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A Hopfield Neural Network Model
for the Outerplanar Drawing Problem
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Abstract

In the outerplanar (other alternate concepts are cir-
cular or one-page) drawing, one places vertices of a
n—vertex m—edge connected graph G along a circle,
and the edges are drawn as straight lines. The mini-
mal number of crossings over all outerplanar drawings
of the graph G is called the outerplanar (circular, con-
vex, or one-page) crossing number of the graph G. To
find a drawing achieving the minimum crossing num-
ber is an NP-hard problem. In this work we investi-
gate the outerplanar crossing number problem with a
Hopfield neural network model, and improve the con-
vergence of the network by using the Hill Climbing
algorithm with local movement. We use two kinds of
energy functions, and compare their convergence. We
also test a special kind of graphs, complete p-partite
graphs. The experimental results show the neural net-
work model can achieve crossing numbers close to the
optimal values of the graphs tested.

Keywords:  Quterplanar crossing number, Hopfield
model, Energy function, Motion equation, Learning
algorithms.

1 Introduction

Graphs that can be drawn without edge crossings (i.e.
planar graphs) have a natural advantage for visualiza-
tion. When visualizing nonplanar graphs, a natural
approach is to draw the graph in a way as close to
planarity as possible (with as few edge crossings as
possible). Especially, when we want to draw a graph
to make the information contained in its structure eas-
ily accessible, it is highly desirable to have a drawing
with as few edge crossings as possible [6].

In the outerplanar [4](other alternate concepts are
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circular [8] or one-page [7]) drawing, one places ver-
tices of a n—vertex m—edge connected graph G along
a circle, and the edges are drawn as straight lines.
The minimal number of crossings over all outerpla-
nar drawings of the graph G is called outerplanar
[4](circular [8] or one-page [7]) crossing number of the
graph G. The task for the outerplanar drawing prob-
lem is simplified to find a good order of vertices to
minimise the crossing number. The problem has been
proved to be NP-hard [5]. We have the adjacency ma-
trix adj_g of G, in which, adj_g[u][v] is 1 if there is an
edge between vertex u and v; 0, otherwise. If we use
an adjacency matrix adj_d to express an outerplanar
drawing of G, and if the positions of v and v are ¢ and
J respectively, then adj_d[i][j] = adj_g[u][v]. The out-
erplanar crossing number v can be calculated with
following formula:

n—4 n—2 j—1 n
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(1)

A Hopfield network is a fully connected recurrent sin-
gle layer and unsupervised network. Hopfield and
Tank [3] were the first to use a neural network model
for solving optimisation problems. Takefuji and Lee
[11] used the binary neural network model for the
graph planarisation problem, and Takefuji [9,10] also
proved that the state of the binary model always con-
verges to the local minimum. It is easy to parallelise a
Hopfield network because of its special structure, and
it is also easy to implement in hardware. Hopfield and
Tank successfully solved the traveling salesman prob-
lem (TSP) with their neural network model, but they
did not get good results. We investigate modeling
the outerplanar drawing problem with the Hopfield
neural network. A set of stochastic binary units (i.e.
n X n neuron array) are used to represent possible
solutions on the permutation of vertices of a graph
G with n vertices and m edges for the outerplanar
drawing problem. We use two kinds of energy func-
tions for the Hopfield model. Neural network training
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plays an important role in the implementation of the
neural network. We train the network by using the
Hill Climbing algorithm with local movement to im-
prove the convergence of the network, compare the
convergence of the two kinds of energy functions, and
test them on some complete p-partite graphs.

