

Abstract— The implementation phase of the software

development life cycle is critical for continued organizational
success. As organizations evolve their business processes after the
launch of a new system, the system needs to continue to evolve in
order to take advantage of these opportunities. In this research, we
explore the changes that take place in a large manufacturing
system in order to understand the relationships between system
usage, business process change, and system change. Our research
shows close relationships between the most utilized screens in the
system, the core business process, and the changes requested by
users of the system. We also examine the effect of prioritizing
changes on the time to implement these changes.

Index Terms— Configuration Management, Implementation
Issues. Software Engineering, System Maintenance.

I. INTRODUCTION

 Proper management and control of the post implementation
phase of the software engineering life cycle is critical for
continued project success. While it is a well recognized fact that
continued change is necessary in order for a system to remain
useful over its lifetime, there is a paucity of case studies that
examine the nature of post implementation project changes.

This paper examines the post-implementation phase of the
software product life cycle for an inventory requisitioning and
control system from a large manufacturing company in order to
better understand the nature of system usage and system change
requests. In particular, this paper explores how systems are used
and the relationship between system usage, change requests, and
business processes. Finally, this paper looks at the accuracy of
systems estimates based on the priority assigned to the change
request.

The rest of this paper is organized as follows. Section 2
examines work related to the areas of implemented information
systems, configuration management strategies and support, and
discusses the information provided by existing case studies.
Section 3 provides a description of the implemented system and
its environment, the change control process used by the
company, and the data set. This section also examines the
methods used for our analysis. Section 4 examines the results of

H. Keith Edwards is with the University of Hawaii at Hilo, 200 W. Kawili
Street Hilo, HI 96720 USA (phone: 808-933-3189; fax: (808) 974-7693;
e-mail: hedwards@hawaii.edu).

our analysis. Section 5 provides conclusions and explores the
applicability of these results to other implemented systems.

II. RELATED WORK

Implementation and program maintenance is the final stage of
the software development life cycle [16,30]. Sommerville [30]
defines the implementation stage of the software development
life cycle as “the process of converting a system specification
into an executable system.” The word process in this definition
shows that this is not merely a destination, but an ongoing
process that involves the continual modification of the system to
meet the requirements of its operating environment.

The need for applying changes to implemented software has
been evident since the development of the first systems. Early
research in software engineering shows the need for applying a
process in order to control changes that are incorporated into the
final product [1,3]. Later work such as Joeris [14] looks at how
to provide basic management function for both change
management and configuration management within the
implementation phase of the software development life cycle,
while Davis examines the role that the overall development life
cycle plays in the software configuration management process
in the post waterfall model era [6].

An underlying consideration to any view of the change
management process is that large scale information systems
constitute socio-technical systems that interleave people,
process, and technology [30]. Leavitt’s model (Figure 1) is
perhaps the seminal piece of related work in the arena of
management information systems for understanding the role of
the implemented system within the overall organization [17].
Leavitt’s model examines the relationship between business
process, change, management processes, and information
systems. The model hypothesizes that changes to any one aspect
of the model will cause changes in the other areas of the model
so that the organization can maintain its overall strategic
alignment. Since this research examines changes to the system
resulting primarily from changes to the business process (as
opposed to pure technological changes), we can employ
Leavitt’s model as a tool for understanding the relationships
between several of the aspects of the implemented system.

System Utilization and Changes in Implemented

Information Systems: A Case Study

H. Keith Edwards, Member, IAENG

IAENG International Journal of Computer Science, 33:1, IJCS_33_1_12
__

(Advance online publication: 13 February 2007)

Structure

Tasks People

Technology

FIGURE 1 – LEAVITT ’S MODEL

A. Change Control Process and Configuration Management
Strategies

Several articles in the related literature point to the need for
and examine the nature of change control and configuration
management processes that form a critical part of the
implementation phase of the software development life cycle
[2,32]. For example, Joeris [14] provides a summary of
desirable characteristics for a change management process such
as managing the process of change as well as managing the
artifacts of the change process. Chillakanti [5] motivates the
need for incorporating security into the change management
process. Sato, et al. [24] discuss Hewlett Packard’s change
management process and its impact on the customer experience,
but focuses on off the shelf products as opposed to bespoke
systems. Nguyen [21,22,23] examines the software
configuration environment in object oriented and web-based
systems, but treats the more general subject matter than a
specific system. Other work such as [26] looks at configuration
control for evolutionary systems, whilst Simmonds [27]
examines the configuration management process on the PACT
software engineering system.

