

Abstract—In this paper, a novel approach for Controller Area

Network (CAN) message scheduling control is proposed. The
proposed method utilizes a single hidden layer neural network, i.e.
Radial Basis Function Network (RBFN), such that the CAN’s
bandwidth can be shared properly among different messages.
CAN was initially developed for the automotive industry to solve
the cabling problems found in some kinds of vehicles. However,
CAN is not able to satisfy all the communication needs of the
industrial automation and process control scenarios. In particular,
the basic protocol in CAN can neither ensure deterministically
bounded transmission times for RT (real-time) data exchanges
nor a fair share out of the network bandwidth among non-RT
application processes. Therefore, CAN must carry both RT
messages as well as non-RT messages in order to meet the
requirements of a dynamic distributed system. All these messages
must be properly scheduled on the network so that RT messages
meet their deadlines while co-existing with non-RT messages. To
solve these problems, we present a neural network approach to
dynamically schedule and distribute the system bandwidth. At the
same time, the transmission time can meet the basic requirements.
The experimental results clearly show the effectiveness of the
proposed technique in solving the message scheduling problems in
CAN.

Index Terms—Neural Networks, Controller Area Network,
Message Scheduling Controller, Radial Basis Function Network,
Backward Through Time

I. INTRODUCTION
CAN [1][2] is a bus protocol with many desirable properties

for embedded and real-time systems. It is a priority-based
mechanism where collisions are avoided by using priorities for
bus arbitration. The priority-based arbitration mechanism
requires that different CAN nodes never simultaneously send
messages with equal identifiers. According to this mechanism,
as soon as the bus is idle, each node competing for the bus
begins to send the arbitration field of its message. At the end of
the arbitration field, only the node which is sending the
message with the lowest arbitration field value, will be
transmitting.

CAN must carry both periodic and sporadic real-time
messages, as well as non real-time messages. All these messages
must be properly scheduled on the network so that real-time
messages meet their deadlines while co-existing with non
real-time messages. Previous work regarding scheduling such
messages on CAN focused on fixed-priority mechanisms [3][4].
The Fixed-priority deadline-monotonic (DM) scheduling

[5][6][7]achieves meeting deadlines as guaranteed by an
off-line feasibility test for a static system with periodic tasks.
Due to the tight relationship between the identifier and the
priority of CAN messages, the fixed priority assignment has
been applied in the most common CAN-based communication
systems implicitly. Although static systems can be scheduled
easily by DM scheduling, it does not allow scheduling of
dynamic systems, where an offline feasibility test has
incomplete knowledge about the future behavior of the system.
In general, fixed-priority schemes give lower utilization than
other schemes such as nonpreemptive earliest deadline first
(EDF) [8]. Livani introduced a mechanism to assign dynamic
priorities to CAN messages, in order to achieve an EDF
resource access consensus among the participating nodes.
Based on the EDF access mechanism, soft real-time
communication will be scheduled optimally with EDF
approach. To guarantee deadlines of hard real-time communi-
cation, calendar-based resource reservation is applied. An
application of this scheduling approach in a distributed
object-oriented real-time control system has been introduced
by [10]. The drawback of EDF is its high overhead which
makes EDF impractical for CAN. On the other hand, a
scheduling mechanism for the CAN bus, based on a mixture
of dynamic and static priorities, has been approached by [9].
However, this approach makes unrealistic assumptions about
CAN (10 Mbits/s) and exhibits a rather restricted scheduling
ability due to a short time horizon.

In this paper, we propose a controller-plant model to schedule
different types of messages on CAN. These messages are
classified into three broad categories, (1) hard real-time (HRT)
messages, (2) soft real-time (SRT) messages, and (3) non
real-time (NRT) messages, respectively. The allocation of the
higher priority class of HRT messages must be made for the
time-critical events and the lower priority class for the NRT
messages. The message buffer, containing messages in queue,
can be regarded as a plant to be controlled by controller. We
take advantage of the learning capability of neural networks
and present a messenger scheduling controller (MSC), which is
implemented by Radial Basis Function Network (RBFN) [11].
The MSC can be treated as a message dispatcher, which
decides a proper message type to be sent. Moreover, a novel
on-line Backward Through Time (BTT) algorithm is suggested
such that the supervised learning method can be applied to
RBFN. Fig. 1 shows the complete framework of the proposed
controller-plant model. In the following, we introduce the basic
structure of RBFN and its modeling training technique in
section II. However, the supervised learning method is

