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Abstract—The investigation into the domination problem
and the associated subset problem of graphs is a focal point
in graph theory research, sparking widespread interest and
extensive exploration. This paper mainly studies the Italian
domination of the strong product of two cycles. By constructing
recursive Italian dominating functions, a well-defined bound
for the Italian domination number in Cn ⊗ Cm is obtained.
Furthermore, through mathematical derivation and proof, the
precise Italian domination number of C3 ⊗Cm is determined.

Index Terms—Roman domination, Italian domination, Cycle,
Strong product.

I. INTRODUCTION

CONSIDERING that graph G = (V,E) is a simple
undirected graph with vertex set V (G) and edge set

E(G). For a given vertex v in G, the open neighborhood
N(v) comprises all vertices adjacent to v in G. The closed
neighborhood of v is N [v] = v ∪ N(v). The degree of v
is deg(v) = |N(v)|. The minimum and maximum values
of vertex degrees in G are denoted as the minimum and
maximum degrees of G, represented by δ(G) and ∆(G),
respectively. We denote by Pm the path graph of order m,
and by Cn the cycle graph of order n.

The cartesian product of G1 and G2 is denoted as G1 ·G2,
whose the vertex set is V (G1) × V (G2). In G1 · G2, any
two vertices (u, v) and (u′, v′) are adjacent if u = u′ and
vv′ ∈ E(G2) or v = v′ and uu′ ∈ E(G1). The strong
product of G1 and G2 is denoted as G1 ⊗ G2, whose the
vertex set is V (G1)× V (G2). In G1⊗G2, any two vertices
(u, v) and (u′, v′) are adjacent if u = u′ and vv′ ∈ E(G2) or
v = v′ and uu′ ∈ E(G1) or uu′ ∈ E(G1) and vv′ ∈ E(G2).

Considering a subset D of vertices in V . If each vertex
outside of D is connected to at least one vertex within D,
then D forms a dominating set for G. The smallest number
of vertices in such a dominating set is referred to as the
domination number of G, denoted by γ(G). Considering
practical needs, various other formulations of domination can
be explored and extended. A Roman dominating function of
G is a function f : V (G) → {0, 1, 2} defined on the vertex
set of G. This function f has the property that if every vertex
v with a property of f(v) = 0 is connected to at least one
vertex u satisfying f(u) = 2, such a function is termed a
Roman dominating function or RDF. The weight of f is
w(f) =

∑
v∈V (G) f(v), and the minimum weight of an RDF
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on G is called the Roman domination number of G, denoted
by γR(G).

The origin of Roman domination can be traced back to
defense issues in the ancient Roman army. Subsequently,
numerous scholars have delved into its study, and extensive
research on the Roman domination number can be found in
the literature [1]–[5]. In 2016, Chellali et al. [6] introduced
the concept of the Roman {2}-domination number. Specifi-
cally, it is defined as a function f : V (G)→ {0, 1, 2} on the
vertex set of G, satisfying that for each vertex f(v) = 0
in G,

∑
u∈N(v) f(u) ≥ 2. Such a function is called an

Italian dominating function or IDF. The weight of f is
w(f) =

∑
v∈V (G) f(v), and the minimum weight of among

all IDFs on G is called the Italian domination number of G,
denoted by γI(G). Until 2017, Henning et al. [7] referred to
it as the Italian domination number.

Italian domination, being an increasingly active subject
of research in graph theory, has attracted the attention of
many scholars, particularly within large graph classes like
cartesian product graphs and lexicographic product graphs
[8,9]. Gao Hong et al. [10] provide bounds for the Italian
domination number in Cn · Pm. Gao Hong et al. [11]
also determine the exact Italian domination number of the
generalized petersen graph P (n, 3). Li Zepeng et al. [12]
establish the lower bound of γI(Cn ·C5), and find the exact
values of γI(Cn · C3) and γI(Cn · C4). Martinez et al.
[13] study the Italian domination number of lexicographic
product graphs and their relationship with the traditional
domination number. Both literature [14] and literature [15]
study the Italian domination number of some product graphs
for directed cycles. Volkmann [16] delves into the Italian
domination number of directed graphs, providing specific
values for Italian domination numbers within various di-
rected graph classes. In addition, scholars have investigated
various other domination numbers, including double Italian
domination [17], double Roman domination [18], global
Italian domination [19], perfect Italian domination [20,21],
independent Italian domination [22], out-independent Italian
domination [23], total Italian domination [24] and so on.

