

Abstract—A local Z-buffering (LZB) rendering algorithm in

the large complex scenes is presented in this paper. The local Z-
buffering originates from the depth complexity based scene
decomposition and following multistage rendering. In a naïve
local Z-buffering, a large complex scene is decomposed into a low
depth complexity scene and high depth complexity scene by
computing a partition plane in the view space; the low and high
depth complexity scenes are rendered by the Z-buffering and
classic ray casting respectively. To achieve an output sensitive
real-time rendering algorithm, a series of algorithms are
developed to optimize the naïve version from aspects of general
hardware support, empty pixel removal and fast potential visible
primitive identification. Finally, the parallel version local Z-
buffering rendering is introduced. Compared with similar types
of rendering algorithms, the LZB algorithm is easy to implement,
requires the least preprocessing time and achieves the
satisfactory speed-up in the large complex scenes rendering.

Index Terms— Visibility, real-time rendering, ray casting

I. INTRODUCTION

 The recently impressive progress in graphics hardware
technologies is still facing the challenges from real-time
rendering of the increasing scene complexity of the large
complex scenes. The large complex scenes are large geometric
data sets from the traditional compute games, virtual
environments, scientific visualizations and even the new
bioinformatics area [1,2]. A large complex scene is generally a
scene with at least several million triangles and average depth
complexity more than 10 with at least 90% invisible
primitives in the rendering. The interactive rendering
bottleneck from large complex scenes is mainly due to the fact
that most graphics cards and APIs employ the Z-buffering
algorithm or its variants in the visibility computing. This
algorithm is an input-sensitive algorithm and its complexity
grows linearly with the scene complexity:)(Ω+SO , where

S is the scene size andΩ is the image space size: the total

number of projected pixels generated by projecting primitives
into the image spaceΩ . It is obvious that the Z-buffering
algorithm is good at rendering low depth complexity scenes
rather than large complex scenes because of its minimum z-

Manuscript received March 12, 2006.
Henry X. Han was with Applied Mathematical and Computational

Sciences, University of Iowa, Iowa city, IA 52240 USA. He is with
Department of Mathematics, Eastern Michigan University, Ypsilanti, MI
48197 USA. (phone:734-487-5044; fax:734-487-2489; e-mail:
xhan1@emich.edu).

Michael Zeiger is with Department of Computer Science, Eastern Michigan
University, Ypsilanti, MI 48197 USA.

value sorting mechanism. Although some sophisticated
hardware techniques have been proposed to decrease Ω by

implementing some occlusion culling algorithms; they are
mostly customized approaches to handle specific scenes and
those hardware techniques still have difficulty in interactive
visualizations of a generally large complex scenes [1,2].

 In additional to the hardware acceleration techniques, two
categories of real-time rendering algorithms are developed for
the large complex scene rendering; that is, visibility culling
algorithms and scene approximation based rendering
algorithms. The first type of algorithms focus on removing
invisible objects to decrease the number of triangles sent to
the graphics pipeline. According to where the occlusion
culling computing is conducted, visibility culling algorithms
can be further classified as image/object space algorithms,
including the cell based potential visible set algorithm[3],
hierarchical Z-buffer algorithm (HZB) [4], hierarchical
occlusion map (HOM) [5], cPLP conservative prioritized
layered projection (cPLP) [6,7] and occluder shrinking et al.
[8,9]. On the other hand, the second type of algorithms focus
on approximating the input scenes by a corresponding
reduced/simplified geometric data set that is less expensive to
render, to reduce the number of pixels projected intoΩ . The
level of detail method (LOD) and point based rendering
belong to this class. For the more detailed information about
these algorithms, we suggest the related reviews and papers on
this topic [11,12,13,14,15,16]. Although these proposed
interactive rendering approaches did great improvements on
the real-time rendering of large complex scenes, they still
share some of following potential weak points. For example,
algorithms need a large amount of preprocessing or need
customized hardware support to real-time visualization. Some
approaches even can not guarantee the conservation in the
visibility or just can apply to special scenes [1,14].

