
 
 

 

  
Abstract: In this paper, we introduce the weighted finite state 

automata (WFA) as a tool for image specification and loss or 

loss-free compression. We describe how to compute WFA from 

input images and how the resultant automaton can be used to store 

images (or to create image database) and to obtain additional 

interesting information usable for image indexing or recognition. 

Next, we describe an automata composition technique. We also 

present a possible way of storing automata in persistent storage. 

Finally, we depict some tests. 

 The benefit of our approach is that some beneficial 

information for indexing and recognition without knowledge of 

scene does not need to be computed from compressed images using 

other algorithms since the resultant WFA already contains it. 

 
Index Terms:  indexing, compression, automata, pre-processing  

 

I. INTRODUCTION 

  In this paper we introduce a weighted finite state automaton 
as a tool for image loss or loss-free compression, where a 
resultant automaton contains some useful information. In [4] 
and [6] one can found an automata-based technique for simple 
bi-level images coding. This approach is later generalized for 
gray-scale images and for simple color images [5]. Finally, [32] 
proposes wavelet compression approach. This article is based 
on ideas presented in papers enumerated above. We describe 
here an approach to image compression and storage based on 
finite automata. Such way an image database could be created. 
Such database could be used to obtain additional information 
from images without any effort since finite state automata 
approach generates such information implicitly. For simplicity, 
we do not describe compression or other useful transformations 
of an automaton (e.g. wavelet or other). 

 

II. FINITE AUTOMATA FOUNDATIONS  

In this section, we assume the reader to have a fundamental 
knowledge about automata theory (see e.g. [1]). Basic 
information about finite automata used as a tool for specifying 
images could be found in [4], [5] or [22]. To understand the 
following text we firstly allege the necessary background. 

A digitized image of the finite resolution m x n consists of  

 
* Manuscript received April  6, 2006. M. Mindek., M. Burda., This work 

was supported by the Department of Computer Science, FEI, VŠB - Technical 
University of Ostrava, 17. listopadu 15, 708 33, Ostrava-Poruba, CZ, 
{Marian.Mindek, Michal.Burda}@vsb.cz 

m x n pixels each of which takes a Boolean value for bi-level 
image, or real value for a gray-scale or color image, where we 
have 255 tint of source color - R, G, B (24bit color) [5].  

Here we will consider square images of resolution 2n x 2n. In 
order to facilitate the application of finite automata to image 
description we will assign each pixel at 2n x 2n resolution a word 
of length n over the alphabet Σ = Σ = Σ = Σ = {0, 1, 2, 3} for basic approach 
and Σ={0,1} for offset (read vector) approach, as its address. 

Σ’s symbols represent the address of a sub-square (The 
number of four is not a necessary condition, but we use it now 
for simplicity). A pixel at 2n x 2n resolution corresponds to a 
sub-square of size 2n-1 of the unit square. We choose ε as an 
address of the whole unit square. The four sub-squares in Fig. 1 
- 2D of the square with address w are addressed w0, w1, w2 and 
w3, recursively. Address of all the sub-square (pixels) of 
resolution 4 x 4 is shown in Fig. 1, middle. For simplicity we can 
address only used sub-square (pixel), with this way we can save 
more space and machine time in computing with images. This is 
useful e.g. for large sparse matrixes, BW images or trends. 

In order to specify a black and white image of resolution 
2m x 2m, we need to specify a language L ⊆Σ

m. 
Frequently, it is useful to consider multi-resolution images, 

sounds or el. signals, which are parts that is simultaneously 
specified for all possible resolution (discriminability), usually in 
some compatible way.  

We denote Σm the set of all words over Σ of the length m, by 
Σ* the set of all words over Σ. 

In our notation a bi-level multi-resolution image is specified 
by a language L ⊆ Σ*, Σ = {0, 1, 2, 3}, i.e. the set of addresses of 
all the black squares, at any resolution. Now, we are ready to 
give some examples. We assume that the reader is familiar with 
the elementary facts about finite automata and regular sets see 
e.g. [7]. 

