
single asset problem, we employ the Fourier transform
MLMC and Fourier transform MLQMC methods with a
truncation point T = 2. The results on testing the weak
convergence and the strong convergence in Figure 1 are
based on 200, 000 outer samples at each level, and we set
the error bound to be ϵ = 0.05.

In the case of ϵ = 0.05 and ℓ = 6, the test result
of the FMLQMC method achieved an MSE error bound
equivalent to that of the FMLMC method and the
MLMC method, which had a lower level of ℓ = 10.
In other words, FMLQMC method achieved the desired
accuracy requirement with only half of the number
of levels. Fig 1(a) displays the weak convergence rate
of three methods, with FMLQMC method having the
largest weak convergence α which is twice as fast as
that of FMLMC and MLMC methods. When the level
ℓ ≥ 6, there is no significant difference between the
mean numerical results obtained by FMLMC and MLMC
methods, indicating that the Fourier transform method
does not affect the weak convergence and numerical
result in MLMC method. In comparison to the other
two methods, the FMLQMC method exhibits the least
absolute value at finest level, highlighting its superiority.

Fig 1(b) shows the comparison of strong convergence,
which is a crucial aspect in the methodology of MLMC
method. In the picture, although the variance of FM-
LQMC and FMLMC methods at the initial hierarchy
level is significantly larger than that of method MLMC,
when the level ℓ ≥ 5, the variance of FMLQMC is lower
than that of MLMC; and when ℓ ≥ 8 the variance of
FMLMC is lower than that of MLMC. The outcome im-
plies that Fourier transform MLMC methods outperform
MLMC method.

Based on the Theorem 1, we can know the three differ-
ent computational cost of MLMC method. For the sake
of simplification, in the work of Giles [8], he fixed γ = 1
in the MLMC method, then the three costs situation
is based the β value. In order to facilitate a clearer
comparison, we have superimposed three distinct dashed
lines at a specific node in each scenario, highlighting the
downward trend observed under varying values of β. In
the FMLQMC case, we set a specific node at ℓ = 2 and
theoretically plotted the downward trend of β = 2. It is
evident from our observations that the variance at level 6
is considerably lower than the theoretical value of β = 2.
Therefore, through comparison, we can conclude that
FMLQMC method has strong convergence parameter
βFMLMQMC value greater than 2. In the FMLMC case,
through a similar comparison for FMLQMC, we can
determine that FMLMC method has βFMLMC value
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Fig. 1. The Mean and Variance Comparison of MLMC, FMLMC,
FMLQMC for the Single Asset Case

larger than 1. In MLMC case, we can see that the plot
has same decline rate for β = 1/2, which means βMLMC

is nearly equal to 1/2.
Consequently, Fourier transform MLMC methods lead

β > γ = 1, indicating a faster decrease rate for variance
Vℓ than an increasing rate for cost Cℓ. Based on the
fundamental principle of MLMC method, in this case,
we can achieve the goal of reducing computational cost.
Furthermore, QMC method is capable of further reducing
the variance and improving the strong convergence rate.
Additionally, the FMLMC method exhibits a sample size
reduction rate identical to that of the FMLQMC method,
leading to a lower variance. As a result, the costs for each
level are reduced accordingly, as demonstrated by Fig 2.

In Fig 2, we display each level Nℓ, ℓ = 0, 1, 2, · · · under
three different scenarios. In Fig 2(a), the MSE error
bound is ϵ = 5× 10−3. The FMLQMC method employs
ℓ = 7 levels, the MLMC method uses ℓ = 12 levels
and the FMLMC method employs ℓ = 14 levels. It is
evident that the decline rate of FMLQMC method is the
fastest, while the antithetic MLMC method exhibits the
slowest decline rate. Although the levels of FMLMC is
bigger than MLMC, but comparison the computational
cost, the cost of MLMC is gigger than FMLMC cost.
This observation further supports the validity of strong
convergence through other aspects. Fig 2(b) and Fig
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105
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Fig. 2. Nℓ Comparison of MLMC,FMLMC,FMLQMC for the
Single Asset Case

2(c) exhibit the same phenomenon as Fig 2(a), which is
once again consistent with Theorem 1. As the accuracy
demand increases, the rate at which the level L of
MLMC increases is faster than that of FMLMC and
FMLQMC. This indicates that the behaviors of FMLMC
and FMLQMC are superior to that of MLMC.