A Neural Network Approach for Controller Area
Network Message Scheduling Control

Chuan Ku Lin, Hao-Wei Yen, Mu-Song Chen, and Chi-Pan Hwang

IAENG International Journal of Computer Science, 33:1, IJCS_33_1_19
__

(Advance online publication: 13 February 2007)

inadequate to apply for the CAN message scheduling. We,
therefore, devise a BTT algorithm to extract the desired outputs
for supervised training in section III. In section IV, simulation

result is demonstrated by applying RBFN and the BTT
algorithm. Finally, the conclusions are drawn in section V.

Fig. 1. The proposed controller-plant model for CAN message scheduling.

Fig. 2. A multi-input multi-output Radial Basis
Function network.

II. RADIAL BASIS FUNCTION NETWORK
Radial Basis Function network (RBFN) [12] is a special

neural network architecture that consists of three layers, i.e.
input layer, hidden layer, and output layer. Fig. 2 depicts a
multi-input multi-output RBFN. The values of the input
variables formulate an input vector, which is forwarded from
the input layer to the hidden layer. The hidden layer is
comprised of a number of nonlinear processing nodes, which
are characterized by the center locations and the nonlinear
radial basis function. Each hidden node receives the input
vector, calculates the (Euclidean) distance ||x - ci|| between the
center vector ci and the input vector x, and finally performs a
nonlinear transformation of the distance, using the radial basis
function. The output of each hidden node is then multiplied by
a particular synaptic weight, while the final output of the
network is a simple summation of all the weighted hidden
node activations. In this paper, we employ Gaussian function

as the basis function

(1)

where ci and Σi are center vector and covariance matrix,
respectively. In Fig. 2, Wo are connection weights from hidden
layer to output layer. In this way, the free parameter vector in
RBFN can be defined by

(2)

Instead of solving all the network parameters Θ in one
step, the optimization problem is divided into two phases,
where the locations of the RBF’s center and covariance
matrix are computed first, and the weighting connections are
calculated in the second phase.

With a predefined error function (3)

(3)

Θ in (2) can be modified according to gradient descent
algorithm iteratively, i.e.

(4)

where θ∈ Θ . In (5) and (6), we summarize the iterative
formula of the steepest descent method

(5)

(6)







 −−−= −)()(

2
1exp),,(1T

iiiiii cxΣcxΣcxψ

∑∑ =−= j jj jj eyzE 22

2
1)(

2
1

)(
)()()()1(

t
Etttt

θ
ηθθηθθ

∂
∂

−=∆+=+

{ }, , , O
ij i iW i, j= ∀Θ c Σ

j iO
ij

E e
W

ψ∂
= −

∂













































−

−

−

−=
∂
∂

−−=
∂
∂ −

3

2

3
2

2
22

3
1

2
11

1

)(00

0)(0

00)(

)(

in

inn

i

i

i

i

i
O

ijj
i

iii
O

ijj
i

cx

cx

cx

WeE

WeE

σ

σ

σ

ψ

ψ

Σ

cxΣ
c

hidden layer output layerinput layer

 x1

…

 x2

 xn

Σ y1

…

…

 y2

 yp

Σ

Σ

c1,Σ1

cm,Σm

Wo

Message Sceduling
Controller, MSC

y(kT)

plant

∫ ∫

SRT message buf

NRT message buf

HRT message buf
Winner

Takes All
FIFO
buffer

Ωi((k+1)T)

decod

x(kT)

Yes

No

δ(Ωi((k+1)T)) > 0

Backward Through

parameter learning

[]))1(())1(())1((TkTkTk ++=+ FDx

In the next section, we will discuss message scheduling
control and how the training data can be generated for
supervised learning.

