

Case Based Reasoning with State Transition Mechanism for
Problem-Solving in AI

Name: Arijit Chatterjee

Address: Vishwakarma Institute of Technology,
666, Upper Indira Nagar, Bibwewadi,

Pune, Maharashtra, India
E-Mail Address: techno_savvy81@yahoo.com

ABSTRACT
A method as an enhancement to Case Based Reasoning (CBR)
systems, where each solution is treated as a case and a case database is
used to search for its solution. However, unlike CBR systems, every
Problem Solution Procedure is treated as a transition of an initial
(present) problem state, in a problem domain into a final goal state in
the solution domain called as a solution state, through a path of
intermediate states in the problem and solution domain.
Instead of a case database, a path and pattern database is used that
stores all problem and solution states and the paths to either of them
including the intermediate states and the elements and methods
responsible for state transition. Further on, instead of finding
similarities with the case database, the path and pattern database is
used to find the most feasible solution if one already exists, else a path
is created using learning and the database is continuously enhanced to
encompass paths to all tractable solutions, considering the present
stock of resources and strategies to utilize those resources. The
problem of identification and definition of problems is reduced
considerably by utilizing causes and symptoms previously identified
to be compared to those that have actually occurred and thus reducing
the problem domain to a smaller problem space.

KEYWORDS
State, Path, Pattern, General Problem Solver, Case Based Reasoning,
Learning.

I. INTRODUCTION:
There is need to develop a machine that has an ability to accept
external knowledge found in sources like books, articles,
databases e.t.c as knowledge elements and transform it into
machine-simulated tacit knowledge in the form of intellectual
activity support systems. They should assist during 4 steps of
intellectual activity:
1. Observation
2. Producing propositions
3. Selection and verification of appropriate propositions
4. Memorizing (converting data to information to create new
knowledge)
Since these machines have no human restrictions on knowledge
volume, it is possible to input all existing knowledge into them
that can then be used for adaptive learning. (Konstantin 1999).
The General Problem Solver (GPS) (Newell & Simon 1972) was
a theory of human problem solving stated in the form of a
simulation program (Ernst & Newell, 1969). GPS was intended
to provide a core set of processes that could be used to solve a
variety of different types of problems. The critical step in
solving a problem with GPS is the definition of the problem

space in terms of the goal to be achieved and the transformation
rules.
A problem can be analysed into specific components. It
consists of two situations, the present one which we will call
the initial state, and the desired one, which we can call the goal
state. The agent's task is to get from the initial state to the goal
state by means of series of actions (Amarel 1968) that change
the state. The problem is solved if such a series of actions has
been found, to reach the goal.
Such a search process requires a series of actions, carefully
selected from a repertoire of available actions to bring the
present state closer to the goal (Heylighen 1988). Different
actions will have different effects on the state. Some of these
effects will bring the present state closer to the goal; others will
rather push it farther away. To choose the best action at every
moments of the problem-solving process, the agent needs some
knowledge of the problem domain (Simon 1986). This
knowledge will have the general form of a production rule: if
the present state has certain properties, then perform a certain
action. Such heuristic knowledge requires that the problem
states be distinguished by their properties (Korf 1980).
A CBR system reasons by remembering previous decision
problems (Gupta & Montazemi 1997): it uses their outcome to
evaluate new decision problems (Kolodner & Mark 1992). The
processes followed by a CBR system are (Riesbeck & Schank
1989, Sternberg 1977), to assist a decision maker (DM),
previous case(s) that closely resemble the new decision
problem (new case) is (are) retrieved. The solution of the
previous case is then mapped as a solution for the new case.
The mapped solution is adapted to account for the differences
between a new case and a previous case.
Problem states will generally involve objects, which are the
elements of the situation that are invariant under actions, and
properties or predicates, which are the variable attributes of the
objects. A problem state then can be formulated as a
combination of proposition, where elementary propositions
attribute a particular predicate to a particular object (Heylighen
1988). The different values of the predicates determine a set of
possible propositions, and thus of possible states. Since states
that differ only in one value of one predicate can be said to be
"closer" together than states that differ in several values, the
state set gets the structure of a space. Actions can now be
represented as operators or transformations, which map one
element of the state space onto another.
Every Problem Solution Procedure can thus be treated as
transition of an initial problem state, in a problem domain into a

IAENG International Journal of Computer Science, 32:4, IJCS_32_4_14
__

(Advance online publication: 12 November 2006)

mailto:techno_savvy81@yahoo.com

final goal state in the solution domain, called as a solution state,
through a path of intermediate states.
The solution state at a later point of time may destabilise back
into a problem state. Instead of a case database in a CBR
System, a path and pattern database using GPS concepts can be
used that stores all problem and solution states and the paths to
either through the intermediate states and the elements
interacting with these states to cause state changes though
application of various methods.

