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Abstract 

In this paper, we have developed a block cipher 
by using the modular arithmetic inverse of a key 
matrix. The key matrix is generated by taking the key 
in the form of twenty-eight numbers, wherein each 
number is represented in terms of seven binary bits. 
The encryption is carried out by using the key matrix 
containing binary bits. The decryption is performed 
by using the modular arithmetic inverse of the 
matrix.  

I. INTRODUCTION 

Majority of the block ciphers found in the 

literature are based upon Feistel Cipher [1]. The 

basic elements of this sort of cipher are diffusion 

and confusion, and they are achieved by mixing 

and permuting the elements of a plaintext that is to 

be encrypted. Initially, Feistel [2, 3] proposed that 

ciphertext can be obtained by operating with a 

matrix on a given plaintext. However, immediately 

he came to the conclusion that this type of cipher 

can be broken as this is essentially a variant of Hill 

cipher, which can be readily broken by known 

plaintext attack. Subsequently, he introduced a 

network, known as classical Feistel network, which 

involves a round function, wherein the number of 

rounds is sixteen. Then he has developed a cipher. 
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In a recent paper, Sastry and Janaki [4] have 

developed a systematic procedure for obtaining the 

modular arithmetic inverse of a matrix, and have 

shown that the Hill cipher can be modified 

appropriately so that no cryptanalytic attack is 

possible. 

In the present paper our interest is to develop a 

block cipher, which makes use of a matrix in the 

process of encryption and the modular arithmetic 

inverse of the matrix in the process of decryption. In 

this analysis, we use a matrix consisting of binary 

elements and make use of the arithmetic with 

modulo-2. In this, we have developed the cipher in 

stages: firstly for a block of 14 binary bits and then 

for 28 bits, and ultimately, for 56 bits. We have also 

discussed the cryptanalysis, which indicates very 

clearly that no cryptanalytic attack can break the 

cipher in anyway. 

II. DEVELOPMENT OF THE CIPHER 

  Consider a plaintext vector ‘P’, having ‘n’ 

components. Let P = (p1, p2, . . . , pn)
T,  in which pi,  i 

= 1 to n are either ‘0’ or ‘1’, and the superscript T 

denotes the transpose of the vector. Let K = [Kij], i = 

1 to n and j = 1 to n be an n x n matrix in which all 

Kij are binary elements i.e. either ‘0’ or ‘1’. Let C = 

(c1, c2, . . ., cn)
T be the corresponding cipher text.  

 We get the cipher text C by using the relation  

C = KP mod 2.      (2.1) 

As the cipher given by (2.1) is similar to the Hill 

cipher, we know that it can be readily broken by 

known plaintext attack [1]. In order to overcome this 
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difficulty, we have adopted an iterative method 

indicated below. 

Let us denote P by P0 and C by C0. Then (2.1) can 

be written as  

C0 = KP0 mod 2.     (2.2) 

Let P1 = C0   K1,    (2.3) 

where K1 is the transpose of the first row of the 

matrix K, and   is the XOR operation. 

Then the ciphertext corresponding to the first 

iteration can be written as  

C1 = KP1 mod 2.     (2.4) 

Similarly, we can obtain the cipher text in the 

second iteration by using the relations: 

  P2 = C1  K2     (2.5) 

and C2 = KP2 mod 2,    (2.6) 

where K2 is the transpose of the second row of the 

matrix K. 

In general, we can write the iteration scheme as  

  Pi = Ci-1   Ki,    (2.7) 

and Ci = KPi mod 2, i = 1 to n.   (2.8) 

 Similarly, iterations are carried out by using the n 

columns and the two diagonals of the matrix K in 

the place of the rows in (2.7). Thus we get the 

ciphertext in its final form. Now, on performing the 

reverse operations, we carryout decryption and 

obtain the plaintext. 

  In what follows, we design algorithms for 

encryption and decryption, and also mention a 

procedure for obtaining the modular arithmetic 

inverse, K-1, of a given matrix K. 