III. Message Scheduling Control and Backward Through
Time (BTT) Algorithm

In this section, we present a complete framework for online
adaptation of RBF networks that can be used for dynamical
message scheduling control. In our CAN model, the
transmission time D(Ωi)

(7)

is defined as the time which elapses from an application
process making a transmission request (i.e. TS(Ωi)) to the
reception of the last bit of the frame by the intended receiver(s)
(i.e. TE(Ωi)). The subscript i of Ωi denotes one of predefined
messages, Ωi∈{HRT,SRT,NRT}. If each class of message Ωi
has its own predefined maximum predefined transmission time
Dmax(Ωi), then the most effective index to evaluate the
performance of message scheduling is the transmission delay
δ(Ωi), defined as the time elapsing from the transmission
request to the successful transmission of the first bit of the
frame over the network. In formula,

(8)

According to the definition of transmission delay δ(Ωi),
message Ωi is said to be timely transmitted if δ(Ωi) ≤ 0 (or
Dmax(Ωi) ≥ D(Ωi)). If δ(Ωi) is greater than zero, however,
message Ωi can’t guarantee its deadline requirement or is
notified of the deadline failure. In Fig. 3(a), message Ωi can’t
complete its transmission until TE(Ωi), which exceeds the
predefined limit for message Ωi. In this case, message Ωi fails
to fulfill the requirements of timely transmission. This causes
performance degradation and even instability of real-time
application systems interconnected into the CAN bus. On the
contrary, Fig. 3(b) is the case of timely transmission.

Fig. 3. (a). Message Ωi can’t complete its transmission
before

max
()D iT Ω (b). case of timely transmission.

To avoid starvation for the low-priorities objects, we did a

experiment by forcing a fixed delay L(Ωi) after any
transmission requests for different priority classes. This
method, however, simply limits in advance the bandwidth
allocated to each type of message, thus, decreasing the
wasted network bandwidth. In this way, the delay vector is L
= [L(HRT) L(SRT) L(NRT)]T = [n1T n2T n3T]T. Moreover, it
requires also a certain degree of a priori knowledge of the
maximum allowable transmission time and the network
traffic load. Therefore, we assumed that Dmax = [Dmax(HRT)
Dmax(SRT) Dmax(NRT)]T = [100T 150T 200T]T and the traffic
loads are F(Ωi) = 30 for Ωi∈{HRT,SRT,NRT}. Table 1 and
Table 2 illustrate the transmission time under different
conditions of vector n = [n1,n2,n3]T. In Table 1, all messages
are timely transmitted (i.e. δ(Ωi) < 0). However, too large of
the value of n2 in Table 2 is notified of the deadline failure
for SRT message (i.e. δ(SRT) > 0). The simulation results
reveal the fact that values of ni affects the performance of
message scheduling significantly. We therefore reasonably
assume that there exists

Table 1. Transmission time v.s (n1,n2,n3)=(60,85,0).
D(Ωi) Min Mean Max δ(Ωi)

D(HRT
) 61T 61.45T 90T δ(HRT) < 0

D(SRT) 86T 102.33T 120T δ(SRT) < 0
D(NRT

) 1T 124.07T 180T δ(NRT) < 0

Table 2. Transmission time v.s (n1,n2,n3)=(50,140,0).
D(Ωi) Min Mean Max δ(Ωi)

D(HRT
) 51T 51.37T 80T δ(HRT) < 0

D(SRT) 141T 154.36T 200T δ(SRT) > 0
D(NRT

) 1T 122.53T 162T δ(NRT) < 0

We strongly believe that there exists some implicit

relationships between traffic load F, delay vector L, and δ(Ωi).
If n or L is chosen properly in advance, δ(Ωi) can be
completely decided. In fact, vector n or L can only be selected
by trial-and-error. Moreover, the network traffic load is
usually time-varying, values of (n1,n2,n3) has to be changed
accordingly. It implies F and L are time-dependent, F = F(t)
and L = L(t). If we consider the competing time between
heterogeneous and homogeneous classes, the implicit function
between F, D, and δ(Ωi) can be reasonably expressed as

(9)

In (9), F(t) = [F(HRT,t) F(SRT,t) F(NRT,t)]T and D(t) =
[D(HRT,t) D(SRT,t) D(NRT,t)]T. Unfortunately, the function
Φ is highly complex and the explicit solution is almost
impossible to find or doesn’t exist. To optimally utilize the
system resources for different types of messages while
guaranteeing timely transmission, we are not intended to find

