
  

  
Abstract—A local Z-buffering (LZB) rendering algorithm in 

the large complex scenes is presented in this paper. The local Z-
buffering originates from the depth complexity based scene 
decomposition and following multistage rendering.  In a naïve 
local Z-buffering, a large complex scene is decomposed into a low 
depth complexity scene and high depth complexity scene by 
computing a partition plane in the view space; the low and high 
depth complexity scenes are rendered by the Z-buffering  and 
classic ray casting respectively. To achieve an output sensitive 
real-time rendering algorithm, a series of algorithms are 
developed to optimize the naïve version from aspects of general 
hardware support, empty pixel removal and fast potential visible 
primitive identification.  Finally, the parallel version local Z-
buffering rendering is introduced.  Compared with similar types 
of rendering algorithms, the LZB algorithm is easy to implement, 
requires the least preprocessing time and achieves the 
satisfactory speed-up in the large complex scenes rendering.  
 

Index Terms— Visibility, real-time rendering, ray casting 

I. INTRODUCTION 

 The recently impressive progress in graphics hardware 
technologies is still facing the challenges from real-time 
rendering of the increasing scene complexity of the large 
complex scenes. The large complex scenes are large geometric 
data sets from the traditional compute games, virtual 
environments, scientific visualizations and even the new 
bioinformatics area [1,2]. A large complex scene is generally a 
scene with at least several million triangles and average depth 
complexity more than 10 with at least 90% invisible 
primitives in the rendering. The interactive rendering 
bottleneck from large complex scenes is mainly due to the fact 
that most graphics cards and APIs employ the Z-buffering 
algorithm or its variants in the visibility computing. This 
algorithm is an input-sensitive algorithm and its complexity 
grows linearly with the scene complexity: )( Ω+SO , where 

S  is the scene size andΩ  is the image space size: the total 

number of projected pixels generated by projecting primitives 
into the image spaceΩ . It is obvious that the Z-buffering 
algorithm is good at rendering low depth complexity scenes 
rather than large complex scenes because of its minimum z-
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value sorting mechanism. Although some sophisticated 
hardware techniques have been proposed to decrease Ω  by 

implementing some occlusion culling algorithms; they are 
mostly customized approaches to handle specific scenes and 
those hardware techniques still have difficulty in interactive 
visualizations of a generally large complex scenes [1,2].  

 In additional to the hardware acceleration techniques, two 
categories of real-time rendering algorithms are developed for 
the large complex scene rendering; that is, visibility culling 
algorithms and scene approximation based rendering 
algorithms. The first type of algorithms focus on removing 
invisible objects to decrease the number of triangles sent to 
the graphics pipeline. According to where the occlusion 
culling computing is conducted, visibility culling algorithms 
can be further classified as image/object space algorithms, 
including the cell based potential visible set algorithm[3], 
hierarchical Z-buffer algorithm (HZB) [4], hierarchical 
occlusion map (HOM) [5], cPLP conservative prioritized 
layered projection (cPLP) [6,7] and occluder shrinking  et al. 
[8,9]. On the other hand, the second type of algorithms focus 
on approximating the input scenes by a corresponding 
reduced/simplified geometric data set that is less expensive to 
render, to reduce the number of pixels projected intoΩ . The 
level of detail method (LOD) and point based rendering 
belong to this class. For the more detailed information about 
these algorithms, we suggest the related reviews and papers on 
this topic [11,12,13,14,15,16]. Although these proposed 
interactive rendering approaches did great improvements on 
the real-time rendering of large complex scenes, they still 
share some of following potential weak points. For example, 
algorithms need a large amount of preprocessing or need 
customized hardware support to real-time visualization. Some 
approaches even can not guarantee the conservation in the 
visibility or just can apply to special scenes [1,14].  

We believe an efficient real-time rendering algorithm of 
large complex scenes must have the following characteristics. 
1) It should be an output sensitive algorithm, that is, its 
computational complexity is weakly dependent on scene 
complexity; 2) Its preprocessing stage should be light-loaded. 
3) It can access commonly available graphics hardware 
support rather than special ones; 4) It is easy to implement and 
can apply to different categories of scenes.  In this work, we 
present an output sensitive real-time rendering algorithm 
called local Z-buffering rendering (LZB) according to the 
specified criteria. The LZB rendering is based on the scene 
decomposition in the view space and following multi-passing 
rendering.  In the scene decomposition, the scene in the view 
frustum is decomposed as a low depth complexity/ near-view 
scene nearS  and a high depth complexity / far-scene farS  
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dynamically or statically. ThenearS can be viewed as an 