Fig 1. Problem and Solution Paths
The path from the problem state to the solution state is called a
forward path and the path from a solution state to a problem
state is called a reverse path. In the forward path, the interacting
elements are called as resources, the methods are called as
utilizations and the intermediate states are called as transient
states. In the reverse path, the interacting elements are called as
problem inducers the methods are called as the causes and the
intermediate states are called as symptom states.
The collection of forward paths from one problem state to a
solution state is called a solution pattern and the collection of
reverse paths from one solution state to a problem state is called
a problem pattern. Together they are called as patterns. Note
that the intermediate states of one problem pattern can be
problem state of another pattern and vice-versa. Further on time
is an absolute factor and all pattern points are relative to it.
A set of factors that are essential for shaping any pattern, those
define and shape the problem and its solution procedures into a
path, which cumulatively form a pattern, can be called as
pattern points.
A path and pattern database can be used to find the path to the
most feasible solution; else, a path can be created using
learning techniques. The database is continuously enhanced to
encompass paths to all tractable solutions, considering the
present stock of resources and strategies to utilize those
resources. The problem of identification and definition of
problems is reduced considerably by utilizing causes and
symptoms previously identified to be compared to those that
have actually occurred and thus reducing the problem domain
to a smaller problem space.

Table 1. Table of Pattern Points

II. SCALABILITY OF SOLUTION SPACE: -
The final component we need to decide between actions is a
selection criterion, which tells the agent which of the several
actions that can be applied to a given state is most likely to
bring it closer to the goal. In the simplest case, an action
consists simply of moving to one of the neighboring states.
Each state will then be associated with a certain value, which
designates the degree to which it satisfies the goal. This value is
called "fitness". (Korf 1980).
There are many solutions to problems, which are not ideal/final
solutions or the final solution state has never been reached i.e.
there exists the knowledge of the ideal solution state, but only a
limited path from the initial problem state to a solution state
comparatively closer to the solution state has been defined.
For solving such problems, whose ideal solutions are very
difficult to reach or they haven’t been identified, the person
trying to solve the problem may have to scale down the solution
space to find a solution state, which may not be ideal but gets
the work done, depending upon its fitness value.
The threshold that separates the solution domain from the
problem domain needs to be scaled up or down depending upon
the degree of solution required and thus achieve scalability of
solution space, with the ideal solution always lying in the final
degree.
For problems with more than one solution, the solution with a
higher threshold is called as a higher/enhanced solution and the
solution with a comparatively lower threshold is called a lesser
solution.

III. PATH AND PATTERN DATABASE: -
Here we create a relational database schema that can be utilised
for storing and using the values of the pattern points of a
problem-solution path along with associated time and costs.

TIME
Domains Pattern

Points Problem Solution
States Problem State

Intermediate state:
Symptom
Failure
Transient

Solution State

Methods
(Operators)

Causes Solution Methods/
Strategies

Interacting
Elements

Resources Problem Inducers

Paths Reverse Forward
Pattern Problem Pattern Solution Pattern

Fig 2. Entity Relationship Diagram

3.1 Problem Table: -
This table consists of all details about the problem state.

Problem_State(Problem_State_No*, Problem_State_Category,
Problem_State_Proposition)

o Problem_State_No is a unique key identifying each
problem state.

o Problem_State_Category specifies the category in
which the problem lies in the Problem Domain.

o Problem_State_Proposition is the Problem Definition

3.2 Solution Table: -
This Table consists of all details about the Solution state.

Solution_State(Solution_State_No*,
Solution_State_Proposition)

o Solution_State_No is a unique key identifying each
solution state.

o Solution_State_Proposition is the degree of solution
required which is dependent upon the solution
threshold set.

The solution state proposition is the degree of solution required
and the problem state proposition is the problem definition.

3.3 Intermediate State Table: -
Intermediate states (symptom states and transient states) are the
states when Strategies (tasks for project based approach and
exercises for exercise based approach) and causes are applied
to resources and problem inducers for their utilizations and
causes respectively.