This paper primarily establishes the exact Italian domina-
tion number of C3⊗Cm, along with determining the bounds
for γI(Cn ⊗ Cm).

II. MAIN RESULTS

Let G = Cn ⊗ Cm be the strong product of two cycles
of order n and m. The vertex set of G is defined as:
V = {vi,j |0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1}. An edge
exists between vertices va,x and vb,y precisely if one of
the following conditions applies: |b − a| = 1, n − 1 and
|y−x| = 1,m−1 or b = a and |y−x| = 1,m−1 or y = x
and |b− a| = 1, n− 1. An Italian dominating function for a
vertex vi,j is denoted as f(vi,j) in G.
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The graphical structure of Cn⊗Cm is illustrated in Figure
1:
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v1,0 v1,1 v1,2 v1,m-2 v1,m-1
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vn-2,0

vn-1,0

v0,0 v0,1 v0,2 v0,m-2 v0,m-1

vn-2,1 vn-2,2 vn-2,m-2 vn-2,m-1

vn-1,1 vn-1,2 vn-1,m-2 vn-1,m-1

Fig. 1. The graphical structure of Cn ⊗ Cm

Lemma 2.1. ( [6]) For any graph G, ∆(G) represents the
maximum degree of G and V (G) represents the vertex set
of G, then:

γI(G) ≥ 2|V (G)|
∆(G) + 2

.

The following result directly follows from Lemma 2.1.
Corollary 2.2. For G = Cn⊗Cm, where n ≥ 3 and m ≥ 3,
we have γI(G) ≥

⌈
mn
5

⌉
.

Now we give the upper bound of γI(Cn ⊗ Cm) by
constructing Italian dominating functions for Cn ⊗ Cm.
Theorem 2.3. Let G be the strong product of the cycles Cn

and Cm, where n ≥ 3 and m ≥ 3. If n ≡ 0(mod 3), then:

γI(G) ≤


2mn
9 , m ≡ 0(mod 3),

2mn+n
9 , m ≡ 1(mod 3),

2mn+2n
9 , m ≡ 2(mod 3).

Proof : When n ≡ 0(mod 3), for arbitrary i and j(0 ≤ i ≤
n− 1, 0 ≤ j ≤ m− 1) , we define the dominating function
f as follows:

f(vi,j) =


1,

i ≡ 0, 1(mod 3)

∩ j ≡ 1(mod 3) ∩m ≡ 0, 2(mod 3)

∪i ≡ 1(mod 3)

∩ j ≡ 0, 1(mod 3) ∩m ≡ 1(mod 3),

0, otherwise.

In Figure 2, we enumerate the IDFs of C3⊗C3, C3⊗C4

and C3 ⊗ C5, where Rn denotes repeating the top three
rows as n increases, and Rm denotes repeating the top
three columns as m increases. Observing all vertices in the
figure below, and ensuring that

∑
u∈N(vi,j)

f(u) ≥ 2 for all
vertices with f(vi,j) = 0. We conclude that, according to the
definition of Italian domination, the function f is an Italian
dominating function.
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Rn

0    1    0  

0    1    0 

 

0    0    0 

 

f3,3

Rm

Rn

Fig. 2. Some dominating functions of C3 ⊗ Cm

The weight of f is:

w(f) =



2× n
3 ×

m
3

= 2mn
9 , m ≡ 0(mod 3),

2× n
3 ×

m−1
3 + 1× n

3

= 2mn+n
9 , m ≡ 1(mod 3),

2× n
3 ×

m−2
3 + 2× n

3

= 2mn+2n
9 m ≡ 2(mod 3).

then,

γI(G) ≤


2mn
9 , m ≡ 0(mod 3),

2mn+n
9 , m ≡ 1(mod 3),

2mn+2n
9 , m ≡ 2(mod 3).