automatically selected occluder set for farS  where the 

primitives are more likely invisible than those innearS .  The 

image nearI of the scenenearS  is obtained by local rendering, 

that is, the Z-buffering is employed to render the primitives 
in nearS . The local rendering is similar to the selected occluder 

rendering to compute the finest hierarchical occlusion map in 
the hierarchical occlusion map method with the graphics 
hardware support, lighting and texturing.  Moreover, the 
image nearI  obtained in the local rendering is a partially 

correct image rather than the finest occlusion map. The 
image farI for the scene farS  is computed by rendering a 

potential visible list (PVL) through the Z-buffering. The 
potential visible list (PVL) can be quickly computed by the 
selectively lazy ray casting (SLR) and object-oriented ray-
casting (OOR) accelerated by coherence based ray-octree 
traverse algorithm. The LZB algorithm performs well in the 
real-time rendering of general large complex scenes. In the 
next sections, we present the naïve LZB algorithm and its 
optimization process to be the final local Z-buffering 
rendering algorithm. 

II.  THE NAÏVE LOCAL Z-BUFFERING RENDERING 

 The basic idea of the naïve Local Z-buffering is to employ 
the Z-buffering to render the low depth complexity scene and 
ray-casting to render the high depth complexity scene. Such 
an idea aims at taking advantage of the “good features” of Z-
buffering and ray-casting. Z-buffering is good at rendering the 
low depth complexity scene and ray-casting has the built-in 
occlusion culling mechanism to reject the hidden objects after 
spatial sorting.  

A. The overview of the naïve local z-buffering rendering  

The naïve LZB consists of a preprocessing stage and real-time 
stage. In the preprocessing stage, an octree T is built to 
organize the input triangle set in sceneS . The termination 
condition in the octree building is the maximum depth of the 
tree and the maximum primitive number in each leaf node. To 
accelerate the preprocess, T. Moller 's triangle-box overlap 
testing algorithm is employed to decide if a triangle intersects 
with octants in our octree building. It is faster than the default 
triangle-box overlap testing algorithm [17,18].  In the real-
time stage, there are following five steps. 
 

1. Conduct the hierarchical view frustum culling: 
traversing the octree T to collect leaves in the current 
view frustum. 

2. Compute a partition plane clipzz =  in the camera space 

to partition the input sceneS  into two disjoint scenes 

farnear SSS U= . Scene nearS /
farS  is a low/high depth 

complexity scene respectively after the partition. 
3. Conduct the local rendering: employ the Z-buffering to 

render the near-view scene
nearS . 

4. Query the frame buffer to get the unfinished pixels to 
be shaded. 

5. Cast rays from the unfinished pixels to render the far-
view scene

farS . 

B.  Partition plane computing methods  

A partition plane is a “good plane” if the scene nearS  is a low 

depth complexity scene and its image 
nearI  contributes much 

more pixels than the image 
farI  of the far-view scene 

farS  in the 

final rendering, farnear II >> . There are two ways to set a 

partition plane in the view space:  a static (ad-hoc) and a 
dynamic approach (the coarse ray-casting). In the ad-hoc 
approach, the plane clipzz =  can be reasonable set at 

%30%15 −  depth position in the view frustum because a 
large complex scene has at least 90% hidden primitives. The 
ad-hoc approach is equivalent to setting a small view frustum 
including all primitives in the

nearS . We found the partition 

plane would be closer to the near plane with increase of the 
scene size [18].  In the dynamic approach, the coarse ray 
casting is used to decide the partition plane. A set of 
uniformly coarse-sampled pixels on the screen window 
conduct the ray casting to compute the distance, the ray 
length, to the nearest surface for each ray. The average 
distance is chosen as the location of the clipping plane and it 
is then transformed into the corresponding distance in the 
view space. This approach can get a better partition plane 
because the coarse ray casting probes the nearest surface 
locations. It is unnecessary to compute the partition plane for 
each frame. The frame coherence can be exploited by reusing 
the partition planes in the previous frames. 

The naïve local-Z buffering can work well for the densely 
occluded scenes which are special kinds of large complex 
scenes. The densely occluded scenes can be found from 
architecture models, office models and some city models [18]. 
In a densely occluded scene, the near-view scene image nearI  is 

very close to the final scene image due to generally available 
large occluder; that is, the ray-casting takes only a light 
workload to compute the far-view scene image

farI  and the 

local rendering takes the majority rendering. Figure 1 showa a 
is a densely occluded scene with 572,412 triangles with the 
average depth complexity 15. The average Z-buffering 
rendering is 0.69 second and the average naive LZB rendering 
time is 0.37 second where partition planes are computed by 
the coarse ray casting with frame coherence.  