Intermediate_State(Intermediate_State_No*,Intermediate_Stat
e_Category, Intermediate_State_Proposition,
Intermediate_State_Type)

o Intermediate_State_No is a unique key identifying
each intermediate state.

o Intermediate_State_Category specifies the problem
category in which the state lies.

o Intermediate_State_Proposition is the description of
the intermediate state

o Intermediate_State_Type specifies the type of
Intermediate state i.e. Symptom State or Transient
State)

3.4 Interacting Elements Table: -
This Table consists of the details of all Interacting Elements
used in the problem domain

Interacting_Elements(Interacting_Elements_No*,Interacting_
Elements_Name, Interacting_Elements_Type,
Interacting_Elements_Cost, Interacting_Elements_Time)

o Interacting_Elements_No is a unique key identifying
each Interacting Element in the problem domain

o Interacting_Elements_Name specifies the name of
each interacting element.

o Interacting_Elements_Type specifies the type of
interacting element i.e. Problem Inducer or Resource.

o Interacting_Elements_Cost specifies the cost that
needs to be incurred to eliminate a problem inducer or
utilize a resource.

o Interacting_Elements_Time specifies the total time
required to eliminate a problem Inducer or utilize a
resource.

3.5 Method Table: -
This Table consists of the details of all Methods used in the
problem domain

Method (Method_No*, Method_Name, Method_Type,
Method_Cost, Method_Time)

o Method_No is a unique key identifying each Method
in the problem domain.

o Method_Name specifies the name of each method.
o Method_Type specifies the type of each method i.e.

Cause or Strategy.
o Method_Cost specifies the cost that needs to be

incurred to apply a strategy or eliminate/reduce the
effect of a problem cause.

o Method_Time specifies the total time required to
apply a strategy or eliminate/ reduce the effect of a
problem cause.

This table gives the details of all methods with all associated
interacting elements of each method.
Method_Interacting_Elements(Method_No*,
Interacting_Elements_No*, Method_Details)

o Method_Details specifies the details of how an
interacting element interacts with a state through the
given method.

This table gives all methods used for each state:

Method_State (Method_No*, Method_State_No*)

o Method_State_No gives the problem state no, solution
state no or intermediate state no with which the
method is interacting.

3.6 Paths Table: -
This Table consists of all problem (reverse) and solution
(forward) paths with all states achieved including problem
state, solution state and intermediate states.

Path (Path_No*, Problem_State_No*, Solution_State_No*,
Path_Type, Path_Innovated)
Path_No is a unique key identifying each path in the problem
domain.
Path_Type specifies the type of path i.e. reverse or forward.
Path_Innovated specifies whether the path is an innovated path
or not (Takes values either Yes or No).
Problem_State_No and Solution_State_No specifies the initial
and final states of the path depending upon its Path_type, i.e.
Problem State is initial state and Solution State is final state if
the path is of forward type and vice-versa if path is of reverse
type.

This table gives all the intermediate states in each path.
Path_Intermediate_State (Path_No*, Intermediate_State_No*)

4 CREATION OF INNOVATED PATHS & POPULATING
DATABASE: -

Fig 4. Patterns and Innovated Paths
In above diagram, the uncolored circles are the problem and the
solution states and the colored circles are the intermediate steps
that occur due to the application of certain methods to utilize
certain resources, depicted by the double-direction arrows.
From the figure, we can identify two types of paths via:

o The lined paths represent the solution path that needs
to be taken for problem solution through the
application of methods used in well-established
problem solution techniques. This is called as a
solution pattern which is a collection of all solution
paths from a given problem state to a solution state.

o The dotted path represent the path that might have
been taken as innovation during the solution of some
problem. This termed as the innovated solution path.

The same is applicable for identifying problem paths and
innovated problem paths.
We can populate the path and pattern database, with all known
and identified problem/solution paths for each problem
domain.

We then enhance the database with innovated paths, which are
paths that can be logically derived from the combination of
paths and patterns in the database. Using the mapping process
of CBR systems to previously identified paths, innovated paths
to all possible solutions not yet identified, become apparent
when the well-established paths are combined together.
4.1 Steps to generate innovated solution paths
according to steps of Intellectual Activity: -

1. Categorize all problem situations (Observe)
2. Identify all the pattern points in the problem
category (Produce, Select & Verify Propositions).
3. Compare solution paths using the following
algorithm to create innovated paths (Memorize):

1. Start.
2. For each problem state, identify Strategies

applied on it from the solution paths of the
problem category.