While the need for a disciplined change management process
can not be understated, the purpose of this research is not to
supplant any of these existing processes nor to examine the
particular configuration of the software from a technical
standpoint. Rather, this research examines the process only as it
relates to the implementation of the changes within the system
and do not treat it from a theoretical standpoint. Further to this
end, we accept the process as an invariant within the overall
business environment.

B. Support for Configuration Management e

Calabough [4] points to the need for change and
configuration management support and develops a tool along
with a process to these ends. While similar in its discussion of
the process, it differs in that there is no discussion of the changes
that were actually incorporated into the system.

Several articles [12,18,19,25,31] examine the configuration
management process in order to manage component versions in

the build. While these tools act as a support for the continuing
evolution of software products, they deal more with managing
the technical aspects of change than with the business process.
Feiler [11] examines how process support can assist in the
implementation of configuration management tools. A general
treatment of support for configuration management can be
found in Estublier [8,9,10] and in German, et al. [13], who
provides a framework for describing tools for the mining of
software repositories.

C. Configuration Management Case Studies

A final area of research is that of configuration management
case studies. These are sparse, but will most likely differ from
our research in the scale of the effort (toy systems), the amount
of data examined, and the time over which the system was
examined. Our study extends for five years and examines
approximately 600 separate change requests.

Dietel [7] provides a look at the impact of instituting a change
management process into the organization and how this impacts
the employees in the organization.

Sliwerski, et al. provides a study of changes in open source
software such as Mozilla and Eclipse [28]. Their research
examined the impact of fix inducing changes on the system and
provided recommendations as to how to minimize later fixes
due to these changes. Further work by this group [29] looks at
how to relate the software version history to the bug database.

Likewise, [20] uses data on Mozilla and Apache to
understand source code change history, problem reports, and
productivity in order to understand the open source
development process. Finally, Koponen [15] looks at the open
source maintenance process for these same two products.

While all of these case studies examine the post
implementation phase of large software systems, they deal with
open-source off the shelf products designed for the mass market
as opposed to bespoke systems that are designed to provide a
competitive advantage to a business in a proprietary manner.
The nature of the systems under consideration as well as the lack
of focus on business process in these case studies clearly
differentiates our work from these studies.

III. DESCRIPTION OF SYSTEM ENVIRONMENT,
CHANGE CONTROL PROCESS, DATA SET, AND

METHODS FOR ANALYSIS

In this section of the paper, we describe the particulars of our
research. In particular, we describe the system under study, the
environment in which it operates as well as the configuration
management process for managing changes to this particular
information system and the data recorded as part of that process.
Finally, we discuss our method for extracting and analyzing the
data and the questions that we seek to answer as part and parcel
to this investigation.

A. System and Environment

In this research, we examine the post-implementation history

of an inventory and requisitioning system used by a large global
manufacturer. The overall system itself is divided into four
main modules that represent the core business processes of the
company. The first module is responsible for the specification
and scheduling of the individual products. The second module
allows users to specify a bill of material for individual products,
i.e. to indicate which individual parts are used in a particular
product. The third module supports the ordering of the parts
from the bill of material, and the final module supports
warehousing and logistic operations such as receiving, storing,
allocating, and shipping the individual parts.

The system was originally released in the United States,
United Kingdom, and Germany in 1997. It is now deployed in
seven different countries and has thousands of individual users.
It currently has 325 different screens that support queries,
updates, and administrative functions.

The system is supported by full time staff who are dedicated
to representing the users and who are also responsible for
explaining and cascading the business process throughout the
organization. There is also a systems staff that is responsible for
ensuring that the system functions correctly from a technical
standpoint. These two groups work together in order to facilitate
a holistic approach to system configuration and maintenance.