The automaton accepts a word in the input alphabet if there 
exist labeled path from the initial state to the final state. The set 
(language accepted by automaton A) is denoted L(A). 

 

 
Example. By placing the triangle L=L1L2 from the Fig. 2 into all the 
squares with addresses L3={1,2,3}*0 we get the image 
L3={1,2,3}*0{1,2}*0Σ* - diminishing triangles depicted hereinbefore. 
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Zooming [6] is easily implemented for images represented by 
regular sets and is very important for image compression shown 
in next section. 
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Figure 1. Addressing sub-parts in one and  
n-dimensional space. 
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Figure 2. The squares specified by {1,2}*0, a triangle 
defined by {1,2}*0Σ*, and the corresponding automaton. 

 
1) Construction of Finite Automaton 
 

We have just shown that a necessary condition for black and 
white multi-resolution image to be represented by a regular set 
is that it must have only a finite number of different sub-images 
in all the sub-squares with addresses from Σ*. We will show that 
this condition is also sufficient. Therefore, images that can be 
perfectly (i.e. with infinite precision) described by regular 
expressions (finite automata) are images of regular or fractal 
character (or images with many similar parts). Self-similarity is 
a typical property of fractals. Any image can by approximated 
by a regular expression however; an approximation with a 
smaller error might require a larger automaton. 

 Our algorithm for image compression (approaches for 

n-dimensional) is based on basic procedure for black-and-white 
images proposed in [4], but it will use evaluated finite automata 
(like WFA) introduced in [6] and only replacing black and white 
color to real values. Also be revamped to no possibility to create 
loops and for adding some option for setup compression and 
facilitation storage for likely representation. 

 Now we demonstrate in brief a generalized method for 
image compression applicable on construction of resultant 
image storage, or image database with included information. 
There lead four edges from each node at most (for offset 
approach lead two edges at most, n-dimensional more edges) 
and these are labeled with numbers representing image part. 
Every state can store information of average value of sub-part 
represented thereby state or other needed information. 

 The procedure Construct Automaton terminates if exists an 
automaton that perfectly (or with small-defined error) specifies 
the given image and produces a deterministic automaton with 
the minimal (interpret as optimal for our problem solution) 
number of states. The count of states can be reduced a bit or 
extended by changing error or do tolerance for average values 
of image part. This principle is naturally useful only for images, 
where we can obtain image reconstructed with small error (only 
if we make tolerance, it is loss-compression.) 

 Changing the part (or only one image element) in source 
image can change the count of states in resultant automata. We 
can use certain principle to optimize this algorithm for 
non-recompress all image. Details are described furthermore in 
the text.  

 
Procedure Construct Automaton  

For given image M, we denote Mw the zoomed part of M in the 
part addressed w, where w∈{0,1,2,3...X}. For simplicity we use 
w∈{0,1}, see figure 1. The image represented by state 
numbered x is denoted by ux. 
 

Procedure Construct Automaton  
 i = j = 0, create state 0 and assign u0 = M  
  (image represented by empty word and define  

  average value of M) an assume ui = M w  
loop for k ∈ {0,1} do 

   if Mwk = uq 

 (or with small error, only for loss-compression)  
   or if  the image Mwk can be expressed as a part or  
            expanded part of the image uq  for some state q 
           then create an edge labeled k from state i to state q 
  else  j = j + 1 and uj = M wk  
  create an edge labeled k from state i to the 
  new state j  
    end if ; end for 

    if  i = = j than  Stop (all states have been processed) 
 else i = i + 1 
  end if 

 end loop 

end procedure 
 

It is clear, that procedure for vector or 3D approach is very 



 
 

 

similar. The procedure Reconstruct Image stop for every 
automata computed by a procedure Construct Automaton, or 
other similar algorithm, for more information see [23]. 