III. ALGORITHMS FOR 

ENCRYPTION AND DECRYPTION 

AND PROCEDURE FOR K-1 

Algorithm for Encryption 

{ 

1. Read P0, n, K 

2. C0 = KP0 mod 2 

3. for i =1 to n do 

    { 

  Pi = Ci-1  Ki   // Ki is the transpose 

of the ith row of K 

   Ci = KPi mod 2   

    } 

4.  D0 = Cn 

5.   for i =1 to n do 

    { 

 Pi = Di-1  Li    // Li is the ith 

column of K 

     Di = KPi mod 2  

    } 

6.  E0 = Dn 

7.   for i =1 to 2 do 

    { 

   Pi = Ei-1 Mi //M1 is the diagonal 

of K which goes from left to right, and M2 is 

the diagonal of K that goes from right to left. 

    Ei = KPi mod 2 

  } 

8.  C = E2 

 } 

Algorithm for decryption 

 { 

1. Read C, n, K 

2. Find K-1   // K-1 is the modular  

    arithmetic inverse of K. 

3. E2 = C 

4. for i = 2 to 1 do 

   { 

   Pi = K-1 Ei mod 2 

   Ei-1 = Pi
 Mi 

   } 

5. Dn = E0 

6. for i = n to 1 do 

   { 

   Pi = K-1 Di mod 2 

   Di-1 = Pi Li 

   } 
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7. Cn = D0 

8. for i = n to 1 do 

   { 

   Pi
 = K-1Ci mod 2 

   Ci-1 = Pi  Ki 

   } 

9.  P0 = K-1C0 mod2 

} 

Modular Arithmetic Inverse of a Matrix 

Let A be an n x n matrix, and B be its 

modular arithmetic inverse with mod N. Then we 

have  

AB mod N = I,     (3.1) 

where N is any positive integer. 

In view of (3.1), we can write  

AB = I + NE,      (3.2) 

where E is an n x n matrix containing the quotients 

obtained on dividing the elements of AB by N.  

Let us suppose that A is a non-singular matrix, and 

its inverse denoted by A-1 is obtained by using 

Gauss-Jordan elimination method with pivoting 

[5].  

Operating on both the sides of (3.2) with A-1 we get 

B = A-1 + NA-1E     (3.3) 

We know that A-1 =


][A ji
, i =1 to n, j = 1 to n, 

       (3.4) 

where Aij are the cofactors of aij,, which are  

elements of A, and  is the determinant of A. 

Now (3.3) can be written as  

B = [Aji] + N [Aji] E.    (3.5) 

Let D be the multiplicative inverse of  with 

respect to N.  

Then we have D mod N = 1.  (3.6) 

This multiplicative inverse D exists only when  

and N are relatively prime to each other. 

On multiplying (3.5) with D, we get 

D  B = D [Aji] + ND [Aji] E.  (3.7) 

From (3.7) we have  

(D B) mod N = D [Aji] mod N. (3.8) 

Thus we have  

B = [DAji] mod N.    (3.9) 

Here it is to be noted that the modular arithmetic 

inverse of a matrix A exists only when  

i) A is non-singular, and  

ii)  is relatively prime to N. 

In the present analysis, we take N = 2, and obtain the 

modular arithmetic inverse of K such that  

KK-1 mod 2 = K-1K mod 2 = I.  (3.10) 

IV. Illustration of the cipher 

Let us consider the plaintext “The Sun rises in 

the East”. Firstly let us focus our attention on the 

first two characters of the plaintext given by Th. By 

using the ASCII code, these two characters can be 

represented as a pair of numbers given by 84 and 

104 respectively. 

Let us suppose that the key comprises 28 numbers 

given by  

{65, 71, 95, 121, 48, 31, 99, 81, 42, 19, 23, 41, 37, 

19, 17, 67, 87, 105, 119, 13, 27, 31, 118, 117, 4, 110, 

99, 35},   (4.1) 

wherein each number is less than or equal to 127. 