B. Configuration Management Process

Since this is a bespoke system that was designed to support
the business process, it is not surprising that the system would
need to change as the business process continued to evolve. The
configuration management process is designed to support
changes that are required in order to support the business
process. As such, there is a separate process designated to deal
with fixes to the system that are a result of bugs in the software.

The change control process begins with an individual user
requesting a change to the system. This change is analyzed by a
business process analyst who determines whether the change is
needed to support the business process. If the change is required
to support the business process, then the analyst assigns a
priority to the change. The business process analyst then meets
with representatives from the systems staff who analyze the
request to see if it is actually required and if it is technically
feasible. If both of these conditions are met, the systems group
negotiates a target date with the business process group and
provides an estimated cost for the change.

The system group then implements the change in the
development system and reports the completion of the change to
the business process analysts. The change is then tested and if it
results in no errors, it is released into the production
environment of the system as part of a batch. Batches are
released into the production system several times throughout the
year. Finally, information about the changes is cascaded to other
support areas such as training and the help desk.

C. Description of the Data Set

For the purposes of this study, we looked at two artifacts of
the post implementation phase of the system. First, we examined
a synopsis of the change control requests for the system. This

synopsis provided summary information about the 585 change
controls that are currently in the system. In particular, this
archive provides the following information:

• Change Request Number
• System Area
• A description of the change request
• The date of the change request
• The status of the change request (new, evaluation,

accepted, implemented, canceled, rejected, hold) and
the status date

• The priority of the change request
• The system hours for the request and the expected

benefit to the company of the request
• The target date for the systems group
• The actual completion date
• Check boxes for updating of the business process,

training, and help screens.
The second document in the data set is the access information

for individual screens in the system. This access information is
broken down by year, beginning in 2000 and running until the
year 2005. It indicates the screen number, screen name, module,
and the number of “hits” for that screen for each of the years that
the screen was active. Several low use screens were phased out
during this time and only contained data for 1-2 year.

D. Research Questions

In this research, we sought to quantitatively answer several
questions about the post implementation operation of the
information system. In particular, we wanted to examine the
following aspects of the system:

• Screen usage patterns and their relationship to change
requests.

• The prioritization of changes and the accuracy of
systems estimates based on priority of changes.

IV. ANALYSIS AND RESULTS

To gain answers to the questions in the previous, we
calculated the average of screen usage patterns for the entire six
year period. We placed this screens in order of their average
number of accesses per year and examined the use of the top
10% and top quartile of the screens to determine the percentage
of the overall traffic that they receive. Our results, shown in
Table 1, indicate an empirical validation of the “80-20” rule.

Total Screen Use 17332792
Top 10% Screen Use 13770566 79.45
Top 25% Screen Use 16720453 96.47

TABLE 1 – HITS FOR THE MOST USED SCREENS AND BY MODULE

Here, we can see that the top quartile (25%) of the screens
receive about 96% of the traffic while the top 10% of the screens
receive 80% of the traffic for the entire system. This is not
surprising, given the fact that the screens in the top quartile were
designed to support the core business process while those in the
lower quartiles supported exception handling and
administrative functions.

Next, we analyzed the change request synopsis to determine
what screens had undergone change as part of the evolving
business process. We then performed a regression analysis to
see the impact of determine whether these variables were
predictive of one another. Table 2 presents the results of this
regression analysis.

Next, we analyzed the change request synopsis to determine
what screens had undergone change as part of the evolving
business process. We then correlated the number of change
requests for individual screens with the screen utilization. We
also correlated the type of screen (update, admin, or query) with
the number of changes. Table 2 presents the results of
correlating the change requests with the screen usage (average
hits), the module from which the screen originated, the screen
type and the number of change requests.

TABLE 2 – CORRELATION BETWEEN CHANGE REQUESTS AND USAGE

The results in this Table show a positive association (0.53
Pearson Product Moment) between the changes to a screen and
the number of hits that it receives as part of the overall set of
screens. This is somewhat lower than expected as the screens
from module four, which comprise the majority of the system
underwent the fewest screen specific changes overall whereas
screens from modules two and three underwent more changes
for less of the system traffic (see Table 3). When broken down
by module, three of the four modules exhibit a high correlation
between change requests and screen usage. Two of the Pearson
Product Moment correlations are at 0.69 whilst the other is at
0.60, which suggests a moderate relationship between the two
factors. Furthermore, the regression shows significant
relationships between screen type and average hits, as well as
between change requests and the average number of hits for the
screen. Hence, the number of hits and change requests can be
shown to be predictors of one another.