 

Example: Reconstruction with defined error (loss- 
decompression). Original computed word is w = {3203}. The 
length of word is 4 ⇒ counts of pixels are 256. If we process all 
words we obtain all image elements, if we process only first 2 
symbols from word, we obtain only image with 22 pixels. The 
average value of element (if value is from interval 0-255) with 
address w = {32} is stored in elements, then we obtain image, 
where sub-square with address w = {32} have every elements 
e.g. equal 16. The procedure Reconstruct Image can reconstruct 
all image elements (same dimension as original) with defined 
error if we use word with first 2 symbol and append empty word 
w={32εε}.  
 

 

 

Figure 3. Two sample images with common parts and the 
corresponding automata. 

 

2) Resultant automata - coalescence 

 

There exist many methods for assembling images represented 
by finite automata. One of better ones is assembling resultant 
automata in direction from leaf node to the root. Suppose a 
couple of images and their representation by means of final state 
automata computed with procedure 1, depicted in figure 3. 
Moreover, the states of automata contain also the average 
grayness of corresponding picture parts. These values are in 
interval 0 − 255, where 0 represent black and 255 white colors. 

 

 

Figure 4. Composite automata from figure 3 respecting the 
common parts. 

 

Example: It is clear that images in figure 3 have some 
common parts, highlighted in following figure 4. These 
common parts could be joined into the same state in composed 
resultant automata (see right side of figure 4). The 
corresponding automata with images in figure 2 have some 
common state and edges labeled with same symbol. There exists 
some similar or the equal word w depicting the way from the 
root to the corresponding part represented by a state. 

This principle can be used for loss-free compression saving 
images. Additional information can be obtained from structure 
of resultant automaton, for example the information about the 
similarity of the stored images, common lines, and alternatively 
equal parts in images. We can easily get the group of equal 
images parts.  

 
Resultant automaton is in most cases smaller than original 

automata and contains interesting information from both 
automata. In some cases, the resultant automaton could be 
larger, but if we will store more and more images, the resultant 
automaton will increase less and less. It is clear, when we are 
storing images of the same domain (e.g. medical super-sound 
radiograph, X-ray, satellite images, air photo, etc.) we could 
obtain an interesting knowledge about stored images hand in 
hand with saving the memory space and network capacity. 

III. INTERESTING INFORMATION 

If we store some similar images in one automaton, we can 
obtain interesting information about changes in resultant 
automaton. Concretely, if our resultant automaton has more 
states then the new states represent the differences between 
input images. With procedure Construct Automaton, we can 
control the type of acceptable (or unacceptable) changes, e.g. 
trivial differences in value, small noise, etc. With this, we can 
separate interesting changes from those that are rather to be 
ignored. 

For example, in medicine, we can obtain many similar images 
and only medical specialist can mark an interesting parts. We 
can help him or her to reduce the number of non-interesting 



 
 

 

changes and of course notice him to some small differences, 
which can be important, but hard to find.  

With procedure Composition Automaton, we can increase the 
ability to make the difference between interesting and 
non-interesting parts of the resultant automaton. We can even 
do it by involving the tolerance in value (average value), or 
similarity of words, etc. 

If we store our source matrix in more than one automaton, we 
can focus on our interesting part of the matrix and there compute 
the profundity automaton. On other part of matrix, we can 
compute automaton with less number of states. For this purpose, 
we can use the pattern matrix shown in table 1, where the values 
in cells are the counts of profundity of automaton, which 
represents that part of matrix. This principle can be used only 
for loss-compression (e.g. images, signals, etc.). The part with 
less count of states stores much fewer information than the part 
with more states. 

 
3 3 3 3 3 3 
3 5 5 5 5 3 
3 5 10 10 5 3 
3 5 10 10 5 3 
3 5 5 5 5 3 
3 3 3 3 3 3 

Table 1: Pattern of approach with 36 automata. 
 