We believe an efficient real-time rendering algorithm of
large complex scenes must have the following characteristics.
1) It should be an output sensitive algorithm, that is, its
computational complexity is weakly dependent on scene
complexity; 2) Its preprocessing stage should be light-loaded.
3) It can access commonly available graphics hardware
support rather than special ones; 4) It is easy to implement and
can apply to different categories of scenes. In this work, we
present an output sensitive real-time rendering algorithm
called local Z-buffering rendering (LZB) according to the
specified criteria. The LZB rendering is based on the scene
decomposition in the view space and following multi-passing
rendering. In the scene decomposition, the scene in the view
frustum is decomposed as a low depth complexity/ near-view
scene nearS and a high depth complexity / far-scene farS

The Local Z-Buffering Rendering

Henry X. Han, Michael Zeiger

IAENG International Journal of Computer Science, 32:4, IJCS_32_4_7
__

(Advance online publication: 12 November 2006)

dynamically or statically. ThenearS can be viewed as an

automatically selected occluder set for farS where the

primitives are more likely invisible than those innearS . The

image nearI of the scenenearS is obtained by local rendering,

that is, the Z-buffering is employed to render the primitives
in nearS . The local rendering is similar to the selected occluder

rendering to compute the finest hierarchical occlusion map in
the hierarchical occlusion map method with the graphics
hardware support, lighting and texturing. Moreover, the
image nearI obtained in the local rendering is a partially

correct image rather than the finest occlusion map. The
image farI for the scene farS is computed by rendering a

potential visible list (PVL) through the Z-buffering. The
potential visible list (PVL) can be quickly computed by the
selectively lazy ray casting (SLR) and object-oriented ray-
casting (OOR) accelerated by coherence based ray-octree
traverse algorithm. The LZB algorithm performs well in the
real-time rendering of general large complex scenes. In the
next sections, we present the naïve LZB algorithm and its
optimization process to be the final local Z-buffering
rendering algorithm.

II. THE NAÏVE LOCAL Z-BUFFERING RENDERING

 The basic idea of the naïve Local Z-buffering is to employ
the Z-buffering to render the low depth complexity scene and
ray-casting to render the high depth complexity scene. Such
an idea aims at taking advantage of the “good features” of Z-
buffering and ray-casting. Z-buffering is good at rendering the
low depth complexity scene and ray-casting has the built-in
occlusion culling mechanism to reject the hidden objects after
spatial sorting.

A. The overview of the naïve local z-buffering rendering

The naïve LZB consists of a preprocessing stage and real-time
stage. In the preprocessing stage, an octree T is built to
organize the input triangle set in sceneS . The termination
condition in the octree building is the maximum depth of the
tree and the maximum primitive number in each leaf node. To
accelerate the preprocess, T. Moller 's triangle-box overlap
testing algorithm is employed to decide if a triangle intersects
with octants in our octree building. It is faster than the default
triangle-box overlap testing algorithm [17,18]. In the real-
time stage, there are following five steps.

1. Conduct the hierarchical view frustum culling:
traversing the octree T to collect leaves in the current
view frustum.

2. Compute a partition plane clipzz = in the camera space

to partition the input sceneS into two disjoint scenes

farnear SSS U= . Scene nearS /
farS is a low/high depth

complexity scene respectively after the partition.
3. Conduct the local rendering: employ the Z-buffering to

render the near-view scene
nearS .

4. Query the frame buffer to get the unfinished pixels to
be shaded.

5. Cast rays from the unfinished pixels to render the far-
view scene

farS .

B. Partition plane computing methods

A partition plane is a “good plane” if the scene nearS is a low

depth complexity scene and its image
nearI contributes much

more pixels than the image
farI of the far-view scene

farS in the

final rendering, farnear II >> . There are two ways to set a

partition plane in the view space: a static (ad-hoc) and a
dynamic approach (the coarse ray-casting). In the ad-hoc
approach, the plane clipzz = can be reasonable set at

%30%15 − depth position in the view frustum because a
large complex scene has at least 90% hidden primitives. The
ad-hoc approach is equivalent to setting a small view frustum
including all primitives in the

nearS . We found the partition

plane would be closer to the near plane with increase of the
scene size [18]. In the dynamic approach, the coarse ray
casting is used to decide the partition plane. A set of
uniformly coarse-sampled pixels on the screen window
conduct the ray casting to compute the distance, the ray
length, to the nearest surface for each ray. The average
distance is chosen as the location of the clipping plane and it
is then transformed into the corresponding distance in the
view space. This approach can get a better partition plane
because the coarse ray casting probes the nearest surface
locations. It is unnecessary to compute the partition plane for
each frame. The frame coherence can be exploited by reusing
the partition planes in the previous frames.

