IAENG International Journal of Computer Science, 32:4, [JCS 32 4 7

The Local Z-Buffering Rendering

Henry X. Han, Michael Zeiger

Abstract—A local Z-buffering (LZB) rendering algorithm in
the large complex scenes is presented in this papdthe local Z-
buffering originates from the depth complexity basd scene
decomposition and following multistage rendering. In a naive
local Z-buffering, a large complex scene is decomped into a low
depth complexity scene and high depth complexity ene by
computing a partition plane in the view space; thdow and high
depth complexity scenes are rendered by the Z-buifieg and
classic ray casting respectively. To achieve an quit sensitive
real-time rendering algorithm, a series of algoritms are
developed to optimize the naive version from aspecof general
hardware support, empty pixel removal and fast potatial visible
primitive identification. Finally, the parallel version local Z-
buffering rendering is introduced. Compared with smilar types
of rendering algorithms, the LZB algorithm is easyto implement,
requires the least preprocessing time and achieveghe
satisfactory speed-up in the large complex scenesndering.

Index Terms— Visibility, real-time rendering, ray casting

. INTRODUCTION

value sorting mechanism. Although some sophisticated

hardware techniques have been proposed to dec}@hshy

implementing some occlusion culling algorithms; they are
mostly customized approaches to handle specific scenes and
those hardware techniques still have difficulty in interactive

visualizations of a generally large complex scenes [1,2].

In additional to the hardware acceleration techniques, two
categories of real-time rendering algorithms are developed for
the large complex scene rendering; that is, visibility culling
algorithms and scene approximation based rendering
algorithms. The first type of algorithms focus on remgvi
invisible objects to decrease the number of triangles sent to
the graphics pipeline. According to where the occlusion
culling computing is conducted, visibility culling algdmibs
can be further classified as image/object space algorithms,
including the cell based potential visible set algorithm[3],
hierarchical Z-buffer algorithm (HZB) [4], hierarchical
occlusion map (HOM) [5], cPLP conservative prioritized
layered projection (cPLP) [6,7] and occluder shrinkiagal.
[8,9]. On the other hand, the second type of algorithms focus

The recently impressive progress in graphics hardwaf@ approximating the input scenes by a corresponding
technologies is still facing the challenges from real-timgeduced/simplified geometric data set that is less expensive to

rendering of the increasing scene complexity of the larggnder, to reduce the number of pixels projected(ntdrhe

complex scenes. The large complex scenes are large geom

gl of detail method (LOD) and point based rendering

data sets from the traditonal compute games, virtuBelong to this class. For the more detailed information about
environments, scientific visualizations and even the neffese algorithms, we suggest the related reviews and papers on
bioinformatics area [1,2]. A large complex scene is generally@is topic [11,12,13,14,15,16]. Although these prembs
scene with at least several million triangles and average defitigractive rendering approaches did great improvements on
complexity more than 10 with at least 90% invisibldhe real-ime rendering of large complex scenes, they still
primitives in the rendering. The interactive renderinghare some of following potential weak points. For example,
bottleneck from large complex scenes is mainly due to the fa#gorithms need a large amount of preprocessing or need
that most graphics cards and APIs employ the Z-bufferiffi§/Stomized hardware support to real-time visualization. Some

algorithm or its variants in the visibility computinghis

approaches even can not guarantee the conservation in the

algorithm is an input-sensitive algorithm and its compjexitVisibility or just can apply to special scenes [1,14].

grows linearly with the scene complexig(s|+|Q)), where

We believe an efficient real-time rendering algorithm of
large complex scenes must have the following characteristics.

|§ is the scene size alfy] is the image space size: the totah) |t should be an output sensitive algorithm, that s, i

number of projected pixels generated by projecting primitived®mputational complexity is weakly dependent on scene
into the image spad®. It is obvious that the Z-buffering complexity; 2) Its preprocessing stage should be light-loaded
algorithm is good at rendering low depth complexity scenéd It can access commonly available graphics hardware
rather than large complex scenes because of its minimumsgpport rather than special ones; 4) It is easy to implement an

Manuscript received March 12, 2006.

Henry X. Han was with Applied Mathematical and Canaional
Sciences, University of lowa, lowa city, IA 52240SA. He is with
Department of Mathematics, Eastern Michigan UniwersYpsilanti, MI
48197 USA. (phone:734-487-5044; fax:734-487-2489; -mad:
xhanl@emich.edu).