Theorem 2.4. Let G be the strong product of the cycles Cn

and Cm, where n ≥ 3 and m ≥ 3. If n ≡ 1(mod 3), then:

γI(G) ≤


2mn+m

9 , m ≡ 0(mod 3),
2mn+4n+m+2

9 , m ≡ 1(mod 3),
2mn+2n+m+1

9 , m ≡ 2(mod 3).

Proof : When n ≡ 1(mod 3), for arbitrary i and j(0 ≤
i ≤ n − 1, 0 ≤ j ≤ m − 1), we define the dominating
function f as follows:

f(vi,j) =


1,

i ≡ 0, 1(mod 3)

∩ j ≡ 1(mod 3) ∩m ≡ 0, 2(mod 3)

∪i ≡ 0, 1(mod 3)

∩ j ≡ 1(mod 3) ∩m ≡ 1(mod3)

∪i ≡ 0, 1(mod 3)

∩ j = m− 1 ∩m ≡ 1(mod 3),

0, otherwise.

In Figure 3, we enumerate the IDFs of C4⊗C3, C4⊗C4

and C4 ⊗ C5, where Rn denotes repeating the top three
rows as n increases, and Rm denotes repeating the top
three columns as m increases. Observing all vertices in the
figure below, and ensuring that

∑
u∈N(vi,j)

f(u) ≥ 2 for all
vertices with f(vi,j) = 0. We conclude that, according to the
definition of Italian domination, the function f is an Italian
dominating function.

The weight of f is:

w(f) =



2× n−1
3 ×

m
3 +1× m

3

= 2mn+m
9 , m ≡ 0(mod 3),

2× n−1
3 ×

m−1
3 + 1× m−1

3 + 2× n−1
3 +1

= 2mn+4n+m+2
9 , m ≡ 1(mod 3),

2× n−1
3 ×

m−2
3 + 1× m−2

3 + 2× n−1
3 + 1

= 2mn+2n+m+1
9 , m ≡ 2(mod 3).
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Fig. 3. Some dominating functions of C4 ⊗ Cm

then,

γI(G) ≤


2mn+m

9 , m ≡ 0(mod 3),
2mn+4n+m+2

9 , m ≡ 1(mod 3),
2mn+2n+m+1

9 , m ≡ 2(mod 3).

Theorem 2.5. Let G be the strong product of the cycles Cn

and Cm, n ≥ 3 and m ≥ 3. If n ≡ 2(mod 3), then:

γI(G) ≤


2mn+2m

9 , m ≡ 0(mod 3),
2mn+n+2m+1

9 , m ≡ 1(mod 3),
2mn+2n+2m+2

9 , m ≡ 2(mod 3).

Proof : When n ≡ 2(mod 3), for arbitrary i and j(0 ≤
i ≤ n − 1, 0 ≤ j ≤ m − 1), we define the dominating
function f as follows:

f(vi,j) =


1,

i ≡ 0, 1(mod 3)

∩ j ≡ 1(mod 3) ∩m ≡ 0, 2(mod 3)

∪i ≡ 1(mod 3)

∩ j ≡ 0, 1(mod 3) ∩m ≡ 1(mod 3),

0, otherwise.

In Figure 4, we enumerate the IDFs of C5⊗C3, C5⊗C4

and C5 ⊗ C5, where Rn denotes repeating the top three
rows as n increases, and Rm denotes repeating the top
three columns as m increases. Observing all vertices in the
figure below, and ensuring that

∑
u∈N(vi,j)

f(u) ≥ 2 for all
vertices with f(vi,j) = 0. We conclude that, according to the
definition of Italian domination, the function f is an Italian
dominating function.
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Fig. 4. Some dominating functions of C5 ⊗ Cm

The weight of f is:

w(f) =



2× n−2
3 ×

m
3 +2× m

3

= 2mn+2m
9 , m ≡ 0(mod 3),

2× n−2
3 ×

m−1
3 + 2× m−1

3 + 1× n−2
3 + 1

= 2mn+n+2m+1
9 , m ≡ 1(mod 3),

2× n−2
3 ×

m−2
3 + 2× m−2

3 + 2× n−2
3 + 2

= 2mn+2n+2m+2
9 , m ≡ 2(mod 3).

then,

γI(G) ≤


2mn+2m

9 , m ≡ 0(mod 3),
2mn+n+2m+1

9 , m ≡ 1(mod 3),
2mn+2n+2m+2

9 , m ≡ 2(mod 3).