The naïve local-Z buffering can work well for the densely
occluded scenes which are special kinds of large complex
scenes. The densely occluded scenes can be found from
architecture models, office models and some city models [18].
In a densely occluded scene, the near-view scene image nearI is

very close to the final scene image due to generally available
large occluder; that is, the ray-casting takes only a light
workload to compute the far-view scene image

farI and the

local rendering takes the majority rendering. Figure 1 showa a
is a densely occluded scene with 572,412 triangles with the
average depth complexity 15. The average Z-buffering
rendering is 0.69 second and the average naive LZB rendering
time is 0.37 second where partition planes are computed by
the coarse ray casting with frame coherence.

Fig. 1. A densely occluded scene with 572,412 triangles

III. REFINING THE NAÏVE LOCAL Z-BUFFERING ALGORITHM

It is clear that the naïve local Z-buffering algorithm can not
work for the general large complex scenes due to the large
overhead from the ray-casting stage. In this section, we
improve the naïve local Z-buffering algorithm from three
aspects: the general hardware support, fast potential visible
list identifying, empty pixels removal and fast ray transverse.
They are corresponding lazy ray casting, selectively lazy ray
casting, object-oriented ray casting. The final version local
Z-buffering algorithm is the integration of all these
improvements.

A. “Lazy” ray casting

It is reasonable to turn to the possible hardware support to
accelerate the ray casting in the naive LZB. We propose a lazy
ray casting for this. The idea of the “lazy” ray casting is to
decompose the classic ray casting into two parts: a potential
visible list (PVL) finding and the potential visible list (PVL)
rendering. In the “lazy” ray casting, software is only
responsible for finding the potential visible primitives list
(PVL) for the far-view scene

farS . The nearest surface

identification and shading for all unfinished pixels in the ray-
casting are left to the graphics hardware, that is, sending the
PVL to the graphics pipeline and using the Z-buffering to
render the PVL.

In the PVL finding, a local list l is maintained for each ray-
casting pixelp to hold the identification numbers of a set of

the potential visible primitives. The set of the potential visible
primitives contain the nearest surface (the first-hit triangle) for
the ray emanated from the pixelp . The PVL is the union of

all the local lists where each triangle identity is only counted
once. Actually, a rendering bit is set for each primitive before
it is recorded in the PVL to remove the duplicated primitive
identification numbers.

To compute the local list l for a ray r emanated from the
pixel p , we just need to find the first ray-triangle hit for the

ray r rather than test all triangles associative with the ray
path. A ray path is a set of octree leaves traversed by a ray
until the ray visibility status is resolved; that is, there is either
a found nearest surface in an octree leave or no intersection
occurrence between the ray and the octree. In the lazy ray
casting, if there is a ray “hit” happen for a triangle in a leaf
node for a rayr , the ray-triangle intersection test terminates
and all the primitives associative the leaves traversed by r
and current leaf are recorded in the local list l . Figure 2
indicates the idea of the lazy ray casting.

 The potential visible list (PVL) rendering is to use the Z-
buffering to render all the primitives in the PVL. The
rendering results are just the image of the far-view scene

farS .

It is easy to see that the computing in the lazy ray casting
consists of CPU based PVL finding and GPU based PVL
rendering. Thus there is general hardware support for the lazy
ray casting compared with the classic ray casting and its
performance can “grow up” potentially with the CPU and
GPU technology.

Fig. 2. The idea of the lazy ray casting

How much “saving” can we get from the lazy ray casting
compared with the classic ray casting? To answer this
question, we compare the complexity between two
approaches. Suppose there are total n triangles in the ray
path of a rayr , there will ben ray-triangle intersection
computing in the classic ray casting. However, the number of
ray-triangle intersection testing in the lazy ray casting is 2/n
averagely and n in the worst case. Actually, in many large
complex scene rendering experiments, the first ray hit happens
in the first several leave transverse and the exhaustive search
case is a rare case [18]. Thus the complexity for a rayr in the
classic ray casting is st cnc + , where tc is the average process

cost to finish one triangle including the octree traverse and
ray-triangle intersection testing time, and sc is the average

shading cost for a pixel, which is related to the shading
models used in the rendering. On the other hand, the lazy ray
casting has the average complexity: ncnc zt +⋅5.0 , where zc is

the average cost to render each triangle by Z-buffering whose

order is in the range 610− to 1110− according to different
graphics hardware [2]. The average saving from the lazy ray
casting is nccnc zst −+⋅5.0 and it is related to CPU speed

and GPU capacity in the host machine.