3. For every Solution method applied, identify
the transient state achieved by the problem
state.

4. If the state is a solution state, with a path
different from the solution path being
traversed, store the pattern in the path table of
the database as an innovated solution path
and goto step 8, else goto step 5.

5. Find the Strategies applied on the transient
state from the solution paths of the problem
category.

6. For each Solution method applied on the
transient state, check if the state is a solution
state from the solution states of the problem
category.

7. If the state is a solution state, with a path
different from the solution path being
traversed, store the pattern in the path table of
the database as an innovated solution path
and goto step 8, else goto step 5.

8. Perform step 2 until all Strategies applied to
the transient state is processed.

9. Perform step 1 until all Strategies applied to
the problem state is processed.

10. Stop.
The same steps can be applied by replacing problem state with
solution state, solution state with problem state, strategies with
causes and resources with problem inducers to find innovated
problem paths.

4.2 Improvement Criteria: -
The efficiency of problem solving is strongly determined by the
way the problem is analyzed into separate components: objects,
predicates, state space, operators, and selection criteria. This is
called the problem representation.
The factors on which the efficiency of the generation of
Innovated Paths depend on are as follows:

1. Number of Non-Innovated Paths identified in the
database.

2. Number of problem and solution states Database.
3. Degree of categorization of problems.

5 ANALYSING EXISTING & INNOVATED PATHS FOR LEARNING
TO CREATE NEW PATHS:

In simple control problems, the solution is trivial e.g., the
thermostat is an agent whose goal is to reach or maintain a
specific temperature. The initial state is the present
temperature. The action consists in either heating to increase
the temperature or cooling to decrease it. The decision which of
these two possible actions to apply is trivial: if the initial
temperature is lower than the goal temperature, then heat; if it is
higher, then cool; if it is the same, then do nothing. Such
problems are solved by a deterministic algorithm: at every
decision point there is only one correct choice. This choice is
guaranteed to bring the agent to the desired solution.
The situations we usually call "problems" have a more complex
structure. There is choice of possible actions, none of which is
obviously the right one. The most general approach to tackle
such processes is generate and test: apply an action to generate
a new state, then test whether the state is the goal state; if it is
not, then repeat the procedure. This principle is equivalent to
trial-and-error, or to evolution's variation and selection. The
repeated application of ‘generate and test ‘ determines a search
process, exploring different possibilities until the goal is found.
Searches can be short or long depending on the complexity of
the problem and the efficiency of the agent's problem-solving
strategy or heuristic. Searches may in fact be infinitely long:
even if a solution exists, there is no guarantee that the agent will
find it in a finite time.
If there does not exist a path from a given problem state to a
desired solution state, learning through analyzing the existing
paths in the database can be applied to populate the database
with new paths as enhancements to the all the paths identified
till date.
This can be performed as follows: -

o Identify all pattern points in the database
o Apply a breadth first or depth first search for

identifying paths to the possible goal/solution states
(Dean, et al 1999) from all the identified
initial/problem states by applying the methods one by
one to the initial problem.

o Store the new path in the database, and perform steps
3 to 5 until all states in the problem domain have been
covered.

The same can be applied to identify paths from solution state as
the initial state to problem state as the goal state in order to
create new problem paths
Consider the search space shown below:

Fig 5.Search Space

Let us suppose that the state labelled G is a goal state in this
space, and that, as shown, no operators apply to the states I, J,
E, F and H.
A program will start with the initial state A, and try to find the
goal by applying operators to that state, and then to the states B
and/or C that result, and so forth. The idea is to find a goal state,
and often one is also interested in finding the goal state as fast
as possible, or in finding a solution that requires the minimum
number of steps, or satisfies some other requirements.
One approach to deciding which states that operators will be
applied to is called “Breadth-First Search”. In a breadth-first
search, all of the states at one level of the tree are considered
before any of the states at the next lower level. Therefore, the
states would be applied in the order indicated by the dotted blue
line:

Fig 6. Breadth First Search to search Space
Another approach to deciding which states that operators will
be applied to is called “Depth-First Search”. In a depth-first
search, after operators are applied to a state, one of the resultant
states is considered next. Therefore, the order in which the
states of the simple example space will be considered is:

Fig 7. Depth First Search to search Space
If a node is a failure node or there are no applicable operators,
the next node to be considered might be in the level above that
of the current node e.g. Node J, is a failure node, and so the next
node to consider is the remaining node at the level above.
In addition, in this diagram we have assumed that when a state
is considered, all of the applicable operators are applied to the
state. This isn’t always necessary e.g., one could apply only one
of the possible operators to each node, and then one of the
possible operators to the result and so on.
Breadth-First and Depth-First search are sometimes called
“blind” or “knowledge-free” search techniques because they
incorporate no specific information about the problem domain
except that it can be described as a search
These two search techniques have useful properties of their
own, and in many cases, their simplicity makes them more
practical than fancier approaches.
In particular, Breadth-First search can be proved to have the
following properties:

1. If a solution exists in the search space, Breadth-First
search will eventually find it.

2. Breadth-First search will find the shortest possible
solution, measured in terms of the number of operator
applications.

Suppose that there are a number of solutions (perhaps just one)
in a search space. Suppose further that the one at the lowest
level (remember that each level corresponds to one operator
application) is at some level N. From the way, that
Breadth-First search is defined; we know that it will consider
all of the states at level N before it considers any state at a
deeper level. Therefore, if the minimal (or only) solution is at
some level N, Breadth-First search will find it.
Depth-First search can’t be proved to satisfy either of the above
two properties. In particular, if the search space is infinite,
Depth-First search might head down one branch of the search
tree and never return, even though a solution might exist only a
few levels down another branch.
On the other hand, note that for Breadth-First search to find the
minimal solution at level N, it must consider at least 2N search
states. This might take a while, if N is very large at all. Suppose
that in some search domain, there are very many solutions, but
all of them are at least 10 levels into the space. Breadth-First
search will spend lots of time exploring all of the states at all of
the levels below that, while Depth-First search will dive right
down to level 10 and presumably find a solution there.
Another case where Depth-First search performs well is when
most of the space are failure states, or states where no operators
can be applied. In such a search space, it is often best to try
sequences of moves until they are known not to work, and then
to “backtrack” back to the last legal state.

6 CREATION OF A DSS FROM THE DATABASE: -
Here we use the Database for Problem Identification,
Definition and efficient Resource Planning and creation of the
Main as well as Contingency Resolution Procedures for
resource utilization, via:
.

1. Accept statements describing problematic situations
the person having a problem i.e. user, is facing.

2. Parse the sentences to pick up nouns and verbs and put
them in a wordlist.

3. Create a dictionary of words for every problem
category identified and apply a category wise search
of the wordlist from the parsed sentences, to match
with the words in the dictionary, to identify the
problem categories. This can be done through various
ways via:

a. Advanced query expansion and
disambiguation tools, including linguistic
stemming and thesaurus expansion.

b. Custom thesaurus creation.
c. Natural language query input.
d. Automatic highlighting of search terms and

linguistic and thesaurus equivalents.
e. Combined metadata and full text search:
f. Advanced query navigation.

g. Rich query language, including query
operators, proprietary fuzzy search
technology.

4. Identify the problem states within the problem
categories and their corresponding causes.

5. Display list of symptom states that have a reverse path
existing between the symptom state and the identified
problem states.

6. Ask user to identify the symptoms that have actually
occurred.

7. Depending upon the symptoms selected, list the
possible causes of these symptoms.

8. Ask user to identify the causes that have actually
occurred.

9. From the identified causes, identify the symptoms that
can be generated due to these causes from the selected
symptoms.

10. Depending on the identified symptoms, reduce the
number of possible problem states that can be
transitioned from the identified symptoms.

11. List the solution states that can be reached from the
most possible problem states through traversing the
solution paths existing between the two end states and
the corresponding cost and time to reach the solution.

12. Based on the most possible problems and their
possible solutions, ask user to identify the problem
state, the solution of which can achieve the results
desired by him.

13. Hold a feasibility analysis on the solution paths
between the selected problem state and the selected
solution states, based on the total cost and time
involved.

14. Identify the most feasible path along with the methods
applied, and resources used in the path.

15. Identify all resources that had been used in the path
identified in step 11, to perform resource planning.

16. Identify all other paths in the solution pattern having
the most feasible path, to be used as contingency
resolution procedures.

In the above method, paths and patterns are analysed to identify
all possible solutions to a given problem along with the cost and
time associated with it. It further finds out possible
enhancements to a given solution and leaves open the scope of
learning from past-solved cases of problems to find new
solution procedures.