As previously mentioned, FMLMC methods can ac-
celerate strong convergence, resulting in β > γ = 1 in
Theorem 1. In our numerical experiment, we calculate
the βFMLQMC = 1.96 and βFMLMC = 1.34. Then
the total cost falls in β > γ situation in Theorem 1,
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Fig. 3. the Kurtosis and Cost Comparison of MLMC, FMLMC,
FMLQMC

which is the optimal complexity O(ϵ2). When we want
to achieve the high accuracy demand, there is no doubt
that the efficiency of using FMLMC methods optimal
the antithetic MLMC method. Fig 3(b) confirms this
with numerical results. The FMLMC methods perform
the best in terms of complexity, whereas the FMLQMC
method reduces the computational burden.

Fig 3(a) illustrates the trend of kurtosis. As previously
stated, kurtosis increases as variance decreases and ℓ
grows. The special structure of the indicator function
causes this phenomenon to occur, but when combined
with Fourier transform MLMC method, the increase in
kurtosis slows down significantly, indicating that Fourier
transform MLQMC method affects the occurrence of
high-kurtosis phenomenon. In other part, when the vari-
ance of a random variable is small, its kurtosis tends
to increase. Fortunately, the high-kurtosis phenomenon
does not affect the effectiveness of the MLMC method
and the validity of random sampling.

B. Multiple Asset
Now we consider a portfolio consisting of d European

call options, which was studied in Hong et al. [7]. Given
the outer sample Y = Sτ = (S1

τ , S
2
τ , · · · , Sd

τ ), the price of
stocks at the risk horizon τ under real-world measure,

and K = (K1,K2, · · · ,Kd), the strike price for call
options. The portfolio value change is

△V = V0 − E[e−r(T−τ)
d∑

i=1

(Si
T (Y

i,W )−Ki)+|Y ],

(38)

where Y i is the ith element of the vector Y and the
expectation is taken over the random variable W =
(W 1,W 2, · · · ,W d) ∼ N(0, Id), and samples of

Si
T (Y

i,W) = Y i exp{(r − 1

2

d∑
j=1

σ2
ij)(T − τ)

+
d∑

j=1

σij

√
T − τW j}

(39)

are simulated under the risk-neutral measure.
The parameters in our experiments are set as follows:

S1
0 = S2

0 = · · · = Sd
0 , µ = 8%, r = 5%, the

strikes K1 = K2 = · · · = Kd = 95, the maturity
T = 0.1, and the risk horizon τ = 0.02. Without loss
of generality, we let

∑
= (σij) be a sub-triangular

matrix satisfying C =
∑∑T which corresponds with

Cholesky decomposition of C, where Cij = 0.32 ·0.98|i−j|.
It is worth noting that the distinct decompositions of
C do not impact the efficiency of the MC method, but
they do influence the performance under QMC scheme.
The Cholesky decomposition, on the other hand, is a
common and standard approach in QMC simulations.
We set the threshold c = 50%V0 and take truncation
point T = 2 in the Fourier transform MLMC and
Fourier transform MLQMC methods. Given the absence
of analytical solutions for portfolios involving multiple
assets, we resort to the conventional nested method to
obtain data points for this illustration. Moving forward,
we will compare the performance of the MLMC, FMLMC
and FMLQMC methods.

To begin with, we perform the convergence tests for
estimating parameter α and β in Theorem 1. The results
are based on 200,000 outer samples at each level. Fig 4(a)
shows the behavior of the absolute value for the expecta-
tion of Zℓ for the crude method and Z̃ℓ for the smoothed
methods. It is evident that the smoothed method attains
the same level of convergence precision as the smaller
value, yet converges more rapidly. The absolute mean
values calculated by the FMLMC method and MLMC
method are nearly identical, suggesting that the FMLMC
method introduces minimal errors and substantiating the
viability of employing the Fourier transform method.
Comparing with FMLMC and MLMC methods, we can
observe that FMLQMC method achieves the desired
accuracy with only half the number of levels. Contrary
to the single-asset model, the FMLQMC method demon-
strates a faster convergence rate compared to other meth-
ods when addressing multi-dimensional issues. The next
Fig 4(b) illustrates the variances of the three methods,
which can be utilized to predict the strong convergence
rate β through ordinary linear regression.