Description Number Percent
Module 1 Screens 50 15.38
Module 2 Screens 37 11.38
Module 3 Screens 100 30.77
Module 4 Screens 138 42.46
Total Screens 325

TABLE 3 –SCREEN CHANGES BY ACCESS AMOUNT

As part of our investigation, we also looked at whether there

was any relationship between the screen type (admin, update, or
query) and the number of changes requested. All of these
correlation values were within a range that suggested there was
no relationship between the two variables.

We also examined the relationship between the average
number of hits per screen and the number of changes the screen
underwent. Table 4 shows the total screen changes and the
number of changes for screens in the top 10%, top quartile, and
the other three quartiles along with their percentage as part of
the overall individual screen changes.

Description Number Percent
Total Screen Changes 277
Top 10% Screen Changes 141 50.90
Top 25% Screens Changes 218 78.70
Other three quartiles 59 21.30

TABLE 4 –SCREEN CHANGES BY ACCESS AMOUNT

Here, we see a phenomenon similar to that displayed in Table
1. In particular, screens that were in the top 10% in terms of
access received about 51% of the changes, and the top quartile
received about 79% of the changes. The other three quartiles
received only 21% of the changes. This suggests that more
widely used screens experience more changes. Again, the fact
that the most accessed screens form the core of the business
process serves as a strong indicator of their continued
transformation as the business process continues to evolve and
adapt.

We also looked at the relationship between screen type,
module, and the number of change requests. In particular, we
conducted an analysis of variance on the number of change
requests based on the module and the screen type as factors.
This analysis (Table 5) shows that the screen type had a highly
statistically significant impact on the number of change requests
and further suggests that screens assist the core business process
are more likely to undergo changes.

TABLE 5 –ANOVA FOR MODULE AND TYPE AS FACTORS FOR THE NUMBER OF

CHANGE REQUESTS

Finally, we sought to examine information about system
estimates and the time required to implement changes based on
the priority assigned to those changes by the business process
analysts. Here, we examined the summary information about the
change requests and looked at the differences between the actual
implementation date and the date of the estimated completion.
Table 6 shows the average differences system estimates and
actual implementation dates for the changes at each of the
priority levels along with information on the standard deviation,

and variation. It also provides a 95% confidence interval for the
mean.

Estimates based
on Change Level Avg Std Dev 95% Alpha

Low 95%
CI

High 95%
CI Variation

(1) ASAP 22.85 45.48 10.03 12.82 32.88 2068.44
(2) High 28.23 71.39 9.84 18.39 38.08 5096.01
(3) Medium 35.88 70.17 10.34 25.54 46.22 4268.76
(4) Low 54.22 97.02 39.65 14.57 93.87 9412.09
All 31.34 67.14 6.00 25.34 37.34 4515.29

TABLE 6 –SCREEN CHANGES BY ACCESS AMOUNT

Here, we see an average difference between the estimated
date and the actual implementation date of approximately 31
days for all changes in the system. Some of the discrepancy
between the estimated date and the actual implementation date
can be attributed to the fact that changes were released in
batches rather than on an individual basis.

There are two further items of note here. First, the higher
priority changes had smaller average differences between the
estimated date and the actual implementation date. These higher
priority changes also had smaller standard deviations, variation,
and confidence intervals. While all means overlapped at the
90%, 95%, and 99% confidence levels, the system estimates
tended to be better for the higher priority changes.

We also examined the time required to implemented changes
at various priority levels. Table 7 shows the average time to
implement changes from each priority level along with
information on the standard deviation, and variation. It also
provides a 95% confidence interval for the mean.