B. Selectively lazy ray casting (SLR)

 In the lazy ray casting, the worst case to find the local list
l for each ray is to test all the primitives associative with the
leaves in its ray path. How can we avoid such worst case? In
this section, two local occluder selection methods are
proposed to accelerate the PVL finding. The first is called a
static local occluder selection, which is to build an Octree-o in
the preprocessing stage. The second is called is a dynamic
local occluder selection, which selects local occluders
dynamically according to a measure called visibility. Two
methods can also be integrated together to speed-up the PVL
finding.

The reason why the worst case occurs in the local list
finding is because that all primitives are treated uniformly
regardless of their different sizes and normal directions. These

factors are important measures to determinate the visibility
probability of each primitive. Thus the ray-triangle
intersection testing has to be conducted for all triangles
associative with a ray path even if there is no intersection for
the ray with any triangles. It is clear that such a uniform
testing mechanism is by no means an efficient approach to
resolve each pixel visibility status because these measures are
not involved in the ray-triangle testing.

To resolve a pixel visibility status fast in the lazy ray
casting, we introduce the local occluder selection method. The
local occluder selection is a selective method, which only tests
those most likely visible primitives (local occluders) to resolve
the ray visibility status quickly. Such a selectively ray triangle
intersection testing mechanism leads to the selectively lazy ray
casting method (SLR). There are two SLR methods according
to how to select the most likely visible primitives: the static
and dynamic local occluder selection.

1) Static local occluder selection
The idea of the static local occluder selection is to select the

local occluders for each leaf in the octree built in the
preprocessing stage. That is, build an Octree-o (Octree with
local occluders). In the Octree-o building process, one or
several local occluders are selected in each leaf node by
sorting triangles according to their areas. The extra memory
demand for building an Octree-o is just several bytes to record
the local occluder identification numbers. The time consuming
in building an Octree-o is same as building a general octree
[18].

In the lazy ray casting stage, the ray-triangle intersection
testing starts from the first occluder, the largest triangle
associative with the current leaf node. If there is an
intersection occurrence for a local occluder, all the triangles
associative the leaf node will be recorded into the PVL. Then
the leaf is marked as a visible node. On the other hand, if there
is no intersection (“hit”) between a ray and the pre-selected
local occluders in a leaf, the intersection query between the
ray and other triangles in the leaf will be skipped. The
identification numbers of triangles associative with the leaf
will be recorded in the PVL. Then, the leave point is computed
for the ray in the leaf node and the ray-triangle intersection
query will be conducted for the local occluders in the next leaf
until the visibility status of the ray is resolved.

Compared with the original lazy ray-casting, the static local
occluder selection decreases the number of intersection tests
and increases the size of the potential visible list (PVL). The
approach works very well in the scenes where there are large
triangles spanning many leaves in the corresponding octree.
The octree built for such scenes sometimes is an ill-balanced
tree. The visibility status of a ray won’t be known until the all
triangles tested in the ray path. Actually, the large triangles
are ideal local occluders for in the Octree-o. Because the ray-
triangle test is only conducted for the local occluders in each
octree leaf, the average ray traverse time decreases largely for
such “selective mechanism”. According to our
implementation, the number of the average ray-triangle
intersection query dropped dramatically for 5 occluders
selected in each Octree-o leaf with maximum 150 triangles.
The potential visible list (PVL) size increases correspondingly
for the lazy ray casting under static local occluder selection

acceleration.
2) Dynamic local occluder selection
The static local occluder selection just considers the size of

a primitive as a measure to decide the visibility probability of
a primitive. It is obvious that the primitive normal also play
an important measure to decide the visibility probability of a
primitive. Because the distance of primitives in a same leaf
node to the viewpoint is almost same. Under this case, the
distance may not play an important role in determinate the
visibility probability of a primitive. Thus we define a measure
called visibility to measure the visibility probability of a
primitive pas

)(pareanvvisibility ⋅⋅−= (1)

Where v is the view direction and n is the primitive normal
and area(p) is the area of the primitive. It is easy to see that
the primitive visibility depends on the inner product of v−
and primitive normal and the primitive size. The primitives in
a same leaf node with larger visibility values will be mostly
likely to be hit by a ray for a given viewpoint.