We arrange all these numbers in the form of a 14 x 2 

matrix such that each row contains only two adjacent 

numbers of the key. The first row contains 65 and 

71. The second row contains 95 and 121, and so on. 

These numbers can be expressed in their binary 

form. Thus we have the key matrix K given by 

              



















































11000101100011

01110110010000

10101110110111

11111001101100

10110001110111

10010111110101

11000011000100

11001001010010

10010101110100

10001000101010

11001011100011

11111000000110

10011111111101

11100011000001
                                                           

This is a 14 x 14 matrix consisting of binary bits 0 

and 1. The plaintext – Th, represented by the 

K = .     (4.2) 
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decimal numbers 84 and 104, is also converted into 

its binary form. Thus we have the vector 

[ ]T00010110010101   (4.3) 

On adopting the procedure given in the encryption 

algorithm, given in section 3.1, we perform 30 

rounds (by including 14 rows, 14 columns, and 2 

diagonals appropriately) and get the cipher text 

given by  

[ ]T11111101010011   (4.4) 

Similarly, the ciphertext corresponding to the 

plaintext “The sun rises in the East” is obtained as  

10100010100011110101101100001101111110011

01010101100110001011001110010011111001111

01100110111111100110100001110100111111111

000011110101110001100110000011111. (4.5) 

In order to perform decryption, the receiver 

who gets the key from the sender finds the key 

matrix, and obtains its modular arithmetic inverse 

(K-1) by employing the relations  

KK-1 mod 2 = K-1K mod 2 = I.. 

The value of the determinant of K, denoted by  is 

found to be -85. As this is an odd number, it is 

relatively prime to 2. Hence, the modular arithmetic 

inverse (K-1) exists, and is given by  

              



















































00010000101110

00101111110010

11001110100001

01110010100110

11011010010100

01010011101010

00100110000100

11110101011100

10001100000001

10100110011011

11011110010110

11101110000100

10110111001111

00100010100100
   

We can readily verify that K-1 K mod 2 = I. 

On using the decryption algorithm given in 

section 3.2, we obtain the plaintext corresponding 

to the ciphertext given by (4.5). 

V. Cryptanalysis 

Let us carryout cryptanalysis in the above 

case.  As the key matrix is of size 14 x 14, the size 

of the key space is 2 196  (210)20  1060. Thus one 

cannot break the cipher by applying brute force 

attack. 

Now let us consider the case of the known 

plaintext attack. Here, we have as many plaintext - 

ciphertext pairs as we want. Thus we have the 

known plaintext vector P0 and the ciphertext vector 

C obtained after 30 rounds by adopting the 

encryption algorithm. From the algorithm, we have 

C0  = KP0 mod 2 

C1  = K (C0 K1) mod 2  

= K (KP0 mod 2   K1) mod 2. 

C2 = K ((K(KP0 mod 2   K1) mod 2)  

 K2) mod 2. 

This is the relation between the plaintext P0 and 

the ciphertext C2 after two rounds. After 30 rounds, 

the final ciphertext C will be connected to P0 by 

means of a relation, which contains K and mod 2, 

each occurring 31 times, and the   operation 

involves the columns, the rows, and the diagonals of 

the key matrix, wherein the elements of the matrix 

are unknown. As this relation is obviously a highly 

non-linear one, the cipher cannot be broken by this 

approach too. 

It is worth noticing that the non-linearity 

induced by the repetitive process, involving the key 

matrix, its elements, and the modulo-2 operation 

occurring several times, does not allow any 

cryptanalytic attack to break the cipher.  

Here, it is to be noted that we have taken each 

block of the plaintext such that it consists of only 

two characters. When the process of encryption is 

repeated for a long plaintext, the statistical 

properties of the ciphertext may repeat and reveal 

the characters of the plaintext as a whole. This 

drawback can be overcome by taking blocks with 

more number of characters each time. 