 

Fig. 1. A densely occluded scene with 572,412 triangles 

 



  

III.  REFINING THE NAÏVE LOCAL Z-BUFFERING ALGORITHM 

It is clear that the naïve local Z-buffering algorithm can not 
work for the general large complex scenes due to the large 
overhead from the ray-casting stage. In this section, we 
improve the naïve local Z-buffering algorithm from three 
aspects: the general hardware support, fast potential visible 
list identifying, empty pixels removal and fast ray transverse. 
They are corresponding lazy ray casting, selectively lazy ray 
casting, object-oriented ray casting. The final version local 
Z-buffering algorithm is the integration of all these 
improvements.  

A. “Lazy” ray casting 

It is reasonable to turn to the possible hardware support to 
accelerate the ray casting in the naive LZB. We propose a lazy 
ray casting for this. The idea of the “lazy” ray casting is to 
decompose the classic ray casting into two parts: a potential 
visible list (PVL) finding and the potential visible list (PVL) 
rendering. In the “lazy” ray casting, software is only 
responsible for finding the potential visible primitives list 
(PVL) for the far-view scene

farS . The nearest surface 

identification and shading for all unfinished pixels in the ray-
casting are left to the graphics hardware, that is, sending the 
PVL to the graphics pipeline and using the Z-buffering to 
render the PVL.  

In the PVL finding, a local list l is maintained for each ray-
casting pixelp  to hold the identification numbers of a set of 

the potential visible primitives. The set of the potential visible 
primitives contain the nearest surface (the first-hit triangle) for 
the ray emanated from the pixelp .  The PVL is the union of 

all the local lists where each triangle identity is only counted 
once. Actually, a rendering bit is set for each primitive before 
it is recorded in the PVL to remove the duplicated primitive 
identification numbers.  

To compute the local list l  for a ray r  emanated from the 
pixel p , we just need to find the first ray-triangle hit for the 

ray r  rather than test all triangles associative with the ray 
path. A ray path is a set of octree leaves traversed by a ray 
until the ray visibility status is resolved; that is, there is either 
a found nearest surface in an octree leave or no intersection 
occurrence between the ray and the octree. In the lazy ray 
casting, if there is a ray “hit” happen for a triangle in a leaf 
node for a rayr , the ray-triangle intersection test terminates 
and all the primitives associative the leaves traversed by r  
and current leaf are recorded in the local list l . Figure 2 
indicates the idea of the lazy ray casting. 

 The potential visible list (PVL) rendering is to use the Z-
buffering to render all the primitives in the PVL. The 
rendering results are just the image of the far-view scene

farS . 

It is easy to see that the computing in the lazy ray casting 
consists of CPU based PVL finding and GPU based PVL 
rendering. Thus there is general hardware support for the lazy 
ray casting compared with the classic ray casting and its 
performance can “grow up” potentially with the CPU and 
GPU technology. 

 

 

Fig. 2.  The idea of the lazy ray casting 
 

How much “saving” can we get from the lazy ray casting 
compared with the classic ray casting? To answer this 
question, we compare the complexity between two 
approaches.  Suppose there are total n  triangles in the ray 
path of a rayr , there will ben ray-triangle intersection 
computing in the classic ray casting. However, the number of 
ray-triangle intersection testing in the lazy ray casting is 2/n  
averagely and n  in the worst case. Actually, in many large 
complex scene rendering experiments, the first ray hit happens 
in the first several leave transverse and the exhaustive search 
case is a rare case [18]. Thus the complexity for a rayr in the 
classic ray casting is st cnc + , where tc  is the average process 

cost to finish one triangle including the octree traverse and 
ray-triangle intersection testing time, and sc is the average 

shading cost for a pixel, which is related to the shading 
models used in the rendering. On the other hand, the lazy ray 
casting has the average complexity: ncnc zt +⋅5.0 , where zc is 

the average cost to render each triangle by Z-buffering whose 

order is in the range 610− to 1110−  according to different 
graphics hardware [2]. The average saving from the lazy ray 
casting is nccnc zst −+⋅5.0  and it is related to CPU speed 

and GPU capacity in the host machine. 