Michael Zeiger is with Department of Computer ScerEastern Michigan
University, Ypsilanti, MI 48197 USA.

can apply to different categories of scenes. In this work, we
present an output sensitive real-time rendering algorithm
called local Z-buffering rendering (LZB) according to the
specified criteria. The LZB rendering is based on the scene
decomposition in the view space and following multi-passing
rendering. In the scene decomposition, the scene in the view
frustum is decomposed as a low depth complexity/ near-view
scene S, and a high depth complexity / far-scergg,,

(Advance online publication: 12 November 2006)

dynamically or statically. Thg can be viewed as an 5. Cast rays from the unfinished pixels to render the far-

automatically selected occluder set f®, where the view scens, .

pl’imitiveS are more I|ke|y invisible than thoseaga,. The B. Partition plane Computing methods
image | ., of the scen&,., is obtained bylocal rendering A partition plane is a “good plane” if the scegg, is a low
that is, the Z-buffering is employed to render the prire&iv depth complexity scene and its imagg, contributes much

ear

in Snear: The local renderlng. is S|m!lar to the selecteq occlud?ﬁore pixels than the image of the far-view scens,, in the
rendering to compute the finest hierarchical occlusion map in

the hierarchical occlusion map method with the graphi(fg‘a
hardware support, lighting and texturing. Moreover, thpartition plane in the view space: a static (ad-hoc) and a
image |,.,, obtained in the local rendering is a partiallyjdynamic approach (the coarse ray-casting). In the ad-hoc

correct image rather than the finest occlusion map. Ti@proach, the planez=z,, can be reasonable set at
imagel , for the sceneS,, is computed by rendering a 15%-30% depth position in the view frustum because a

potential visible list (PVL) through the Z-buffering. &h large complex scene has at least 90% hidden pvsitihe
potential visible list (PVL) can be quickly computed by th ad-hoc approach is equivalent to setting a smaivvirustum
selectively lazy ray casting (SLR) and object-oriented rayacluding all primitives in thg . We found the partition
casting (OOR) accelerated by coherence based ray-octf#gne would be closer to the near plane with irseeaf the
traverse algorithm. The LZB algorithm performs well i th scene size [18] In the dynamic approach’ the SEO&RY
real-time rendering of general large complex scenes. In thgsting is used to decide the partition plane. A of
next sections, we present the naive LZB algorithm and i&iformly coarse-sampled pixels on the screen windo
Optimization process to be the final local Z-buffering:onduct the ray Casting to Compute the distance, rﬁy

I rendering,|l |>>|I . There are two ways to set a

near far

rendering algorithm. length, to the nearest surface for each ray. Therame
) distance is chosen as the location of the clippilage and it
Il THE NAIVE LOCAL Z-BUFFERING RENDERING is then transformed into the corresponding distaimcéhe

The basic idea of the naive Local Z-buffering is to emplc?@?W space. This approach can get a better partjiane
the Z-buffering to render the low depth complexity scene aftpcause the coarse ray casting probes the neangates

ray-casting to render the high depth complexity scene. Sul@gations. Itis unnecessary to compute the pantiplane for

an idea aims at taking advantage of the “good features” of 2ch frame. The frame coherence can be exploitegusing

buffering and ray-casting. Z-buffering is good at rendetigg "€ Partition planes in the previous frames.
low depth complexity scene and ray-casting has the built-inThe naive local-Z buffering can work well for thergely
occlusion culling mechanism to reject the hidden objects afteccluded scenes which are special kinds of largaptex
spatial sorting. scenes. The densely occluded scenes can be foond fr
. . . . architecture models, office models and some citdeis[18].
A. The overview of the naive local z-buffering renaigri In a densely occluded scene, the near-view sceageim, , is

The naive LZB consists of a preprocessing stage and real—ti%qy close to the final scene image due to geneealhilable

stage. In the preprocessing stage, an ocffee built ©© 500 gecluder; that is, the ray-casting takes oalyight

organize the input triangle set in sc&eThe termination workload to compute the far-view scene imageand the
condition in the octree building is the maximum depth ef th

tree and the maximum primitive number in each leaf node. 13°& rendelring talkes the majorityr:endering. F('igmrs'howt? a
accelerate the preprocess, T. Moller ‘s triangle-box overlip @ densely occluded scene with 572,412 triangféls the

testing algorithm is employed to decide if a triangle intersecfyerage depth complexity 15. The average Z-bufferin
with octants in our octree building. It is faster than tatadit '€ndering is 0.69 second and the average naivered8ering

triangle-box overlap testing algorithm [17,18]. In tremlf tir:ne is 0.37 second Wh?;\ef partitionhplanes are ctetpby
time stage, there are following five steps. the coarse ray casting with frame coherence.