 It is clear that with this principle we can save much more 

space and also preserve high information value of our data. We 
can transfer only interesting part of matrix or any nearest part 
and save machine time or network capacity. It is sufficient to 
choose a state from resultant automata, which represents our 
interesting part of the matrix, and operate with this as with the 
root. This principle is used with the principle automata 
composition. Pattern may be arbitrary. Also is possible connect 
final state of automaton with other one, ore with some other 
object (e.g. vector image, notations, etc.)  

Now we have a background for using finite state automata as 
a database with included information. 

IV. TESTS - EXHIBITS 

Every test was carried out on standard PC with Intel Celeron 
1,3GHz processor and 512MB RAM. We used two different 
algorithms for computing resultant automata loss-free 
compression, but results are very similar, such that we describe 
only one of the results. Tested data was generated randomly. 
Some of the test matrixes correspond with the worst test data 
(for our procedure) for comparison. On graph 1 can be found 
some disadvantage of our approach. If we want have high 
compression ratio hand to hand with good informative ability of 
our automata and high resolution source images, we must 
compute with more similar parts. But this leads to markedly 
increase of machine time and counts of states. In this case we 
can use some compromise usage e.g. comparing only similar 
sized parts. If we want safe machine time, we can decrease 
number of transformation or by contrast increase for produce 
fewer states of resultant automata (more tests in [24]). 

 

 
Graph 1.  Graph of results for offset approach, where count of states is 

X states plus Y states. 
 

 
Graph 2.  Graph of results for matrix approach. 

 
 Graph 2 depicts tests with same source data, but with matrix 
oriented approach. Is evident, that this approach is a little bit 
faster for smaller source matrices and produce fewer states. But 
for very high resolution source image is like as vector approach. 
The vector approach is much better for bi-level images or large 
sparse source matrices. 
 

                
Figure 5. Reconstructed image on the left-hand with marked later 

state, on the right-hand with state, has not sub-square. 
 
 

 
Figure 6. Reconstructed image with marked state on the right. 
 

 
Figure 7. Reconstructed image with marked state, on the right is 

marked corners. 
 



 
 

 

On Fig. 5 are depicted samples of resultant automaton with 
alternative representation. On the left side is source image and 
corresponding automaton with highlighted states computed 
later and on the right side is corresponding automaton with 
highlighted states without descendant i.e. this states represents 
parts of image without sub-parts. 

On Fig. 6 is reconstructed image from automata which have 
deep 5 and compression is not loss. Number of state is 3317 and 
43 latest has not a sub-square. Lighter point on right-hand part is 
marked state without neighbors with same over-square. Some of 
this point is correspond with interest point (corners). Finally on 
Fig. 7 is decompressed image with error 16%, only 16 level of 
gray and computed automata have 175 states (latest 8 have not 
sub-square). White dot on middle part is state without 
sub-square. On right-hand is marked corners (white dot) 
computed by classical method [31], many of this point s 
correspond with automaton states. For compare on Fig. 8 are all 
states marked, where darkness color is newer states and white 
color have latest states. 
 

 
Figure 8. States of computed automata represented by shade. 

V. CONCLUSION 

In this paper, we have presented a Weighted Finite State 
Automata (WFA) for image storage and compression. The 
WFA allows us to capture a large class of images and to obtain 
interesting information that is implicitly carried by the WFA 
without any special algorithmic effort. We have shown that data 
stored in WFA save more space, network capacity, make it 
possible to access and manipulate images without 
decompressing process and allow call attention to interesting 
parts. Storing data in automaton allows us to send via network 
only a part of data. We do not need to have available the whole 
image if we are interested in a small part of it only. Additional 
benefit is included. Composition also allows us to use WFA as a 
database of images with the ability to simpler search of 
interesting parts of our data. 

In our future work, we focus on manipulating with data in 
database (at various structures), describe language or a set of 
tools that is able to query stored data. 
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