B. Selectively lazy ray casting (SLR) 

 In the lazy ray casting, the worst case to find the local list 
l for each ray is to test all the primitives associative with the 
leaves in its ray path. How can we avoid such worst case?  In 
this section, two local occluder selection methods are 
proposed to accelerate the PVL finding. The first is called a 
static local occluder selection, which is to build an Octree-o in 
the preprocessing stage. The second is called is a dynamic 
local occluder selection, which selects local occluders 
dynamically according to a measure called visibility. Two 
methods can also be integrated together to speed-up the PVL 
finding. 

The reason why the worst case occurs in the local list 
finding is because that all primitives are treated uniformly 
regardless of their different sizes and normal directions. These 



  

factors are important measures to determinate the visibility 
probability of each primitive. Thus the ray-triangle 
intersection testing has to be conducted for all triangles 
associative with a ray path even if there is no intersection for 
the ray with any triangles. It is clear that such a uniform 
testing mechanism is by no means an efficient approach to 
resolve each pixel visibility status because these measures are 
not involved in the ray-triangle testing.  

To resolve a pixel visibility status fast in the lazy ray 
casting, we introduce the local occluder selection method. The 
local occluder selection is a selective method, which only tests 
those most likely visible primitives (local occluders) to resolve 
the ray visibility status quickly. Such a selectively ray triangle 
intersection testing mechanism leads to the selectively lazy ray 
casting method (SLR). There are two SLR methods according 
to how to select the most likely visible primitives: the static 
and dynamic local occluder selection.  

1) Static local occluder selection  
The idea of the static local occluder selection is to select the 

local occluders for each leaf in the octree built in the 
preprocessing stage. That is, build an Octree-o (Octree with 
local occluders).  In the Octree-o building process, one or 
several local occluders are selected in each leaf node by 
sorting triangles according to their areas. The extra memory 
demand for building an Octree-o is just several bytes to record 
the local occluder identification numbers. The time consuming 
in building an Octree-o is same as building a general octree 
[18].  

In the lazy ray casting stage, the ray-triangle intersection 
testing starts from the first occluder, the largest triangle 
associative with the current leaf node. If there is an 
intersection occurrence for a local occluder, all the triangles 
associative the leaf node will be recorded into the PVL. Then 
the leaf is marked as a visible node. On the other hand, if there 
is no intersection (“hit”) between a ray and the pre-selected 
local occluders in a leaf, the intersection query between the 
ray and other triangles in the leaf will be skipped. The 
identification numbers of triangles associative with the leaf 
will be recorded in the PVL. Then, the leave point is computed 
for the ray in the leaf node and the ray-triangle intersection 
query will be conducted for the local occluders in the next leaf 
until the visibility status of the ray is resolved.  

Compared with the original lazy ray-casting, the static local 
occluder selection decreases the number of intersection tests 
and increases the size of the potential visible list (PVL). The 
approach works very well in the scenes where there are large 
triangles spanning many leaves in the corresponding octree. 
The octree built for such scenes sometimes is an ill-balanced 
tree. The visibility status of a ray won’t be known until the all 
triangles tested in the ray path.  Actually, the large triangles 
are ideal local occluders for in the Octree-o. Because the ray-
triangle test is only conducted for the local occluders in each 
octree leaf, the average ray traverse time decreases largely for 
such “selective mechanism”. According to our 
implementation, the number of the average ray-triangle 
intersection query dropped dramatically for 5 occluders 
selected in each Octree-o leaf with maximum 150 triangles. 
The potential visible list (PVL) size increases correspondingly 
for the lazy ray casting under static local occluder selection 

acceleration. 
2) Dynamic local occluder selection 
The static local occluder selection just considers the size of 

a primitive as a measure to decide the visibility probability of 
a primitive.  It is obvious that the primitive normal also play 
an important measure to decide the visibility probability of a 
primitive. Because the distance of primitives in a same leaf 
node to the viewpoint is almost same. Under this case, the 
distance may not play an important role in determinate the 
visibility probability of a primitive. Thus we define a measure 
called visibility to measure the visibility probability of a 
primitive pas 

                         )( pareanvvisibility ⋅⋅−=                            (1) 

Where v is the view direction and n is the primitive normal 
and area(p) is the area of the primitive. It is easy to see that 
the primitive visibility depends on the inner product of v−  
and primitive normal and the primitive size. The primitives in 
a same leaf node with larger visibility values will be mostly 
likely to be hit by a ray for a given viewpoint. 