1. Conduct the hierarchical view frustum culling:
traversing the octred to collect leaves in the current
view frustum.

2. Compute a partition plane = z,,, in the camera space
to partition the input scerg into two disjoint scenes
S=S..US.- Scene S, /s _ is a low/high depth
complexity scene respectively after the partition.

3. Conduct the local rendering: employ the Z-buffering to
render the near-view sceeneear' Fig. 1. A densely occluded scene with 572,412 tfies

4. Query the frame buffer to get the unfinished pixels to
be shaded.

far

[Il. REFINING THE NAIVE LOCAL Z-BUFFERING ALGORITHM

It is clear that the naive local Z-buffering algbm can not
work for the general large complex scenes due ¢oldige
overhead from the ray-casting stage. In this sectiwe
improve the naive local Z-buffering algorithm frothree
aspects: the general hardware support, fast patensible
list identifying, empty pixels removal and fast tagnsverse.
They are corresponding lazy ray casting, selegtiledy ray
casting, object-oriented ray casting. The finalsi@r local
Z-buffering algorithm is the integration of all #&
improvements.

A. “Lazy” ray casting

It is reasonable to turn to the possible hardwamppsrt to
accelerate the ray casting in the naive LZB. Wepse a lazy
ray casting for this. The idea of the “lazy” raystiag is to
decompose the classic ray casting into two par{zotantial
visible list PVL) finding and the potential visible lisPYL)
rendering. In the “lazy” ray casting, software isilyo
responsible for finding the potential visible primés list
(PVD) for the far-view sceng . The nearest surface

identification and shading for all unfinished pixeh the ray-
casting are left to the graphics hardware, thasésding the
PVL to the graphics pipeline and using the Z-buffering
render thePVL

In the PVL finding, a local listl is maintained for each ray-
casting pixelp to hold the identification numbers of a set o

the potential visible primitives. The set of thetigrtial visible
primitives contain the nearest surface (the fiistrflangle) for
the ray emanated from the pixel ThePVL is the union of

all the local lists where each triangle identityordly counted
once. Actually, a rendering bit is set for eachmjitive before
it is recorded in thdPVL to remove the duplicated primitive
identification numbers.

To compute the local list for a rayr emanated from the
pixel p, we just need to find the first ray-triangle hitr fthe

ray r rather than test all triangles associative with thy
path. A ray path is a set of octree leaves tragelsea ray
until the ray visibility status is resolved; that there is either
a found nearest surface in an octree leave or teosiction
occurrence between the ray and the octree. Inahg flay
casting, if there is a ray “hit” happen for a tigga in a leaf

\ first hitted primitive

Fig. 2. The idea of the lazy ray casting

How much “saving” can we get from the lazy ray oast
compared with the classic ray casting? To answés th
guestion, we compare the complexity between two
approaches. Suppose there are totatriangles in the ray
path of a ray, there will benray-triangle intersection
computing in the classic ray casting. However,ribeber of
ray-triangle intersection testing in the lazy ragting isn/2
averagely andn in the worst case. Actually, in many large

];:omplex scene rendering experiments, the firshraljappens

in the first several leave transverse and the estheusearch
case is a rare case [18]. Thus the complexity fiayain the
classic ray casting isg +c,, wherec, is the average process
cost to finish one triangle including the octreavarse and
ray-triangle intersection testing time, arglis the average
shading cost for a pixel, which is related to theading
models used in the rendering. On the other hamdlathy ray
casting has the average complexitying +c,n, where c,is
the average cost to render each triangle by Z-boffevhose
order is in the rangel0®to 10™ according to different
graphics hardware [2]. The average saving fromldlg ray
casting is 050nc, +c,—c,n and it is related to CPU speed

and GPU capacity in the host machine.