Through the proofs of the above theorems, we can es-
tablish the bounds for the Italian domination number of
Cn ⊗ Cm, as presented in Theorem 2.6.
Theorem 2.6. For n,m ≥ 3, we have:⌈

mn
5

⌉
≤ γI(Cn ⊗ Cm) ≤

{
2mn+4n+m+2

9 , 2n ≥ m,
2mn+2n+2m+2

9 , 2n < m.
Above we provided bounds for the Italian domination

number of the strong product for any two cycles. Next,
we will concretize the graphs, derive the upper bound of
γI(C3 ⊗ Cm), and prove the lower bound of γI(C3 ⊗ Cm).

Firstly, by applying Theorems 2.3, 2.4 and 2.5, we deduce
the upper bound of γI(C3 ⊗ Cm) as Corollary 2.7.
Corollary 2.7. Let G = C3 ⊗ Cm, m ≥ 3, then:

γI(G) ≤


2m
3 , m ≡ 0(mod 3),

2m+1
3 , m ≡ 1(mod 3),

2m+2
3 , m ≡ 2(mod 3).

In the next process, we will prove the lower bound of
γI(C3 ⊗ Cm). For the graph G = C3⊗Cm, the vertex set is
denoted as V = {vi,j |0 ≤ i ≤ 2, 0 ≤ j ≤ m−1}. We define
V j = {vi,j |0 ≤ i ≤ 2} for 0 ≤ j ≤ m−1. Let f be an Italian
dominating function of G, and fj = f(V j) =

∑
vi,j∈V j

f(vi,j).

Theorem 2.8. In G = C3⊗Cm, if f is an Italian dominating
function of G, the following conclusions can be drawn:
(1) If fj = 0(0 ≤ j ≤ m− 1), then fj−1 + fj+1 ≥ 2.
(2) For m ≡ 0(mod 3), the following conclusions hold
true: if f0 = 0, then f1 ≥ 0; if f0 = 1, then f1 ≥ 0.
Moreover f0 + f1 + f2 ≥ 2, and fm−1 + fm−2 + fm−3 ≥ 2.
(3) For m ≡ 1(mod 3), the following conclusions hold
true: if f0 = 0, then f1 ≥ 1; if f0 = 1, then f1 ≥ 0.
When f0 + f1 ≥ 1, fm−1 + fm−2 ≥ 2.
(4) For m ≡ 2(mod 3), the following conclusions hold
true: if f0 = 0, then f1 ≥ 1; if f0 = 1, then f1 ≥ 0.
When f0 + f1 + f2 ≥ 2, fm−1 + fm−2 ≥ 2.
(5) fj−1 + fj + fj+1 ≥ 2(2 ≤ j ≤ m− 3).

Proof : (1) If fj = 0(0 ≤ j ≤ m − 1), then f(v0,j) =
f(v1,j) = f(v2,j) = 0, then

fj−1 + fj+1 =
2∑

i=0

f(vi,j−1)+
2∑

i=0

f(vi,j+1)

= (f(v0,j−1) + f(v2,j−1) + f(v0,j+1)

+ f(v2,j+1)) + (f(v1,j−1) + f(v1,j+1))

≥ 1 + 1

≥ 2.
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or

fj−1 + fj+1 =
2∑

i=0

f(vi,j−1)+
2∑

i=0

f(vi,j+1)

= (f(v0,j−1) + f(v2,j−1) + f(v0,j+1)

+ f(v2,j+1)) + (f(v1,j−1) + f(v1,j+1))

≥ 0 + 2

≥ 2.