The FMLQMC method has the fastest declining rate,
followed by FMLMC method, and then MLMC method.
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Fig. 4. Estimations of |EZℓ| and Var(Zℓ)

To clearly illustrate the potential effects of the slope
of parameter β, we plotted dashed lines with different
slopes which illustrate some case for β value. Firstly, the
case of FMLQMC corresponds to parameter β = 2. It
is obvious that the β value of FMLQMC is exceeding
2. It is noteworthy that the strong convergence rate
of FMLMC method exhibits better performance in 5-
dimensional scenarios compared to its counterpart in
low-dimensional case. Secondly, the cases of methods
FMLMC and MLMC correspond to parameters β = 1
and β = 0.5, respectively. Finally, in order to make
the comparison more significant, we calculated the nu-
merical values of parameter β corresponding to different
methods through numerical calculations. We obtain that
βFMLQMC = 2.61 and βFMLMC = 1.47 in the 5-
dimension scenario using numerical calculation. For the
plain MLMC, we observe βMLMC ≈ 0.5. The strong con-
vergence get apparent improvement with Fourier trans-
form methods, in which β > γ = 1. For smoothed meth-
ods, these complexity is O(ε−2). In higher ℓ level, Fourier
transform MLMC methods achieve smaller variance and
reduce costs accordingly, as evidenced by Fig 5.

In Fig 5, we depict the sampling size at each level for
four error demand scenarios. As demand for accuracy
increases, the value of Nℓ for the same level also increases.
For example, when ϵ = 5 × 10−3, FMLMC method
requires N0 ≈ 106; when ϵ = 1× 10−3, FMLMC method
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Fig. 5. Nℓ Comparison of Multiple Asset Case

requires N0 ≈ 108. Although the initial level sam-
pling of MLMC method is larger than that of FMLMC
method, at higher levels, the number of samples sampled
by FMLMC method is obviously smaller than that of
MLMC method. When the error bound is the same,
Fourier transform method enhances the declining rate
of Nℓ numbers. Similar to the case of d = 1, as ℓ
increases, the kurtosis also grows larger, as shown in Fig
6(a). It is worth noting that QMC method leads to a
very small variance, which inevitably causes the high
kurtosis phenomenon. Fortunately, FMLQMC method

IAENG International Journal of Applied Mathematics

Volume 54, Issue 4, April 2024, Pages 730-741

 
______________________________________________________________________________________ 



0 2 4 6 8 10
0

20

40

60

80

100

120

140

ku
rto

si
s

(a)

10-3

102

103
(b)

Fig. 6. Tests of Kurtosis and Total Cost about Multiple Assets

uses smaller levels to meet the required accuracy, which
can be accepted despite the high kurtosis phenomenon.

Fig 6(b) shows the total computation cost of each
method. For Theorem 1, if the complexity is located in
O(ϵ−2), then the accuracy ϵ cannot influence ϵ2 × Cost.
The plot of Fourier transform method is clearly a straight
line, indicating that its complexity is O(ϵ−2) as antici-
pated. Additionally, the QMC method indeed helps to
reduce the overall cost.

C. Different T Test
In the following section, we aim to investigate how

different truncation points T affect the performance of
Fourier transform MLMC method.

According to (24), Jin and Zhang [17] used an algo-
rithm for determining the truncation point in integral

FT (x) =

∫ T

0

1

1 + π2t2
{E[e2Vx cos(2πtṼ )]

× (cos(2πt)− πt sin(2πt))
− E[e2Vx sin(2πtṼ )]

× (sin(2πt) + πt sin(2πt))}dt.