 K-1 = .   (4.3) 
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VI. Modified cipher for larger block size 

Let us focus our attention on the plaintext, 

containing four characters, given by  

“Theb ”.           (6.1) 

Let us represent the characters in the form of 

numbers given by their ASCII codes and convert 

the same into 28 binary bits.  Then we have the 

plaintext in the form 

 T1010000010001100101010100110 . (6.2) 

Let K be a key matrix of the size 28 x 28. It can be 

written in the form 

K = 







   ZY

R   Q
,         (6.3) 

where Q is a 14x14 matrix, which is formed by 

taking the key in the form  

[65, 71, 95, 121, 48, 31, 99, 81, 122, 119, 23, 41, 

37, 11, 114, 67, 87, 105, 117, 115, 127, 31, 118, 

116, 124, 113, 98, 35]. (6.4) 

This key consists of 28 numbers. It may be noted 

here that Z = TQ . R is obtained by interchanging 

the first and last rows of Q, the second and last but 

one rows of Q, and so on. The matrix Y is obtained 

by making the last column of Q the first row of Y, 

the last but one column of Q as the second row of 

Y, and so on.  

Thus we have 

K=































































































1101111111111111111110011011

1001101101010111111011011100

0011000001010101111110110110

0001010110011001010000010010

0111100001111001111101100010

1110110011001010110110111010

0110111001101100011101101011

0001110110101101101110011011

1011011011101011101100110010

0111110110001001111000011110

0101000001001000010101100110

0111111011011000110000010101

1111101101110010011011010101

1111111001101111011111111111

1110001100000111000100100011

1001111111110110001110011111

1111100000011000101110110111

1000101110001111111001111111

1110111010111111001111010111

1001010111010010010111110101

1101000101001011000010100111

1100001010011111010001010010

1001011111010110010101110100

110011110101111110111010111

1111100111111110001011100011

0010111011011111111000000110

1000111001111110011111111101

1100010010001111100011000001

1

. (6.5)                                        

Now, on using the key matrix K given by (6.5), 

and the plaintext given in (6.2), we apply the 

encryption algorithm presented in section 4.1, and 

obtain the ciphertext given by  

 T1111110011100111000101101100 . (6.6) 

As n is 28, here we have to perform 58 rounds (28 

with rows, 28 with columns, and 02 with diagonals). 

As the determinant of K, denoted by  = 

71576.967967  71577, it is relatively prime to 2. 

Thus the modular arithmetic inverse of K can be 

obtained by applying the procedure given in section 

3.3. Hence, 
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K-1=































































































0100110001011111101111111001

1110001101010101001101110001

1110001000110011011001010000

0101100001001101110101010101

1001011000100101001111100010

0101010011100101101110101110

1101110110101001001110011001

0011011000000011000010010001

1000100111111110100011011111

0010110111011110001101100001

0110010010110010010101101010

1111111011011101010100101001

1101110011000010110111011100

1011000101110000100010001111

1110100011001010011111110111

1010101100011110001110110010

0011000100011100001010011011

1100100001101010101010101110

1001000110100101000111110010

1001110010101001110101110110

0101011011101110011001110010

0000000110110010001001000011

1111111001000111111011000101

1110111011010010000110110001

0011010010011001010110101001

1110110111111110010100101010

0000110011101100111011101101

0011101000110111110001000100

. (6.6) 

On using the K-1 given in (6.7), and the 

ciphertext given in (6.6), and applying the 

decryption algorithm, we obtain the original 

plaintext. In this case, the plaintext is of length 28 

binary bits. This is also a short one. Thus we 

further generalize this procedure by considering a 

plaintext of length 56 bits and obtain the 

corresponding ciphertext as shown in Fig. 1.  

In the process of encryption, we use the 

procedure for encryption (PE) described earlier in 

this section (Section 6). In the process of 

interlacing (IL), we mix the string W on the left 

side with the string W on the right side such that 

the first bit of the right side W is next to the first bit 

of the left side W, and the second bit of the right 

side W is next to the second bit of the left side W, 

and so on. And this process is continued till we 

exhaust both the Ws. On the whole, the process of 

encryption with interlacing is carried out for 

sixteen rounds. 