In summary, there is fj−1 + fj+1 ≥ 2.
(2) If f0 = 0, according to this theorem (1), it follows that:
fm−1 + f1 ≥ 2. If f1 ≥ 0, then fm−1 ≥ 2. Assuming
f1 = 0, by this theorem (1), we have: f0 + f2 ≥ 2, implying
that f2 ≥ 2;

If f0 = 1, then at least one of f(v0,0) and f(v1,0) is equal
to 0. Now, if fm−1 ≥ 1, then f1 ≥ 0. Suppose that f1 = 0,
according to this theorem (1), we have f0+f2 ≥ 2, implying
that f2 ≥ 1;

In summary, we can conclude that f0+f1+f2 ≥ 2. Based
on the same principle, we can infer that fm−1 + fm−2 +
fm−3 ≥ 2.

(3) If f0 = 0, according to this theorem (1), we have: fm−1+
f1 ≥ 2. If f1 ≥ 1, then fm−1 ≥ 1, implying that at least one
of f(v0,m−1) and f(v1,m−1) is equal to 0, we can deduce
that fm−2 ≥ 1;

If f0 = 1, then at least one of f(v0,0) and f(v1,0) is equal
to 0. Now, if fm−1 ≥ 1, it implies that f1 ≥ 0, and at
least one of f(v0,m−1) and f(v1,m−1) is equal to 0, we can
deduce that fm−2 ≥ 1;

In summary, when f0+f1 ≥ 1, there is fm−1+fm−2 ≥ 2.

(4) If f0 = 0, according to this theorem (1), we have: fm−1+
f1 ≥ 2. If f1 ≥ 1, then it implies that fm−1 ≥ 1. Let’s
consider the case when f1 = 1. In this scenario, there exist
vertices in V 1 with a function value of 0. As a result, we
can conclude that f2 ≥ 1. Now, let’s suppose that fm−1 = 1.
In this situation, there are vertices in V m−1 with a function
value of 0. Hence, fm−2 ≥ 1;

If f0 = 1, it implies that at least one of f(v0,0) and f(v1,0)
is equal to 0. Now, if fm−1 ≥ 1, we can deduce that f1 ≥
0. Let’s consider the case when f1 = 0. According to this
theorem (1), we have f0 + f2 ≥ 2, which means f2 ≥ 1.
Now, let’s assume that fm−1 = 1. In this scenario, there exist
vertices in V m−1 with a function value of 0, thus fm−2 ≥ 1;

In summary, when f0 + f1 + f2 ≥ 2, there is fm−1 +
fm−2 ≥ 2.

(5) If fj = 0, it is known from this theorem (1) that fj−1 +
fj+1 ≥ 2, so fj−1 + fj + fj+1 ≥ 2; If fj = 1, suppose that
f(v1,j) = 1. In this case, at least one of f(v0,j) and f(v2,j) is
equal to 0. Thus, we can deduce that f(v1,j−1)+f(v1,j+1) ≥
1. In summary, fj−1 + fj + fj+1 ≥ 2.
Theorem 2.9. Let G be the strong product of the cycles C3

and Cm, where m ≥ 3, then γI(G) ≥
⌈
2m
3

⌉
.

Proof : The following are categorical discussions of the
cases when m = 3 and m ≥ 4.

Case 1. m ≥ 4;
From Theorem 2.8, for m ≡ 0(mod 3), f0 + f1 + f2 ≥

2, fm−1 + fm−2 + fm−3 ≥ 2; for m ≡ 1(mod 3), when
f0 + f1 ≥ 1, fm−1 + fm−2 ≥ 2; for m ≡ 2(mod 3), when

f0 + f1 + f2 ≥ 2, fm−1 + fm−2 ≥ 2. fj−1 + fj + fj+1 ≥
2(2 ≤ j ≤ m− 3).

When m ≡ 0(mod 3), we have

w(f) =
m−1∑
j=0

fj = (f0 + f1 + f2) +
m−5∑
j=4

(fj−1 + fj + fj+1)

+ (fm−3 + fm−2 + fm−1)

≥ 2 +
2(m− 6)

3
+ 2 =

2m

3
.

When m ≡ 1(mod 3), we have

w(f) =
m−1∑
j=0

fj = (f0 + f1) +
m−4∑
j=3

(fj−1 + fj + fj+1)

+ (fm−2 + fm−1)

≥ 1 +
2(m− 4)

3
+ 2 =

2m+ 1

3
.