We used truncation points with different values to test
the influence of T on selection. For this test, we selected
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Fig. 7. Contrast Mean and Variance at Difference T Value

three scenarios: T = 2, T = 5 and T = 8. We then plotted
corresponding graphics to analyze them.

Fig 7 shows the empirical means and variances of
estimation at various T values. The left plot shows that,
despite some initial differences in the T value of the
mean, at higher levels, they are almost indistinguishable.
This indicates that the T value has a minimal impact
on expectation. In the right plot, the variances for the
three T values show a similar downward trend. When
using the Monte Carlo method, smaller variance values
result in better performance for the simulator estimator.
Additionally, we believe that the T = 2 estimator has
the highest performance.

Fig 8 displays the Nℓ situation of three T values at
five accuracy demands. With the increasing of T value,
level sampling shows a consistent trend. For instance,
when the error bound is ϵ = 0.005, the N10 sampling
is approximately 103 for the T = 2 case, nearly 104

for the T = 5 situation, and approximately 105 for the
T = 8 scenario. Intuitively, we might expect the level
to increase as the T value increases while maintaining
identical accuracy. However, it is obvious that the T = 5
level is the smallest among the three T value scenarios.
This is because the level value only influences the ”fine”
estimator P̃ℓ but does not affect the computation cost
and convergence rate significantly.

In Fig 9, we have plotted the test results of kurtosis
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Fig. 8. Test of Nℓ at three T values

and computational cost. In the T = 5 and T = 8
cases, the kurtosis curve increases from the vertex and
then decreases. In contrast, for the T = 2 scenario,
the kurtosis curve continuously rises, but the maximum
kurtosis for the T = 2 case is the lowest.

In the computational cost part, we observed that the
three curves are almost straight lines. When the accuracy
demand is ϵ = 2 × 10−4, the ϵ2 × Cost is approximately
103.2 for the T = 2 case, close to 104 for the T = 5
case, and around 104.5 for the T = 8 case. In essence,
as the T value increases, so does the computational cost.
Fortunately, as we had hoped, the three computational
complexities are O(ϵ−2). The phenomenon clearly shows
the effectiveness of the Fourier transform method to some
extent.

Table I illustrates the results of different T values used
at various levels of accuracy. At coarse accuracy, the
results are relatively larger and may exceed the accuracy
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Fig. 9. Test of Kurtosis and Computation Cost

TABLE I
the estimation results of different T values

accuracy T = 2 T = 5 T=8
ϵ = 5× 10−3 0.1057 0.0944 0.1037
ϵ = 2× 10−3 0.0976 0.0963 0.1013
ϵ = 1× 10−3 0.0993 0.1007 0.0995
ϵ = 5× 10−4 0.0995 0.0998 0.1002
ϵ = 2× 10−4 0.1000 0.0999 0.1001

limit. However, at the finest accuracy, we can observe
that the estimators with the three T values are very close
to or equal the true value of 0.1.

In summary, increasing T value does not necessarily
improve the performance of the FMLMC method in all
aspects. When considering the computation cost, it is
recommended to select T = 2 as an optimal choice.

V. Conclusion
In this paper, we use the Fourier transform method

to address financial risk estimation (1) via nested sim-
ulation. By substituting the indicator function with a
smooth function, we employ the MLMC method to calcu-
late the smooth function and derive the loss probability.
In the numerical study, we observe that the complex-
ity of the FMLMC method is O(ϵ−2). Additionally,
by incorporating the QMC method into the FMLMC
method, we achieve a better computation cost compared
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to the FMLMC method, which inevitably leads to the
high kurtosis phenomenon. Finally, we investigate the
influence of truncation point selection on the Fourier
transform method.

It is expected that the FMLMC methods can be
further improved in the following aspects. On one hand,
we only applied RQMC method in the inner simulation.
By utilizing the RQMC method in both inner and outer
sampling, the computational cost may be significantly
reduced. On the other hand, we used a fixed truncation
point in the Fourier transform method. If we are able
to find a suitable distribution function to apply the im-
portance sampling method, it may reduce the estimation
error and improve the accuracy of the results.
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