B. Selectively lazy ray casting (SLR)

node for a ray, the ray-triangle intersection test terminates In the lazy ray casting, the worst case to finel lthcal list

and all the primitives associative the leaves trsag by r
and current leaf are recorded in the local listFigure 2
indicates the idea of the lazy ray casting.

The potential visible listRVL) rendering is to use the Z-
buffering to render all the primitives in thBVL The
rendering results are just the image of the fameenes,_ .

It is easy to see that the computing in the lazy casting
consists of CPU baseBVL finding and GPU baseéVL
rendering. Thus there is general hardware suppothg lazy
ray casting compared with the classic ray casting ds
performance can “grow up” potentially with the CRind
GPU technology.

| for each ray is to test all the primitives assde@tvith the
leaves in its ray path. How can we avoid such woase? In
this section, two local occluder selection methoa®
proposed to accelerate tR/L finding. The first is called a
static local occluder selection, which is to budliOctree-oin
the preprocessing stage. The second is calleddgnamic
local occluder selection, which selects local odehs
dynamically according to a measure calladibility. Two
methods can also be integrated together to sped¢delpVL
finding.

The reason why the worst case occurs in the lasal |
finding is because that all primitives are treatedformly
regardless of their different sizes and normaldiiogs. These

factors are important measures to determinate thibility
probability of each primitive. Thus the ray-triaagl
intersection testing has to be conducted for alingles
associative with a ray path even if there is nersection for
the ray with any triangles. It is clear that sucturdform
testing mechanism is by no means an efficient aagrao
resolve each pixel visibility status because thasasures are
not involved in the ray-triangle testing.

To resolve a pixel visibility status fast in thezyaray
casting, we introduce the local occluder selecti@ihod. The
local occluder selection is a selective method ciiuinly tests
thosemost likely visible primitiveflocal occluders) to resolve
the ray visibility status quickly. Such a seleclvey triangle
intersection testing mechanism leads to the sekdgtlazy ray
casting method (SLR). There are two SLR methodsradatg
to how to select the most likely visible primitivethe static
and dynamic local occluder selection.

1) Static local occluder selection

The idea of the static local occluder selectiotwiselect the
local occluders for each leaf in the octree buiit the
preprocessing stage. That is, build @aotree-o(Octree with
local occluders). In th®ctree-o building process, one or
several local occluders are selected in each |eale nby
sorting triangles according to their areas. Theaeriemory
demand for building af®ctree-ois just several bytes to recor

acceleration.

2) Dynamic local occluder selection

The static local occluder selection just considkessize of
a primitive as a measure to decide the visibilitylqability of
a primitive. It is obvious that the primitive noatalso play
an important measure to decide the visibility ptulity of a
primitive. Because the distance of primitives irsame leaf
node to the viewpoint is almost same. Under thisecdhe
distance may not play an important role in deteat@nthe
visibility probability of a primitive. Thus we defe a measure
called visibility to measure the visibility probability of a
primitive p as

visibility = -vinlarea(p) Q)
Wherev is the view direction and is the primitive normal
and area(p) is the area of the primitive. It is easy to sea th
the primitive visibility depends on the inner pratiwf —v
and primitive normal and the primitive size. Thénptives in
a same leaf node with larger visibility values Wik mostly
likely to be hit by a ray for a given viewpoint.

In the dynamic occluder selection, a baistility for each
leaf node is set according to the average triangga size in
each leaf and a preset value-oh. For example;v-n=0.5. In
the actually ray shooting, the visibility value edich triangle

dis computed dynamically. If the visibility of a angle is

the local occluder identification numbers. The ticomsuming greater than the base visibility, the ray-triangieersection

in building anOctree-ois same as building a general octre

[18].

In the lazy ray casting stage, the ray-trianglerisection
testing starts from the first occluder, the largé&sangle
associative with the current leaf node. If there am
intersection occurrence for a local occluder, bé triangles
associative the leaf node will be recorded intoRME. Then
the leaf is marked as a visible node. On the dihed, if there
is no intersection (“hit”) between a ray and the-pelected
local occluders in a leaf, the intersection queepween the
ray and other triangles in the leaf will be skippékthe
identification numbers of triangles associativehwihe leaf

éesting will be conducted for the triangle. Othesgyiit will be

skipped and the visibility of the next triangle Mwibe
computed. If there is a candidate triangle hit byay the leaf
will be marked as ‘visible’, the identification nimers of all
triangles in the leaf are recorded in the fifRafL and ray-
intersection testing terminates. However, if thdse no
intersection for all the selected candidates, tiamgles in the
leaf node are still recorded in theVL and ray-triangle
intersection test goes to next leaf node untilrdne visibility
status of is resolved ; that is, there is at least hit or no hit
in the octree.