2 Hopfield neural network for the out-
erplanar drawing problem

2.1 Hopfield model

Hopfield and Tank [3] first successfully used a neu-
ral network approach for the TSP. They solved the
TSP with n = 30, and used neural network with an
array of 30 x 30 neurons. Similarly, we can use a Hop-
field model to solve the outerplanar drawing problem
(ODP) of a graph G with n vertices and m edges. The
model for ODP is described as below:

According to the task of finding a good vertex order
minimising the crossing number, each vertex has n
possible positions, so we use an n X n array, in which
each element corresponds to a neuron in the neural
network. In the array of the neural network model,
if a neuron is fired, namely v[z][i]=1, this means that
the vertex x is at the i-th position in the vertex or-
der of graph G. Table 1 shows the state array of the
Hopfield neural network model for a five-vertex graph.
Fig. 1 (b) is the outerplanar drawing of the graph in
Fig. 1 (a) corresponding to the state array in Table
1, and the vertex order m = {va, v3,v4, v1, U5 }.

Table 1: State of the neural network for five-vertex graph

node order | 1 [ 2 [3 [ 4 [ 5
1 0 0 0 1 0
2 1 0 0 0 0
3 0 1 0 0 0
4 0 0 1 0 0
5 0 0 0 0 1

2.2 Energy function 1

The array of neurons should satisfy the following con-
ditions:

(1) Each vertex appears only once on the order;
namely each row in the array has only one '1’,
other elements in this row are ’0’.

(2) Each position of the order is occupied by
just one vertex; namely, each column has only

Figure 1: An random graph with five vertices and its
outerplanar drawing corresponding to the state of the
neural network in Table 1

one '1’, and other elements in each column are ’0’.

(3) There are n vertices in total; namely the sum
of all elements in the array is n. Therefore, a
array of stochastic units v;; to present possible
solutions, and there are n? units in all.

The following functions correspond to the goal of
the outerplanar drawing problem and the constrains
above:

(1) The outerplanar crossing number is minimised:
n n n n
Ea=A Z Z Z z e(z,y)e(z,w) (2)
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(2) One vertex has one position:
n n n
Eb=BY "> > vmva;. (3)
a=1i=1 j=1j#i
(3) Ome position has one vertex:
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(4) Totally n neurons are fired:

Therefore the energy function is the sum of the four
functions.

Ey, = Ea+ Eb+ Ec+ Ed. (6)

In the energy function 1, only when Fy = E,. = E; =
0, the state of neurons is a valid solution. Any invalid
state, e.g. the number of neurons fired is less or more
than n, will make E, > 0, E, > 0,or Fy > 0, which
will be as an forbidden force acting on the neural net-
work. FE, is always a forbidden force acting on the
neural network, unless E, = 0. It is possible that the
neural network converge to a local minimum for which
the state of the neural network does not correspond
a solution. For example, there exists a state when
Eb+ Ec+ Ed # 0, but E, = 0, so that the sum of
energy values F, + Fy + E. 4+ E4 — 0, and the neural
network arrives at a local minimum.

2.3 Energy function 2

We can also describe the constraints above with two
terms as below:

(1) >, vei =1 (for each vertex x)

(2) >, vai =1 (for each position i)

Correspondingly, the energy function can be con-
structed by adding to the crossing number Ea two
penalty terms which are minimised when the con-
strains are satisfied:
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In the similar way with energy function 1, it is possible
that the energy value (E3) would converge to a local
minimum, but the state of the neural network will not
map to a solution.

2.4 Motion function

According to Neurodynamics, assuming the dynamic
system with n X n state variables vy, v12, ..., Unn, the
network motion equation is dug;/dt = —OE/0v.,
where uy; and v,; are the input and output of the
zi-th neuron.

For energy function F;, we have the motion function
as follows:

dgfi =-A) Y D ewye(zw)  (3)
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where, £ is the threshold of input.

For the energy function E5, we can write the motion
function as below:

d;f —_A Z Z Z e(x,y)e(z,w) (9)
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2.5 Learning algorithms

Takefuji [9, 10] proved that the state of the binary
model always converges to a local minimum. For a
normal Hopfield neural network,

U; = E WiV — 91‘,

j=1,j#i

where w;; is the synaptic weight from neuron j to
neuron ¢, and #; is the threshold. The convergence
can be formalised as follows:

Theorem 2.1 [12] Starting from any initial con-
figuration, any symmetric neural network with en-
ergy function E computing in a sequential mode will
achieve a stable state after at most O(p) computa-
tional cycles, where p = $37% 5 lwi;| + X7, [0];

moreover this stable state represents a local minimum
of E.