In the dynamic occluder selection, a base visibility for each
leaf node is set according to the average triangle area size in
each leaf and a preset value of -v·n. For example, -v·n=0.5. In
the actually ray shooting, the visibility value of each triangle
is computed dynamically. If the visibility of a triangle is
greater than the base visibility, the ray-triangle intersection
testing will be conducted for the triangle. Otherwise, it will be
skipped and the visibility of the next triangle will be
computed. If there is a candidate triangle hit by a ray, the leaf
will be marked as ‘visible’, the identification numbers of all
triangles in the leaf are recorded in the final PVL and ray-
intersection testing terminates. However, if there is no
intersection for all the selected candidates, the triangles in the
leaf node are still recorded in the PVL and ray-triangle
intersection test goes to next leaf node until the ray visibility
status of is resolved ; that is, there is at least one hit or no hit
in the octree.

Compared with the static occluder selection, the dynamic
selection can get more accurate estimate for the visibility
probability of a triangle. But it will depend on the scene
properties. In some scenes, if there is a large number of larger
triangles existed, the performance of the dynamic occluder
selection is not as good as the static occluder selection. In the
implementation, a hybrid version of the two local occluder
selection approaches is employed. A certain number of local
occluders are pre-selected in the Octree-o and the visibility is
computed for each occluder to filter the occluders with low
visibility values.

C. Objected- oriented ray casting

Although the selectively ray casting (SLR) can find the
potential visible list (PVL) for the far-view scene

farS in the

local Z-buffering, it still faces the following “empty pixel
problem”. The image of a large complex scene, even a densely
occluded scene, may just shade a relative small pixel set on
the screen most pixels are just empty pixels, where no
triangles in the scene are projected on these pixels for certain
viewpoints. For some empty pixels in the selectively lazy ray
casting, they can be “rejected” in the first several octree level

traverses because there is no intersection for their rays with
any triangles in the octree. However, for some empty pixels
between the image sets of neighbor objects, the octree traverse
may reach the deepest leaves before knowing their visibility
statuses. It is obvious that these types of empty pixels bring
more overhead in the ray-triangle intersection testing and
increase the PVL size potentially. In the local Z-buffering
rendering, the ray shooting overhead from these empty pixels
will increase linearly with increase of the image resolution
[18].

To decrease the overhead from these empty pixels to its
minimum level in rendering, we introduce the object-oriented
ray casting (OOR). The basic idea is just casting rays from the
unfinished pixels, which are in the projection area of the
objects in the current view frustum rather than casting rays for
all unfinished pixels on the screen. In the OOR, the projection
of an object on the screen can be approximated by the
projection of its corresponding axis aligned bounding box
(AABB) [5] or object oriented bounding box (OBB) [5] on the
screen. Computing the projection of each OBB can get smaller
object projection area on the screen. But it asks more
preprocessing time. In our implementation, we project the
AABB of each object in the view frustum on the screen. In the
computing of an AABB projection, it is unnecessary to
compute projections of all vertices. On the other hand, the
projection of the base point, the south-west corner point in the
lower surface of the AABB, is computed at first and then the
projections of the other vertices of the AABB are computed
by adjusting the corresponding offset vectors. The projection
of an AABB (3D box) is a simple convex polygonaabbP with 4,

5 or 6 sides, which are corresponding to 1, 2 or 3 face visible
cases. To decide if an unfinished pixel is in the projection
region, a bounding boxpB for each projection is computed on

line at first. If the unfinished pixel is in the bounding box pB ,

then we query if the pixel is in theaabbP , a convex polygon

with maximum six sides. This query can be computed in
dynamically and there are many real-time algorithms to decide
if a 2D point is in a convex polygon in the computer graphics
literature [12].

The completeness of the ray shooting in the OOR is
indicated by counting the number of objects in the current
view frustum instead of counting the unfinished pixels on the
screen. That is, ray shooting is object-oriented rather than
pixel-oriented where the ray casting processing is considered
finished if the visibility status of the last pixel is known. In the
object-oriented ray casting, the ray casting stage is considered
complete if the visibility status of the last pixel in the
projection area of the last object in the current view frustum is
resolved. Considering there are overlap regions on the screen
for the objects in the view frustum, a two dimensional
Boolean matrix maintained to record if an unfinished pixel p

in the projection region of an object having finished ray
shooting. If the pixelphas conducted ray shooting, its

corresponding mask value in the Boolean matrix is set true.
The pixel won’t be involved in any ray shooting although it
will be located in a projection of another object. Figure 3
indicates the idea of the object-oriented ray casting.