Time to Implement Avg Std Dev 95% Alpha
Low 95%

CI
High 95%

CI Variation
(1) ASAP 144.00 120.03 26.47 117.53 170.47 14406.69
(2) High 279.23 142.79 19.69 259.54 298.92 20040.26
(3) Medium 278.74 530.63 78.17 200.57 356.91 423587.82
(4) Low 159.87 137.37 56.14 103.73 216.01 18871.03

TABLE 7 –SCREEN CHANGES BY ACCESS AMOUNT

Here, we see that changes with the most urgent priority took
the least amount of time to implement. Since these changes were
deemed most necessary to support the business process, it
stands to reason that they should be implemented in the most
expeditious manner. Low priority changes also took a shorter
amount of time to implement. This may be due to their lack of
connection with the business process, which would indicate that
they were less comprehensive in their nature. Changes in
categories two and three took almost twice the time on average
to implement as those in category one. They also had higher
standard deviations, variances, and confidence intervals. This
difference was significant at the 90% and 95% confidence
levels, although only the difference between priority one and
priority 2 changes was significant at the 99% confidence level.

V. CONCLUSION, DISCUSSION AND RECOMMENDATIONS

This paper provides several insights into system usage and
change in the post implementation phase of the software
development cycle. First, we observe that the portions of the
system that define the core business process receive the vast
majority of the system traffic. In fact, the top quartile of screens
in terms of system usage received 96% of all system traffic. This
means that it is entirely logical that such screens will undergo

the majority of changes associated with the business process.
Our research has also yielded insight into the efficacy of

using prioritization as part and parcel to the change control and
configuration management process. To this end, we observed
that changes with higher priority (those that support the business
process) had a significantly shorter implementation time and a
smaller difference between the estimated time and the actual
implementation time.

The data contained in this research yields insight into the
nature of changes within implemented information systems and
serves as a quantitative verification of an important aspect of
Leavitt’s Model. Namely, changes in the business process drive
changes in the information systems associated with that business
process.

VI. FUTURE WORK

While this exploratory paper has provided several insights
about the nature of system usage and changes in implemented
information systems, there are several areas of future work.

First additional data sets from large scale systems that are
used in industrial settings would be helpful to understand
whether the findings in this paper extend to bespoke systems
from other companies.

Second, we would like to examine the data in greater
granularity to see if we more precisely determine any causality
between the system changes and system utilization. In
particular, we would like to examine monthly usage data to see
if there are substantial increases to screens that experience
changes.

Third, we know that the change requests examined in this
document were originally proposed to augment the business
process through required changes or through efficiency gain.
We would like to correlate the change requests with the changes
to the business process to understand the relationship between
these two areas.

Finally, authors such as Sliwerski, et al. [28,29] and others
examine the nature of bug fixes in open source products such as
Apache and Mozilla. We would like to see if the bug discovery
and fix patterns found in proprietary, bespoke information
systems mirror those found in open source, end-user software.

ACKNOWLEDGMENTS

The author would like to acknowledge the help and support of
Mr. Dennis O. Holiday and Mr. David Rogers who were
instrumental in explaining the workings of the system and in
providing the data for this paper and Mr. Jim Lawson who
generously provided system usage data.

REFERENCES

[1] Bersoff, E. H., Henderson, V. D., and Siegel, S. G. 1978. Software
Configuration Management. In Proceedings of the Software Quality
Assurance Workshop on Functional and Performance Issues S. Jackson
and J. A. Lockett, Eds., 9-17

[2] Bosch, J. 2004. Software Variability Management. In Proceedings of the
26th international Conference on Software Engineering (May 23 - 28,
2004). International Conference on Software Engineering. IEEE
Computer Society, Washington, DC, 720-721.

[3] F. P. Brooks, Jr., The Mythical Man-Month: Essays on Software
Engineering, Addison Wesley, 1995.

[4] Calabough, J. 1987. Software configuration—an NP-complete problem.
In Proceedings of the Conference on the 1987 ACM SIGBDP-SIGCPR
Conference (Coral Gables, Florida, United States, March 05 - 06, 1987).
E. M. Awad, Ed. SIGCPR '87. ACM Press, New York, NY, 182-194.

[5] Chillakanti, P. 2004. Role-based information security: change
management issues. In Proceedings of the 2004 international Symposium
on information and Communication Technologies (Las Vegas, Nevada,
June 16 - 18, 2004). ACM International Conference Proceeding Series,
vol. 90. Trinity College Dublin, 134-139.