We can simply apply a Hill Climbing approach to find
out the best solution from “the local minimum” de-
scribed in Theorem 2.1.

At the startup, the network is randomly given an ini-
tial input u; € (—1,1). Correspondingly, the neuron
states of the network are randomly initialised with
0 or 1. Obviously, initially the neural network is in
an invalid state. According to the values of the mo-
tion equation, the state of each neuron is updated
sequentially in each iteration. Consequently the ver-
tex order will be formed gradually. Here a traversal
of n? neurons is viewed an iteration. When the neural
network arrives a stable state, the energy of the neu-
ral network arrives at a local minimum. Sometimes,
the stable state is not a solution, but the stable state
must be around a local minimum solution. Therefore
we can do a local movement described below. The
program repeats the training procedure several times.
The learning algorithm is described as Algorithm 1.

In Algorithm 1, the termination criterion is to see if
the current state is equal to last state of the neuron ar-
ray. Moreover, if the number of neurons fired is more
than n or less than n — 1, then the program will run
another iteration. This guarantees that the energy
has arrived at a small enough value. Therefore, we
can use the following rules to do the local movement:

(1) if v[i][4] is a redundant neuron fired in the i-th
row of neuron array, then look for another row
k of the neuron array, where there is no neuron

fired, make v[i][j] = 0 and v[k][j] = 1;

(2) if v[i][4] is a redundant neuron fired in the j-th
column of the neuron array, then look for another
column [ of the neuron array, where there is no
neuron fired, make v[i][j] = 0 and v[i][l] = 1.

(3) if v[i][j] = 0, and there is no neuron fired in
both the i-th row and the j-th column, then make
oli][j]=1.

3 Experiments

The sequential algorithm of the neural network model
was designed in C' language for tests, we denote the
neural network algorithm as NN. The program runs
on the platform of a DELL desktop with Intel Pentium
(R)4 CPU3.00GHZ and 1MB RAM. We examine the
convergence of the two energy functions of the Hop-
field model. We use p-partite graphs as test suites,
and compare the results with the optimal values [1].

Algorithm 1 Learning algorithm of the Hopfield neu-
ral network
1: t =0;
2: Randomly initialise the state of each neuron v;;
with 0 or 1;

3: while t<10 do

4 k=0;

5 repeat

6: copy the state array of neurons v to last,;

7 nn «— number of neurons fired;

8 for (I from 1 to n?) do

9: i = rand() mod n; j = rand() mod n;

10: Compute Au;; at At = 0.1 with Equation
8 or9;

11: Compute w;;(t + 1) with Aw;j;

12: if (uij > f) then

13: Vij = 1;

14: else

15: Vij = 0;

16: end if

17: end for

18: k=k+1,

19:  untilv! =lastvornn >nornn<n-—1
20:  if (v is invalid) then

21: local_movement(v);

22:  end if

23:  cr = calculate_crossings(G,v);

24:  if (v > cr) then

25: vy =cCry
26: end if
27 t=t+1;

28: end while

3.1 Test of convergence

The parameters will affect the convergence of the neu-
ral network significantly. After plenty of preliminary
experiments, we selected the parameters for the tests
shown in Table 2.