Compared with the static occluder selection, theadyic

will be recorded in th@VL Then, the leave point is computedS€/ECtion can get more accurate estimate for tiseily

for the ray in the leaf node and the ray-triangltelisectio
qguery will be conducted for the local occludershia next leaf
until the visibility status of the ray is resolved.

Compared with the original lazy ray-casting, thatistlocal
occluder selection decreases the number of intéogetests
and increases the size of the potential visible(R&/L). The
approach works very well in the scenes where thezdarge
triangles spanning many leaves in the corresponduicge.
The octree built for such scenes sometimes isldraliinced
tree. The visibility status of a ray won’t be knowntil the all
triangles tested in the ray path. Actually, thegdatriangles
are ideal local occluders for in tii#ctree-o Because the ray-
triangle test is only conducted for the local odels in each
octree leaf, the average ray traverse time decsdargely for

n Probability of a triangle. But it will depend onethscene

properties. In some scenes, if there is a largebeuraf larger
triangles existed, the performance of the dynanuclumer
selection is not as good as the static occludeccseh. In the
implementation, a hybrid version of the two localcluder
selection approaches is employed. A certain nurobéocal
occluders are pre-selected in fetree-oand the visibility is
computed for each occluder to filter the occludeith low
visibility values.

C. Objected- oriented ray casting

Although the selectively ray casting (SLR) can fitite
potential visible list PVL) for the far-view scenes_ in the

local Z-buffering, it still faces the following “epty pixel

such “selective mechanism”. According to ouProblem”. The image 01_‘ a large complex scene, Gn/dqnsely
implementation, the number of the average raygimn Occluded scene, may just shade a relative smadil siet on
intersection query dropped dramatically for 5 odeks the screen most pixels are just empty pixels, wheoe
selected in eaclctree-oleaf with maximum 150 triangles. triangles in the scene are projected on these feelcertain

The potential visible listRVL) size increases correspondinglyVi€Wpoints. For some empty Ffj’_(e|5 in the selecyivaky ray
for the lazy ray casting under static local occlugelection ~casting, they can be “rejected” in the first selecree level

traverses because there is no intersection for thgs with
any triangles in the octree. However, for some gnmtels
between the image sets of neighbor objects, thre@ttaverse
may reach the deepest leaves before knowing thelility

statuses. It is obvious that these types of emptglp bring
more overhead in the ray-triangle intersection ingstand

The object-oriented ray casting can be integratéth w
selectively lazy ray casting to accelerate the e&¥B. That
is, conducting the AABB projection for the objedts the
current view frustum but behind the partition pldodind the
interested regions on the screen to shoot raysPWeor the
far-view scene is computed by the selectively lemy casting

increase thePVL size potentially. In the local Z-buffering and sent to the graphics pipeline to be renderedZby

rendering, the ray shooting overhead from thesetepigels
will increase linearly with increase of the imagesalution
[18].

To decrease the overhead from these empty pixel$sto

minimum level in rendering, we introduce tbkject-oriented

ray casting(OOR). The basic idea is just casting rays froe th

unfinished pixels, which are in the projection amfathe
objects in the current view frustum rather thartingsrays for
all unfinished pixels on the screen. In the OO, rojection

of an object on the screen can be approximated higy t

projection of its corresponding axis aligned bouwgdibox
(AABB) [5] or object oriented bounding box (OBB)][6n the
screen. Computing the projection of each OBB carsgeller

object projection area on the screen. But it asksem

preprocessing time. In our implementation, we prbjde
AABB of each object in the view frustum on the sareln the
computing of an AABB projection, it is unnecessary
compute projections of all vertices. On the othandy the
projection of the base point, the south-west copmént in the
lower surface of the AABB, is computed at first ahén the
projections of the other vertices of the AABB ammputed
by adjusting the corresponding offset vectors. phaection
of an AABB (3D box) is a simple convex polygmey, with 4,

5 or 6 sides, which are corresponding to 1, 2 tacg visible
cases. To decide if an unfinished pixel is in thejgxrtion

region, a bounding bag, for each projection is computed ong,, ray casting;

line at first. If the unfinished pixel is in the tnading boxg,
then we query if the pixel is in tiRg,,, a convex polygon

with maximum six sides. This query can be compuited
dynamically and there are many real-time algorithondecide
if a 2D point is in a convex polygon in the compugeaphics
literature [12].