[6] Davis, A. M. and Bersoff, E. H. 1991. Impacts of life cycle models on
software configuration management. Commun. ACM 34, 8 (Aug. 1991),
104-118.

[7] Dietel, K. 2004. Mastering IT change management step two: moving from
ignorant anarchy to informed anarchy. In Proceedings of the 32nd Annual
ACM SIGUCCS Conference on User Services (Baltimore, MD, USA,
October 10 - 13, 2004). SIGUCCS '04. ACM Press, New York, NY,
188-190.

[8] Estublier, J., Leblang, D., Clemm, G., Conradi, R., van der Hoek, A.,
Tichy, W., and Wiborg-Weber, D. 2002. Impact of the research
community for the field of software configuration management. In
Proceedings of the 24th international Conference on Software
Engineering (Orlando, Florida, May 19 - 25, 2002). ICSE '02. ACM
Press, New York, NY, 643-644.

[9] Estublier, J., Leblang, D., Clemm, G., Conradi, R., Tichy, W., van der
Hoek, A., and Wiborg-Weber, D. 2002. Impact of the research
community on the field of software configuration management: summary
of an impact project report. SIGSOFT Softw. Eng. Notes 27, 5 (Sep.
2002), 31-39.

[10] Estublier, J. 2000. Software configuration management: a roadmap. In
Proceedings of the Conference on the Future of Software Engineering
(Limerick, Ireland, June 04 - 11, 2000). ICSE '00. ACM Press, New York,
NY, 279-289.

[11] Feiler, R, P. P. 1990. Software process support through software
configuration management. In Proceedings of the 5th international
Software Process Workshop on Experience with Software Process
Models (Kennebunkport, Maine, United States, October 10 - 13, 1989).
International Software Process Workshop. IEEE Computer Society Press,
Los Alamitos, CA, 58-60.

[12] Gentleman, W. M., MacKay, A., and Stewart, D. A. 1989. Commercial
realtime software needs different configuation management. In
Proceedings of the 2nd international Workshop on Software
Configuration Management (Princeton, New Jersey, United States,
October 24 - 27, 1989). R. N. Taylor, Ed. ACM Press, New York, NY,
152-161

[13] German, D. M., Cubranić, D., and Storey, M. D. 2005. A framework for
describing and understanding mining tools in software development. In
Proceedings of the 2005 international Workshop on Mining Software
Repositories (St. Louis, Missouri, May 17 - 17, 2005). MSR '05. ACM
Press, New York, NY, 1-5

[14] Joeris, G. 1997. Change management needs integrated process and
configuration management. In Proceedings of the 6th European
Conference Held Jointly with the 5th ACM SIGSOFT international
Symposium on Foundations of Software Engineering (Zurich,
Switzerland, September 22 - 25, 1997). M. Jazayeri and H. Schauer, Eds.
Foundations of Software Engineering. Springer-Verlag New York, New
York, NY, 125-141.

[15] Koponen, T. and Hotti, V. 2005. Open source software maintenance
process framework. In Proceedings of the Fifth Workshop on Open
Source Software Engineering (St. Louis, Missouri, May 17 - 17, 2005).
5-WOSSE. ACM Press, New York, NY, 1-5.

[16] J. Laudon K. Laudon. Management Information Systems: New
Approaches to Organizationand Technology. Prentice Hall Publishing,
1998.

[17] Leavitt, H. (1965) Applied Organizational Change in Industry, In: March,
J. (ed.), Handbook of Organizations, Chicago: Rand McNally,
1144-1170.

[18] Lutfiyya, H. L., Marshall, A. D., Bauer, M. A., Martin, P., and Powley, W.
1997. Configuration maintenance for distributed applications
management. In Proceedings of the 1997 Conference of the Centre For
Advanced Studies on Collaborative Research (Toronto, Ontario, Canada,

November 10 - 13, 1997). J. H. Johnson, Ed. IBM Centre for Advanced
Studies Conference. IBM Press, 16.