The object-oriented ray casting can be integrated with
selectively lazy ray casting to accelerate the naïve LZB. That
is, conducting the AABB projection for the objects in the
current view frustum but behind the partition plane to find the
interested regions on the screen to shoot rays. The PVL for the
far-view scene is computed by the selectively lazy ray casting
and sent to the graphics pipeline to be rendered by Z-
buffering.

Fig. 3. The idea of the object-oriented ray casting

D. The final version local Z-buffering algorithm

 Besides the previous three improvements, we also
developed a coherence based ray-octree traverse algorithm to
improve the standard top-down traverse used in the algorithm
[18]. The final version local Z-buffering consists of
integrations acceleration techniques of naïve local Z-buffering
from these points of views: the selectively lazy ray casting
provides the quick PVL finding and general hardware support
for ray casting; the object-oriented ray casting decreases the
overhead from empty pixels in the ray-shooting and the
coherence based ray-octree traverse algorithm optimizes the
top-down octree traverse in the ray casting stage. The LZB
algorithm is an output sensitive algorithm with respect to the
scene complexity and final image resolution. The detailed
cost-model analysis and proof can be found in the [18].

IV. RENDERING EXPERIMENTS

 We give the following rendering experiments to test the
performance of the LZB algorithm. The first rendering
example is from randomly generated densely occluded virtual
city with 1,822,260 triangles. The general Z-buffering
rendering needs 1.76 seconds averagely and the improved
LZB just take 0.34 second for averagely sampled 80
viewpoints along a circular view path. The second rendering
example is an assembling scene with 3.8 million triangles
from the UNC power plant model [19] (Figure 4). We sample
120 viewpoints along a circular view path in the rendering, the
LZB rendering achieves average 12 FPS compared with the
average 6.2 FPS under Z-buffering rendering. In the second
rendering experiment, we “prove” the output sensitivity of the
LZB. A series of scenes (scenes scene triangle numbers range
from 18,000 to 3.8 million) are taken from the UNC power
plant model. For the 3.8 million triangle scene, the LZB

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1 2 3 4 5 6 7 8 9 10 11

F
ra

m
e

tim
e

(s
ec

on
d)

The number of processors(P)

Speedups of rendering N triangles on P processors

N=17,356

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1 2 3 4 5 6 7 8 9 10 11

F
ra

m
e

tim
e

(s
ec

on
d)

The number of processors(P)

Speedups of rendering N triangles on P processors

N=197,120

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1 2 3 4 5 6 7 8 9 10 11

F
ra

m
e

tim
e

(s
ec

on
d)

The number of processors(P)

Speedups of rendering N triangles on P processors

N=248,432

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1 2 3 4 5 6 7 8 9 10 11

F
ra

m
e

tim
e

(s
ec

on
d)

The number of processors(P)

Speedups of rendering N triangles on P processors

N=445,552

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1 2 3 4 5 6 7 8 9 10 11

F
ra

m
e

tim
e

(s
ec

on
d)

The number of processors(P)

Speedups of rendering N triangles on P processors

N=462,908

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1 2 3 4 5 6 7 8 9 10 11

F
ra

m
e

tim
e

(s
ec

on
d)

The number of processors(P)

Speedups of rendering N triangles on P processors

N=828,878

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1 2 3 4 5 6 7 8 9 10 11

F
ra

m
e

tim
e

(s
ec

on
d)

The number of processors(P)

Speedups of rendering N triangles on P processors

N=3,244,854

rendering achieves the average 10.3 FPS which is much
higher than 5.7 FPS from the Z-buffering rendering. We plot
the LZB and Z-buffering rendering time with respect to the
scene size, image complexity and scene depth complexity by
sampling 80 viewpoints in a circular view path in the
rendering. We find that the LZB is weakly dependent on the
image complexity, scene size and scene depth complexity and
the Z-buffering rendering time linearly increases with respect
to the measures. In other words, the LZB is an output sensitive
algorithm. All our experiments are conducted under an AMD
machine running under Linux OS with a 2.1 GHz AMD
processor with 1.0 G main memory and Gf4 series graphics
hard under the Linux OS for the final image resolution
with 512512× pixels.