In the dynamic occluder selection, a base visibility for each 
leaf node is set according to the average triangle area size in 
each leaf and a preset value of -v·n. For example, -v·n=0.5. In 
the actually ray shooting, the visibility value of each triangle 
is computed dynamically. If the visibility of a triangle is 
greater than the base visibility, the ray-triangle intersection 
testing will be conducted for the triangle. Otherwise, it will be 
skipped and the visibility of the next triangle will be 
computed. If there is a candidate triangle hit by a ray, the leaf 
will be marked as ‘visible’, the identification numbers of all 
triangles in the leaf are recorded in the final PVL and ray-
intersection testing terminates. However, if there is no 
intersection for all the selected candidates, the triangles in the 
leaf node are still recorded in the PVL and ray-triangle 
intersection test goes to next leaf node until the ray visibility 
status of is resolved ; that is, there is at least one hit or no hit 
in the octree.   

Compared with the static occluder selection, the dynamic 
selection can get more accurate estimate for the visibility 
probability of a triangle. But it will depend on the scene 
properties. In some scenes, if there is a large number of larger 
triangles existed, the performance of the dynamic occluder 
selection is not as good as the static occluder selection. In the 
implementation, a hybrid version of the two local occluder 
selection approaches is employed. A certain number of local 
occluders are pre-selected in the Octree-o and the visibility is 
computed for each occluder to filter the occluders with low 
visibility values. 

C. Objected- oriented ray casting 

Although the selectively ray casting (SLR) can find the 
potential visible list (PVL) for the far-view scene 

farS  in the 

local Z-buffering, it still faces the following “empty pixel 
problem”. The image of a large complex scene, even a densely 
occluded scene, may just shade a relative small pixel set on 
the screen most pixels are just empty pixels, where no 
triangles in the scene are projected on these pixels for certain 
viewpoints. For some empty pixels in the selectively lazy ray 
casting, they can be “rejected” in the first several octree level 



  

traverses because there is no intersection for their rays with 
any triangles in the octree. However, for some empty pixels 
between the image sets of neighbor objects, the octree traverse 
may reach the deepest leaves before knowing their visibility 
statuses. It is obvious that these types of empty pixels bring 
more overhead in the ray-triangle intersection testing and 
increase the PVL size potentially. In the local Z-buffering 
rendering, the ray shooting overhead from these empty pixels 
will increase linearly with increase of the image resolution 
[18]. 

To decrease the overhead from these empty pixels to its 
minimum level in rendering, we introduce the object-oriented 
ray casting (OOR). The basic idea is just casting rays from the 
unfinished pixels, which are in the projection area of the 
objects in the current view frustum rather than casting rays for 
all unfinished pixels on the screen.  In the OOR, the projection 
of an object on the screen can be approximated by the 
projection of its corresponding axis aligned bounding box 
(AABB) [5] or object oriented bounding box (OBB) [5] on the 
screen. Computing the projection of each OBB can get smaller 
object projection area on the screen. But it asks more 
preprocessing time. In our implementation, we project the 
AABB of each object in the view frustum on the screen. In the 
computing of an AABB projection, it is unnecessary to 
compute projections of all vertices. On the other hand, the 
projection of the base point, the south-west corner point in the 
lower surface of the AABB, is computed at first and then the 
projections of the other vertices of the AABB are computed 
by adjusting the corresponding offset vectors. The projection 
of an AABB (3D box) is a simple convex polygonaabbP with 4, 

5 or 6 sides, which are corresponding to 1, 2 or 3 face visible 
cases. To decide if an unfinished pixel is in the projection 
region, a bounding boxpB for each projection is computed on 

line at first. If the unfinished pixel is in the bounding box pB , 

then we query if the pixel is in theaabbP , a convex polygon 

with maximum six sides. This query can be computed in 
dynamically and there are many real-time algorithms to decide 
if a 2D point is in a convex polygon in the computer graphics 
literature [12]. 

The completeness of the ray shooting in the OOR is 
indicated by counting the number of objects in the current 
view frustum instead of counting the unfinished pixels on the 
screen. That is, ray shooting is object-oriented rather than 
pixel-oriented where the ray casting processing is considered 
finished if the visibility status of the last pixel is known. In the 
object-oriented ray casting, the ray casting stage is considered 
complete if the visibility status of the last pixel in the 
projection area of the last object in the current view frustum is 
resolved.  Considering there are overlap regions on the screen 
for the objects in the view frustum, a two dimensional 
Boolean matrix maintained to record if an unfinished pixel p  

in the projection region of an object having finished ray 
shooting. If the pixelphas conducted ray shooting, its 

corresponding mask value in the Boolean matrix is set true. 
The pixel won’t be involved in any ray shooting although it 
will be located in a projection of another object.  Figure 3 
indicates the idea of the object-oriented ray casting. 