The process of decryption, which is a reverse 

process of encryption, can be schematically 

represented as shown in Fig. 2. Here we adopt the 

decryption procedure, which is already descried in 

this section. In the process of decomposition, we 

keep the first bit of 2W in the left side W as the 

first bit, and the second bit of 2W as the first bit of 

the right side W, and this process is continued till all 

the bits of 2W are exhausted. The process of 

decryption, which involves decomposition, is also 

carried out for sixteen rounds. 

 

 

       2W 

   W          W 

 

 

 

 

 

       2W 

  W         W 

 

 

 

 

 

       2W 

  W         W 

 

 

 

 

        2W 

 

 

 

Fig. 1. Process of Encryption for 56 bits Plaintext 

 

Procedure for 
Encryption 

(PE)

PE 

Ciphertext: 
2W = 56 bits 

Plaintext:  
2W = 56 bits 

Interlace 
(IL) 

Procedure for 
Encryption 

(PE) 

Interlace 
(IL) 

PE 

PE PE 

Interlace 
(IL) 
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     2W 

    W                     W 

 

 

    2W 

 

     W              W 

 

 

      2W 

 

 

 

      W                                   W 

                          

         

           2W 

 

               

Fig. 2. Process of Decryption for 56 bits Ciphertext 

VII.  Avalanche Effect 

In order to check up the robustness of the 

algorithm, firstly we have focused our attention on 

the plaintext “Theb Sunb ” and obtained the 

corresponding ciphertext using the key K given by 

(6.5). The ciphertext is  

11010010110001000011011101011111001010011

001100111111111.     (7.1)  

Then on changing the plaintext in only one bit 

position, i.e. by taking the plaintext as 

“Sheb Sunb ”, we have found the corresponding 

ciphertext as  

010010110110010101000001101111111101010110

00011110111001.     (7.2) 

On comparing (7.1) and (7.2), we find that the 

ciphertexts under consideration differ in large 

number of bits (28 bits out of 56 bits). This clearly 

indicates that the algorithm exhibits a very strong 

avalanche effect. Now let us consider the case 

wherein the key is changed in one bit position, i.e. 

by replacing 48 by 50. Then the key assumes the 

form  

[65, 71, 95, 121, 50, 31, 99, 81, 122, 119, 23, 41, 37, 

11, 114, 67, 87, 105, 117, 115, 127, 31, 118, 116, 

124, 113, 98, 35]. (7.3) 

In this case the ciphertetxt for the plaintext 

“Theb Sunb ” is given by 

111101110011110010110001101001010001100101

11101101100101.     (7.4) 

From (7.1) and (7.4), it is readily noticed that the 

algorithm once again shows a very strong avalanche 

effect.  

VIII. Computational Experiments and 

Conclusions 

In this paper, by using the basic ideas of 

Feistel’s approach and the modular arithmetic 

inverse of a matrix, we have developed a block 

cipher for block size of 56 bits.  The algorithms 

developed for encryption and decryption are 

implemented in C language. Computational 

experiments are carried out with plaintexts 

containing ASCII characters. 

The results obtained in this analysis indicate 

that the encryption and the decryption are fully in 

agreement with each other. The ciphertext obtained 

for the plaintext “The Sun rises in the East” is shown 

in fig. 3. 

Plaintext:  The Sun rises in the East 

Ciphertext:     

PD PD 

Decompose 

Procedure for 
Decryption (PD) 

Plaintext: 
2W = 56 bits 

Ciphertext:  
2W = 56 bits 

Decompose 

PD PD 

Decompose 

Procedure for 
Decryption (PD)
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11010010110001000011011101011010100110100

01100101010000011111000110000110111001101

10111001011010011110011110010110110110111

01000101101100001010000011101001101000110

01011110101110111000100000000011111010001

0000001000000100000. 