The completeness of the ray shooting in the OOR is

indicated by counting the number of objects in tugrent
view frustum instead of counting the unfinishedgbéxon the
screen. That is, ray shooting @bject-orientedrather than

buffering.

Object oriented ray shooting

Fig. 3. The idea of the object-oriented ray castin

D. The final version local Z-buffering algorithm

Besides the previous three improvements,
developed a coherence based ray-octree traversgetlay to
improve the standard top-down traverse used irakjperithm
[18]. The final version local Z-buffering consistsf
integrations acceleration techniques of naive I@ebhuffering
from these points of views: the selectively lazy asting
provides the quiclPVL finding and general hardware support
the object-oriented ray castingrdases the
overhead from empty pixels in the ray-shooting ahd
coherence based ray-octree traverse algorithm metsnthe
top-down octree traverse in the ray casting stage. LZB
algorithm is an output sensitive algorithm withpest to the
scene complexity and final image resolution. Theaitkl
cost-model analysis and proof can be found in 18 [

IV. RENDERINGEXPERIMENTS

We give the following rendering experiments to tdst
performance of the LZB algorithm. The first renderi

pixel-orientedwhere the ray casting processing is considere&amme is from randomly generated densely occluitédal

finished if the visibility status of the last pixislknown. In the

object-oriented ray castinghe ray casting stage is considere

complete if the visibility status of the last pixah the
projection area of the last object in the curra@atwfrustum is
resolved. Considering there are overlap regiontherscreen
for the objects in the view frustum, a two dimemsib
Boolean matrix maintained to record if an unfindhpixel p

in the projection region of an object having firéshray

ity with 1,822,260 triangles. The general Z-bufigr
endering needs 1.76 seconds averagely and theowexbr
LZB just take 0.34 second for averagely sampled 80
viewpoints along a circular view path. The secoaddering
example is an assembling scene with 3.8 millioangles
from the UNC power plant model [19] (Figure 4). \&&@mple
120 viewpoints along a circular view path in thedering, the
LZB rendering achieves average 12 FPS compared thith

shooting. If the pixephas conducted ray shooting, itsaverage 6.2 FPS under Z-buffering rendering. Instheond

corresponding mask value in the Boolean matrixeistsie.
The pixel won't be involved in any ray shootinghaltigh it
will be located in a projection of another objecEigure 3
indicates the idea of the object-oriented ray ogsti

rendering experiment, we “prove” the output sewisjtiof the
LZB. A series of scenes (scenes scene triangle atsmange
from 18,000 to 3.8 million) are taken from the UNGwer
plant model. For the 3.8 million triangle scenlee tLZB

we also

rendering achieves the average 10.3 FPS which ishmu

higher than 5.7 FPS from the Z-buffering renderivge plot

V. CONCLUSION AND FUTURE WORK

In this paper, we present a real-time renderin@rétym

the LZB and Z-buffering rendering time with respéatthe | 7p for the large complex scenes. Compared withsinlar

scene size, image complexity and scene depth caitypley

sampling 80 viewpoints in a circular view path ihet
rendering. We find that the LZB is weakly dependentthe .o 1o special

image complexity, scene size and scene depth caityplnd

the Z-buffering rendering time linearly increasethwespect
to the measures. In other words, the LZB is anuupnsitive

algorithm. All our experiments are conducted uralerAMD

machine running under Linux OS with a 2.1 GHz AMDy
processor with 1.0 G main memory and Gf4 seriephica
hard under the Linux OS for the final image redohut

with 512x512pixels.