When m ≡ 2(mod 3), we have

w(f) =
m−1∑
j=0

fj = (f0 + f1 + f2) +
m−4∑
j=4

(fj−1 + fj + fj+1)

+ (fm−2 + fm−1)

≥ 2 +
2(m− 5)

3
+ 2 =

2m+ 2

3
.

Case 2. m = 3;
According to Theorem 2.8, we have w(f) = f0+f1+f2 ≥

2. Therefore γI(C3 ⊗ C3) ≥ 2 =
⌈
2m
3

⌉
.

In summary, γI(G) ≥
⌈
2m
3

⌉
.

Corollary 2.7 establishes γI(C3 ⊗ Cm) ≤
⌈
2m
3

⌉
, and

Theorem 2.9 proves γI(C3 ⊗ Cm) ≥
⌈
2m
3

⌉
. Therefore, the

definite value of γI(C3 ⊗ Cm) that can be deduced is as
follows:
Theorem 2.10. Let G = C3 ⊗ Cm, m ≥ 3, then γI(G) =⌈
2m
3

⌉
.

III. SIMULATION EXPERIMENT

The cartesian product graph of cycles, known for its
widespread applications in mathematics and computer sci-
ence, constitutes a network structure composed of smaller
graphs. Information regarding the Italian domination number
of this network is provided in reference [12]. Specifical-
ly, for n ≥ 5, γI(Cn · C5) ≥ 2n; for n ≥ 4, when
m ≡ 2, 6, 7(mod 8), γI(Cn · C4) =

⌈
3n
2

⌉
+ 1; otherwise,

γI(Cn · C4) =
⌈
3n
2

⌉
; for n ≥ 3, when m ≡ 0(mod 3),

γI(Cn · C3) = n; otherwise, γI(Cn · C3) = n+ 1.
Based on existing conclusions, the strong product of cycles

is regarded as an extension of its cartesian product, has
stronger connectivity and smaller diameter. This implies that,
compared to the cartesian product of cycles, the strong
product of cycles manifests a more efficient topological struc-
ture. To compare the Italian domination numbers of the two
graphs, we conduct simulation experiments to investigate the
Italian domination numbers of cartesian and strong product
graphs of cycles for various orders. The specific comparative
results are illustrated in Figures 5 and 6, revealing the relative
magnitudes of their Italian domination numbers. This further
emphasizes the superiority of the strong product of cycles
over its cartesian product in terms of topological structure.
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Fig. 5. The variation of Italian domination numbers for Cn ·C3 (a), Cn ·C4

(b) and Cn · C5 (c) with respect to the order of factor graphs

Figure 5(a) corresponds to the scale of orders 3 ≤ n ≤ 30
and m = 3, Figure 5(b) to the scale of orders 4 ≤ n ≤ 30
and m = 4, Figure 5(c) to the scale of orders 5 ≤ n ≤ 30
and m = 5, and Figure 6 to the scale of orders 3 ≤ n ≤ 30
and 3 ≤ m ≤ 30. Through comparison, it is observed that
when the order is fixed, the upper bounds of the Italian
domination number of Cn ⊗ Cm is consistently smaller
than the lower bound or determined value of the Italian
domination number of its cartesian product. As the order
increases, the difference between the two also gradually
enlarges. This indicates that, under the conditions of ensuring
network stability and information propagation, the strong
product network of cycles requires fewer controlled nodes.
With the expansion of the network scale, this advantage

Fig. 6. The variation of Italian domination number for Cn ⊗ Cm with
respect to the order of factor graphs

becomes more pronounced.

IV. CONCLUSION

This paper primarily delves into the Italian domination
number of the strong product of two cycles. It establishes a
precise bound for the Italian domination number of Cn⊗Cm

by devising recursive Italian dominating functions. Further-
more, it rigorously determines the exact value of the Italian
domination number of C3 ⊗ Cm through a mathematical
derivation, yielding γI(C3 ⊗ Cm) =

⌈
2m
3

⌉
.
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