Fig. 3. Plaintext and Ciphertext. 

A plaintext in the form of a program and its 

corresponding ciphertext are given in Appendix A. 

In the development of the cipher, the secret 

key contains only 28 numbers (see (4.1) and (6.4)). 

Here, it is to be noted that whatever may be the size 

of the key matrix K (see (4.2) and (6.6)) and the 

size of the plaintext, the size of the secret key 

remains the same, and of course this is to be sent to 

the receiver by the sender in a secured manner.  

From the above analysis, it is worth noticing 

that this cipher is a very strong cipher as it cannot 

be broken by any cryptanalytic attack. 
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Appendix A 

Plaintext: #include<stdio.h> 

#include<conio.h> 

#include<stdlib.h> 

#include<ctype.h> 

main() 

{ 

  FILE *fp1,*fp2; 

  char c,d; 

  clrscr(); 

 fp1=fopen("ptext.txt","r"); 

 fp2=fopen("dctext.txt","r"); 

 while(((c=getc(fp1))!=EOF)&&(d=

getc(fp2))!=EOF) 

  { 

   if(c!=d) 

   { 

    printf("both files are 

not same\n"); 

    getch(); 

    exit(1); 

   } 

  } 

 printf("Both files are same\n"); 

 fclose(fp1); 

 fclose(fp2); 

 getch(); 

 return 1; 

} 
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Ciphertext:  

01101001011111101111100010101000011100111

00111001101010100010000101111001111101100

10011111111010101011001001011101101100100

10001111101111001111100001100001010001110

11001111111110011110111111000110011001011

11001111010000100101100001001111001111000

00010101101001011111101111100010101000011

10011100111001101010100010000101111001111

10110010110001111111111110001000111010111

01110010111010110100101000011100111101011

00101010110100101001011000110110100001011

10000010000010011001010011100101101100110

10000111101010011111000001010101010010100

10101000110010011101101101000001011000010

01100010011001111110101011100101111101101

10101001000101111001101010101011011111111

01011010010111000111011001000010100000110

11101101010100011011011011101001111101001

00011101011011001000001100110101000111011

01101110001011110101000100100100110100100

10110011100010001101111001100001001011010

01101001101001010100111101001000100001101

01010000100110000011010111000101100001110

11000111000110010001110110111100000100010

11110111000010001000100000100000101100100

10111101011111001100101010111011011100001

00101011110101100001001001000111110100011

00101111101000011111110011101011011101101

11000001001100000000110010000011001010010

01011100110100111001101011010000100011101

10000110000100001010100011010010000101000

10011110011100110011100110111110000111110

01000111100010110101110111110011010110010

00001100100010010111000010110100000110001

10111101101100101001101001000111000011100

11011000100001000010001000111101100100100

01100001010011100001001011100110010000011

00111111101100100111111000011111010010101

00110011100111111111010000001000001001111

100001000110001100011000000110101001101010

011111001110000110011000000110111111111001

110110111011000001000001101011010110001000

010101001101110111100011000110110010010100

111111010110010001110001010010110000100100

001100011010000011000101110010110111110011

011001001110000100010000011000010010011000

100010011000010001110001010100001101110100

001101100111111000101010000111101010010111

111001001000111010001001001010111111010011

100001110000010101111011001101011001100001

100001001010111010001001001010111111010010

100011001110011000000111110101000100011100

001111110110111010001001001010111111010000

001001011011110000101011111010100111101110

001010000001110010110111001001010000111000

001010100001000101101101011010000100100011

000000101101010010111111010000010010110111

100001001011001001010010111011000111100000

011000101111000011110110011101010100111000

110000100001010100011010001010000111011010

010011110010111001010111101001011100110100

001011010000011000110111111100110010101011

101101110001110011101000111010110110011010

011001010000010110101111011010000111100111

001011001011001000010111011110011000101100

110110101101011010001111101010001110100010

011101000011111011110011001100011001100100

000101001000100011001000100011010011010011

01001011110. 
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