Fig.4. A large complex scene with 3.8 million

triangles

algorithms, the LZB is an output sensitive and e#sy
implement, can work for general large complex sseaed

hardware and heavy-loaded prepingess

requirements. In the following work, we would liki
compare the performance of the LZB and other rénger

algorithms:

HzZB (hierarchical Z-buffering), HOM

(hierarchical occlusion culling) in large complexenes

(1
[2]

(3]

[4]

(5]

(6]

(71

(8]

We also implement the parallel version LZB. We use
Message-Passing Interface (MPI) library to implemére

parallel local

processors. In the parallel

communication overhead caused by the broadcastepthd
buffer at each rendering frame, the parallel-LZB halower

implementation,

Z-buffering algorithm and achieve$et
satisfactory speed-up. The Figure 5 shows the érpatal
results for different size of scene datasets anchbeus of

due the

efficiency than the sequential LZB for small siz€.6 million

in our case) of data sets. However, as the sizdatd set
increases, the parallel LZB performs much bettemtlthe
sequential LZB and achieves a higher speeddp2{ for 8

processors).

Speedups of rendering N triangles on P processors

Frame time (second)

N=3,244,854 —o—
N=828,878 —%—
N=462,908 —5—

—
—a

T N=445552 —<—
N=248,432 —H—
N=197,120 —8—
N=17,356 —o—

6

7 8 9 10 11

“The number of processors(P)

Fig. 5. The speedup of the parallel renderingamgies on

p processors

(9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]
(18]

[19]

esides refining our current version parallel LAgoaithm.

REFERENCES

D. Cohen-Or, Y. Chrysanthou, C. Silva, C. and Frdbd, “A survey of
visibility for walkthrough applicationsEEE TVCG 2002.

R. FernandoGPU GemsAddison-Wesley2004.

S. Telleret al, “Visibility preprocessing for interactive walkitughs”,
Computer Graphic&5(4), 1991, pp. 61-69.

N. Greene, M. Kass, and G. Miller, “Hierarchicabuaffer visibility”,
SIGGRAPH 93 Proceedingénnual Conference Series, 1993, pp. 231-
238

H. Zhang, D. Manocha,, T. Hudson, and K. Hoff., SMility culling
using hierarchical occlusion maps'SIGGRAPH'97 Proceedings
Annual Conference Series, 1997, pp. 77-88.

P. Wonka, M. Wimmer, and D. Schmalstieg, “Visityilpreprocessing
with occluder fusion for urban walkthroughsRendering Techniques
11th Eurographics workshop on renderjig900, pp. 71-82.

S. Coorg, and S. Teller, “Real-time occlusion agjlifor models with
large occluders”.ACM Symposium on Interactive 3D Graphjck997,
pp. 83-90.

F. Durand, G. Drettakis, J. Thollot, and C. PuetBpnservative
visibility preprocessing using extended projectipnBroceedings of
SIGGRAPH, 2000, pp. 239-248.

J. Klosowski and C. Silva, “The prioritized layérgrojection algorithm
for visible set estimation”|EEE Transactions on Visualization and
Computer Graphics(2) , 2000.

J. Klosowski and C. Silva, “Efficient conservatiwgsibility culling
using the prioritized layered projection algorithnZEEE Transactions
on Visualization and Computer Graphi(2), pp. 365—379, 2001.

M. Garland, “Quadric-based polygonal surface sifigation”, Ph.D.
thesis, Technical Report CMU-CS-99-105, CarnegidldvieUniversity,
1999.

D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. &Wat and E.
Huebner, Level of Detail for 3d GraphigsMorgan Kaufmann, 2002.

M. Sainz, and R. Pajarola, “Point-based renderieghniques”,
Computer & Graphics28, pp. 869-879, 2004.

M. Wand, M. Fischer and I. Pater, “ The randomizdaliffer algorithm:
Interactive rendering of highly complex sceneSIGGRAPH 2001
Computer Graphics Proceeding001.

H. Pfister, M. Zwicker, J. van Baar and M. GrosSuffels: Surface
elements as rendering primitivesSIGGRAPH 2000 Proceedings
Annual Conference Series, 235-242, pp. 2000.

S. Rusinkiewicz and M. Levoy, “Qsplat: A multis@ution point
rendering system for large mesheSIGGRAPH 2000 Proceedings
Annual Conference Series, pp. 343-352, 2000.

Akenine-Miller,T. : Fast 3d triangle-box overlap testing,020

X. Han, “The Local Z-buffer Algorithm for Renderirigarge Complex
Scenes”, Ph.D. Thesis, Department of Applied Mathtéra and
Computational Sciences, The University. of lowa)£20

UNC power plant model: http://www.cs.unc.edu/~gd@owerplant/
2004.