Table 2: Experimental parameters

EnergyNo. [ A [ B [ [¢] [ D [ 3
1 [ 0.068 ] 0.24 ] 0.24 [ 0.36 [ 0.26
2 | 008 ] 024 [ 024 | N/JA | 0.38

In order to observe the energy trend, we record the
energy value of each calculation in the first iteration.
Fig.2 (a) and (b) show the convergence curves for the
two energy functions in the first iteration. It can be
seen that energy function 1 converges slowly, while en-
ergy function 2 converges very quickly. Fig.3 (a) and



(b) show the values of the two energy functions for all
iterations. Both energy functions keep a downtrend
in the first climbing. However the energy function 1
has large fluctuation after the first climbing, while the
energy function 2 keeps almost the same value after
the first climbing, and occasionally there is some fluc-
tuation. On the other hand, it indicates that there are
more invalid states to be produced by the model with
energy function 1 than by that with energy function
2.
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Figure 2: Energy convergence trend in the first itera-
tion

According to dynamics, an object will move along the
direction of the composition of forces that act on the
object. Fig. 4 shows three forces (f,,fs,and f.) act
on an objects. If the direction of f, is changed dy-
namically, and |f,| # 0, then the vertical composition
and horizontal composition of f, also are changed dy-
namically. In order to keep the balance of the vertical
composition and horizontal composition acting on the
object, fp and f. must be changed dynamically. In the
motion functions, each term can be viewed as a force
that acts on a neuron. For motion function 9 as an ex-
ample, similarly, there are also three terms. Regard-
less of the crossing number minimised, the second and
the third term should be symmetrical. However, the
balance of row and column in the neuron array will
be broken, because of the changing crossing number
in different states of neural network. It means that
it is hard to find out a group of parameters A, B,
C to make the energy of the neural network decrease
smoothly.
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Figure 3: Energy convergence trend for all iterations

f

c

Figure 4: The composition forces act on an object

3.2 Test on complete p-partite graphs

We denote a complete p-partite graph with equal size
(n) of the partite sets as:

Kn(p) = Kn,n, cy M-
N—_——

P

The 1-page crossing numbers for K, (p) graphs are
known:

Theorem 3.1 [1] For a complete p-partite graph
with n vertices in each partite set,

n(Kn(p) = n* @ i n-)(2n-1) (g) . (g) @

Table 3 show the outerplanar crossing number of some
complete p-partite graphs. It can be seen that the
results of the graphs tested by the model with both
energy functions are close to the optimal values, but
can still be improved.



Table 3: Outerplanar crossing numbers of K, (p) tested with the
neural network model with different energy functions
Graphs [ vi(E1) | vi(E2) [ Opt.

K3(2) 3 3 3
Ki(2) 16 19 16
K5 (2) 54 54 50
K3(3) 54 56 54
Ki(3) 224 226 216
K5(3) 628 617 600
K3(4) 290 286 279
Ki(4) 1045 1066 1024

For energy function 1 (E7), the number of iterations
(N1) varies with different tests, while the number of
iterations (N>) for energy function 2 (F») keeps nearly
same for every test, but usually A7 < Ny . The cal-
culation time ¢; in each iteration for F is longer than
to for Ey. Therefore, Try (= N7 X t1) varies, but Tgo
keeps nearly the same time for different tests. For
an example of testing K3(3), Tgy varies from 1s to
3s, while Tge = 1.5s for 20 tests. However, the model
with F7 has more potential to improve the results than
that with Fs.

4 Conclusions

We successfully solve the outerplanar crossing number
problem with Hopfield neural network, and achieve
the results close to the optimal values of complete p-
partite graphs tested. We examine the convergence of
the neural network by using different energy functions.
The running time for energy function 1 varies with dif-
ferent tests, while energy function 2 keeps nearly the
same running time for different tests. However, there
are more invalid states to be produced by the model
with energy function 1 than by that with energy func-
tion 2, and energy function 1 has more potential to
improve results than energy function 2. Our experi-
ments have demonstrated the parameters of a neural
network are vital for the convergence of the neural net-
work. We have done a lot of experiments for selecting
a group of proper parameters. Our further work is
to improve the performance of the network by using
different approach to train the network parameters,
and to compare the model with other kind of neural
networks.
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