[19] Mei, H., Zhang, L., and Yang, F. 2001. A software configuration
management model for supporting component-based software
development. SIGSOFT Softw. Eng. Notes 26, 2 (Mar. 2001), 53-58.

[20] Mockus, Audris, Fielding, Roy, Herbsleb, James. Two case studies of
open source software development: Apache and Mozilla. ACM Trans.
Softw. Eng. Methodol. 11, 3 (Jul. 2002), 309-346.

[21] Nguyen, T. N., Munson, E. V., and Thao, C. 2004. Fine-grained,
structured configuration management for web projects. In Proceedings of
the 13th international Conference on World Wide Web (New York, NY,
USA, May 17 - 20, 2004). WWW '04. ACM Press, New York, NY,
433-442.

[22] Nguyen, T. N., Munson, E. V., Boyland, J. T., and Thao, C. 2005. An
infrastructure for development of object-oriented, multi-level
configuration management services. In Proceedings of the 27th
international Conference on Software Engineering (St. Louis, MO, USA,
May 15 - 21, 2005). ICSE '05. ACM Press, New York, NY, 215-224.

[23] Nguyen, T. N., Munson, E. V., and Boyland, J. T. 2004. Object-oriented,
structural software configuration management. In Companion To the
19th Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications (Vancouver, BC,
CANADA, October 24 - 28, 2004). OOPSLA '04. ACM Press, New York,
NY, 35-36.

[24] Sato, S. and Panton, A. 2003. Using a change-management approach to
promote customer-centered design. In Proceedings of the 2003
Conference on Designing For User Experiences (San Francisco,
California, June 06 - 07, 2003). DUX '03. ACM Press, New York, NY,
1-11.

[25] Schuster, H., Neeb, J., and Schamburger, R. 1999. A configuration
management approach for large workflow management systems. In
Proceedings of the international Joint Conference on Work Activities
Coordination and Collaboration (San Francisco, California, United
States, February 22 - 25, 1999). D. Georgakopoulos, W. Prinz, and A. L.
Wolf, Eds. WACC '99. ACM Press, New York, NY, 177-186.

[26] Shigo, O., Wada, Y., Terashima, Y., Iwamoto, K., and Nishimura, T.
1982. Configuration control for evolutional software products. In
Proceedings of the 6th international Conference on Software Engineering
(Tokyo, Japan, September 13 - 16, 1982). International Conference on
Software Engineering. IEEE Computer Society Press, Los Alamitos, CA,
68-75.

[27] Simmonds, I. 1989. Configuration management in the PACT software
engineering environment. In Proceedings of the 2nd international
Workshop on Software Configuration Management (Princeton, New
Jersey, United States, October 24 - 27, 1989). R. N. Taylor, Ed. ACM
Press, New York, NY, 118-121

[28] Śliwerski, J., Zimmermann, T., and Zeller, A. 2005. When do changes
induce fixes?. In Proceedings of the 2005 international Workshop on
Mining Software Repositories (St. Louis, Missouri, May 17 - 17, 2005).
MSR '05. ACM Press, New York, NY, 1-5.

[29] Śliwerski, J., Zimmermann, T., and Zeller, A. 2005. HATARI: raising risk
awareness. In Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT international
Symposium on Foundations of Software Engineering (Lisbon, Portugal,
September 05 - 09, 2005). ESEC/FSE-13. ACM Press, New York, NY,
107-110.

[30] Sommerville, I. 1996. Sixth international workshop on software
configuration management. SIGSOFT Softw. Eng. Notes 21, 4 (Jul.
1996), 54-57. DOI= http://doi.acm.org/10.1145/232069.232083

[31] Thomas, I. 1989. Version and configuration management on a software
engineering database. In Proceedings of the 2nd international Workshop
on Software Configuration Management (Princeton, New Jersey, United
States, October 24 - 27, 1989). R. N. Taylor, Ed. ACM Press, New York,
NY, 23-25.

[32] Xizhe, J. 2001. Evaluation technique of software configuration
management (poster session). In Proceedings of the 6th Annual
Conference on innovation and Technology in Computer Science
Education (Canterbury, United Kingdom). ITiCSE '01. ACM Press, New
York, NY, 186.