Fig.4. A large complex scene with 3.8 million
triangles

 We also implement the parallel version LZB. We use
Message-Passing Interface (MPI) library to implement the
parallel local Z-buffering algorithm and achieves the
satisfactory speed-up. The Figure 5 shows the experimental
results for different size of scene datasets and numbers of
processors. In the parallel implementation, due to the
communication overhead caused by the broadcast of depth
buffer at each rendering frame, the parallel-LZB has a lower
efficiency than the sequential LZB for small size (<0.5 million
in our case) of data sets. However, as the size of data set
increases, the parallel LZB performs much better than the
sequential LZB and achieves a higher speedup (≈1.27 for 8
processors).

Fig. 5. The speedup of the parallel rendering n triangles on
p processors

V. CONCLUSION AND FUTURE WORK

In this paper, we present a real-time rendering algorithm
LZB for the large complex scenes. Compared with the similar
algorithms, the LZB is an output sensitive and easy to
implement, can work for general large complex scenes and
has no special hardware and heavy-loaded preprocessing
requirements. In the following work, we would like to
compare the performance of the LZB and other rendering
algorithms: HZB (hierarchical Z-buffering), HOM
(hierarchical occlusion culling) in large complex scenes
besides refining our current version parallel LZB algorithm.

REFERENCES
[1] D. Cohen-Or, Y. Chrysanthou, C. Silva, C. and F. Durand, “A survey of

visibility for walkthrough applications”, IEEE TVCG, 2002.
[2] R. Fernando, GPU Gems, Addison-Wesley, 2004.
[3] S. Teller et al., “Visibility preprocessing for interactive walkthroughs”,

Computer Graphics 25(4), 1991, pp. 61-69.
[4] N. Greene, M. Kass, and G. Miller, “Hierarchical z-buffer visibility”,

SIGGRAPH 93 Proceedings, Annual Conference Series, 1993, pp. 231-
238

[5] H. Zhang, D. Manocha,, T. Hudson, and K. Hoff., “Visibility culling
using hierarchical occlusion maps”, SIGGRAPH’97 Proceedings,
Annual Conference Series, 1997, pp. 77-88.

[6] P. Wonka, M. Wimmer, and D. Schmalstieg, “Visibility preprocessing
with occluder fusion for urban walkthroughs”, Rendering Techniques
11th Eurographics workshop on rendering, 2000, pp. 71-82.

[7] S. Coorg, and S. Teller, “Real-time occlusion culling for models with
large occluders”. ACM Symposium on Interactive 3D Graphics , 1997,
pp. 83-90.

[8] F. Durand, G. Drettakis, J. Thollot, and C. Puech, “Conservative
visibility preprocessing using extended projections”, Proceedings of
SIGGRAPH , 2000, pp. 239-248.

[9] J. Klosowski and C. Silva, “The prioritized layered projection algorithm
for visible set estimation”, IEEE Transactions on Visualization and
Computer Graphics, 6(2) , 2000.

[10] J. Klosowski and C. Silva, “Efficient conservative visibility culling
using the prioritized layered projection algorithm”, IEEE Transactions
on Visualization and Computer Graphics 7(2), pp. 365—379, 2001.

[11] M. Garland, “Quadric-based polygonal surface simplification”, Ph.D.
thesis, Technical Report CMU-CS-99-105, Carnegie Mellon University,
1999.

[12] D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson, and E.
Huebner, Level of Detail for 3d Graphics, Morgan Kaufmann, 2002.

[13] M. Sainz, and R. Pajarola, “Point-based rendering techniques”,
Computer & Graphics, 28, pp. 869-879, 2004.

[14] M. Wand, M. Fischer and I. Pater, “ The randomized z-buffer algorithm:
Interactive rendering of highly complex scenes”, SIGGRAPH 2001,
Computer Graphics Proceedings, 2001.

[15] H. Pfister, M. Zwicker, J. van Baar and M. Gross, “Surfels: Surface
elements as rendering primitives”, SIGGRAPH 2000 Proceedings,
Annual Conference Series, 235-242, pp. 2000.

[16] S. Rusinkiewicz and M. Levoy, “Qsplat: A multi-resolution point
rendering system for large meshes”, SIGGRAPH 2000 Proceedings,
Annual Conference Series, pp. 343-352, 2000.

[17] Akenine-Mįller,T. : Fast 3d triangle-box overlap testing, 2001.
[18] X. Han, “The Local Z-buffer Algorithm for Rendering Large Complex

Scenes”, Ph.D. Thesis, Department of Applied Mathematics and
Computational Sciences, The University. of Iowa, 2004.

[19] UNC power plant model: http://www.cs.unc.edu/~geom/Powerplant/
2004.