The object-oriented ray casting can be integrated with 
selectively lazy ray casting to accelerate the naïve LZB. That 
is, conducting the AABB projection for the objects in the 
current view frustum but behind the partition plane to find the 
interested regions on the screen to shoot rays. The PVL for the 
far-view scene is computed by the selectively lazy ray casting 
and sent to the graphics pipeline to be rendered by Z-
buffering.  
 

 
Fig. 3. The idea of  the object-oriented ray casting 

 

D. The final version local Z-buffering algorithm 

 Besides the previous three improvements, we also 
developed a coherence based ray-octree traverse algorithm to 
improve the standard top-down traverse used in the algorithm 
[18]. The final version local Z-buffering consists of 
integrations acceleration techniques of naïve local Z-buffering 
from these points of views: the selectively lazy ray casting 
provides the quick PVL finding and general hardware support 
for ray casting; the object-oriented ray casting decreases the 
overhead from empty pixels in the ray-shooting and the 
coherence based ray-octree traverse algorithm optimizes the 
top-down octree traverse in the ray casting stage. The LZB 
algorithm is an output sensitive algorithm with respect to the 
scene complexity and final image resolution. The detailed 
cost-model analysis and proof can be found in the [18].  

IV.  RENDERING EXPERIMENTS 

 We give the following rendering experiments to test the 
performance of the LZB algorithm. The first rendering 
example is from randomly generated densely occluded virtual 
city with 1,822,260 triangles. The general Z-buffering 
rendering needs 1.76 seconds averagely and the improved 
LZB just take 0.34 second for averagely sampled 80 
viewpoints along a circular view path. The second rendering 
example is an assembling scene with 3.8 million triangles 
from the UNC power plant model [19] (Figure 4). We sample 
120 viewpoints along a circular view path in the rendering, the 
LZB rendering achieves average 12 FPS compared with the 
average 6.2 FPS under Z-buffering rendering. In the second 
rendering experiment, we “prove” the output sensitivity of the 
LZB. A series of scenes (scenes scene triangle numbers range 
from 18,000 to 3.8 million) are taken from the UNC power 
plant model.  For the 3.8 million triangle scene, the LZB 
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rendering achieves the average 10.3 FPS which is much 
higher than 5.7 FPS from the Z-buffering rendering.  We plot 
the LZB and Z-buffering rendering time with respect to the 
scene size, image complexity and scene depth complexity by 
sampling 80 viewpoints in a circular view path in the 
rendering. We find that the LZB is weakly dependent on the 
image complexity, scene size and scene depth complexity and 
the Z-buffering rendering time linearly increases with respect 
to the measures. In other words, the LZB is an output sensitive 
algorithm. All our experiments are conducted under an AMD 
machine running under Linux OS with a 2.1 GHz AMD 
processor with 1.0 G main memory and Gf4 series graphics 
hard under the Linux OS for the final image resolution 
with 512512× pixels.  

 

Fig.4. A large complex scene with 3.8 million 
triangles 

   
 We also implement the parallel version LZB. We use 
Message-Passing Interface (MPI) library to implement the 
parallel local Z-buffering algorithm and achieves the 
satisfactory speed-up. The Figure 5 shows the experimental 
results for different size of scene datasets and numbers of 
processors. In the parallel implementation, due to the 
communication overhead caused by the broadcast of depth 
buffer at each rendering frame, the parallel-LZB has a lower 
efficiency than the sequential LZB for small size (<0.5 million 
in our case) of data sets. However, as the size of data set 
increases, the parallel LZB performs much better than the 
sequential LZB and achieves a higher speedup (≈1.27 for 8 
processors).  

 

Fig. 5.  The speedup of the parallel rendering n triangles on 
p processors 

 

V. CONCLUSION AND FUTURE WORK 

In this paper, we present a real-time rendering algorithm 
LZB for the large complex scenes. Compared with the similar 
algorithms, the LZB is an output sensitive and easy to 
implement, can work for general large complex scenes and 
has no special hardware and heavy-loaded preprocessing 
requirements. In the following work, we would like to 
compare the performance of the LZB and other rendering 
algorithms: HZB (hierarchical Z-buffering), HOM 
(hierarchical occlusion culling) in large complex scenes 
besides refining our current version parallel LZB algorithm.  
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