7 MONITORING AGAINST FAILURES AND CONTINGENCIES-
The paths to be used for solution can be used as a process
trajectory, and can be monitored and controlled during
implementation by systems that continuously monitor
deviations from original path by checking the solution
procedure during every state change.

Fig 8. Contingency Situation Resolution
In case a contingency situation arises such that there is a
deviation from a transient state to a deviated state, two
resolution methods can be applied, depending upon the
cost-time constraints, via: -
o Bring back to previous state.
Through application of learning to create new paths, it is

possible to realize a path that can be followed to
transform a deviated state as an initial state into the
previous state as the goal state.

o Choose a different path from deviated state.
Sometimes it is not feasible to transform back into the
previous state, if another path exists towards the solution
from the deviated state, if it takes less time or cost than for
transforming back into previous state.

Failure states are those states, which upon their arrival ensure
that any number of methods/operators, applied to that state or
series of its subsequent states, can never achieve a goal state.
A failure state can be identified when: -

1. If the application of any method on a state doesn’t
cause a change of state.

2. If the path continuously keeps coming back to a state
already traversed more than once.

3. If the application of methods/operators, doesn’t bring
in a goal/objective state even after a huge number of
iterations. (Mostly for NP-Complete type of
problems)

Failure states of the first category are quite easy to identify. The
failure states of the second and third category might require a
large number of iterations to be identified, and thus impossible
to identify with the present limitations of time and resource i.e.
their existence makes the solution intractable.
If there a Failure State is reached during solution, loss
minimization needs to be performed by changing the failure
state into a lesser solution state feasible to the user.

REFERENCES

Amarel S. (1968): 'On Representations of Problems of
Reasoning about Actions', in : Machine Intelligence 3, D.
Michie (ed.) (American Elsevier, New York).

A.R. Montazemi and L. Chan (1990), An analysis of the
structure of expert knowledge, European Journal of
Operational Research 45 (1990) pp 275-292.

A.R. Montazemi and K.M. Gupta, “An adaptive agent for case
description in diagnostic CBR system”, Journal of Computers
in Industry, 29(3) (1996) pp 209-224.

C.K. Riesbeck and R.C. Schank (1989), “Inside Case-Based
Reasoning”, (Lawrence Erlbaum, Hillside, N J, 1989).

Dean, et al (1999), “Problem Solving and Search”, Cognitive
Science 108b Lecture Notes, Sections 4.1, 4.2.

Heylighen F. (1988): "Formulating the Problem of
Problem-Formulation", in: Cybernetics and Systems '88,
Trappl R. (ed.), (Kluwer Academic Publishers, Dordrecht), p.
949-957

Heylighen F. (1990): Representation and Change. A
Metarepresentational Framework for the Foundations of
Physical and Cognitive Science, (Communication & Cognition,
Gent), 200 p.

Kalyan Moy Gupta, Ali Reza Montazemi (1997), “A
connectionist approach for similarity assessment in case-based
reasoning systems”, Decision Support Systems 19 (1997) pp 237-253

Konstantin M Golubev, Tatiana A Golubeva (1999),
“Intellectual activity, knowledge, information, data: An attempt
to define it in an applicable way”(online), Knowledge
Management Discussion Paper, General Knowledge Machine
Research Group, Kiev, Ukraine.

Korf R.E. (1980): 'Toward a Model of Representation
Changes', Artificial Intelligence 14, p. 41.

Newell A. & Simon H.A. (1972): “Human Problem Solving”,
(Prentice-Hall, Englewood Cliffs)

Simon H.A. (1986) et al.: “Decision Making and Problem
Solving“

R.J. Sternberg (1977), “Component processes in analogical
reasoning”, Psychological Review 84(4) (1977) pp 353-378.

	I. INTRODUCTION:
	II. Scalability of Solution Space: -
	III. Path and pattern database: -
	3.1 Problem Table: -
	3.2 Solution Table: -
	3.3 Intermediate State Table: -
	3.4 Interacting Elements Table: -
	3.5 Method Table: -
	3.6 Paths Table: -
	4 Creation of Innovated Paths & populating database: -
	4.2 Improvement Criteria: -

	5 Analysing existing & innovated paths for learning to create new paths:
	6 Creation of a DSS from the database: -
	7 Monitoring against failures and contingencies-