)()()(iSiEi TTD Ω−Ω=Ω

)()()(max iii DD Ω−Ω=Ωδ

Dmax(Ωi
)

TE(Ωi
)

TS(Ωi)
D(Ωi

L(Ωi
)

(b)

)(
max iDT Ω

δ(Ωi)

Dmax(Ωi
)

TE(Ωi
)

TS(Ωi)
D(Ωi
)

L(Ωi
)

(a)

δ(Ωi)

)(
max iDT Ω

0))(),(),((=ΩΦ itt δDF

the exact solution. Instead, we propose a neural network
approach for message scheduling control. The controller is
realized by several radial basis functions and forms a radial
basis function network. The purpose of the RBFN is to reveal
the implicit relationship between the input vectors x(t) = [D(t)
F(t)]T and a proper output vector y(t), which features resource
reservation as well as dynamic message scheduling such that
an appropriate class of message to be served in the next time
instant. Since the proposed MSC is implemented by the RBFN
network, in the rest of the paper MSC and RBFN will be used
interchangeably.

At any time instant t, the input vector x(t) = [D(t) F(t)]T of
the MSC consists of transmission time and the current network
flow rate, where D(t) = [D(HRT,t) D(SRT,t) D(NRT,t)]T and
F(t) = [F(HRT,t) F(SRT,t) F(NRT,t)]T. Consequently, the
inferred output y after WTA (Winner Takes All) identifies the
message to be served in the next time instant. For optimal
message scheduling, the parameters of the MSC of the RBFN
have to be designed by the so-called supervised learning. The
learning employs two levels of adaptation, namely, adaptation
of the connection weights between the hidden layer and the
output layer and adaptation of the parameters of the radial
basis functions. Unfortunately, the optimal message
scheduling is impossible to predict in advance. Consequently,
without complete knowledge about the target vector z, the
parameter learning method in (5) and (6) can’t proceed.
Moreover, in many applications, it would also be desirable
for an online training algorithm to be able to provide stable
outputs, whenever the system dynamics change.

Fig. 4. On line Backward Through Time (BTT)
algorithm.

Therefore, in this paper we devise an on-line Backward
Through Time (BTT) learning algorithm which continuously
monitors δ(Ωi,t) for message Ωi and constructs a schedule

table sequentially as shown in Table 4. In the beginning, the
schedule table records both input vector x and the
corresponding vector y (and Ωi), based on the default
parameter Θ in the RBFN. If at any time instant t, δ(Ωi,t)= rT
is greater than zero, it implies that the transmission time for the
corresponding message is unacceptable or the bandwidth
allocation in the previous time instant is improper. At this
point, we retrieve the vector x(t – (r-1)T) from the schedule
table and reassign its corresponding output class (or target) by
the current type of message. Consequently, the desired target
vector z can be extracted. This vector {x z} sets up the
necessary information for on line supervised learning and the
parameters of RBFN can be tuned accordingly. Fig. 4 shows
the complete framework for online BTT adaptation algorithm
of RBF networks.

In the following, we conduct some experiments to evaluate
the performance of the proposed BTT method in CAN
message scheduling.

IV. EXPERIMENTAL RESULTS
In the simulation of message scheduling, we assume the

number of radial basis functions for the MSC is fixed and
known in advance. The messages generated at each node by
the user are inserted according to a FIFO (First In First Out).
The message is generated randomly in a predefined range and
is defined as the traffic load F(Ωi). Table 3 summarizes these
necessary information, including Dmax(Ωi), F(Ωi), and the
number of RBFs.

Table 3. Simulation parameters.
Maximum

transmission time
Dmax(HRT) = 120, Dmax(SRT) = 200,

Dmax(NRT) = 400
Traffic load F(HRT) = 30~50, F(SRT) = 30~50,

F(NRT) = 30~50
of RBFs 7

In the beginning, the parameters of MSC are initialized

randomly. The MSC shares out the system bandwidth among
three different messages fairly and all messages are timely
transmitted. As time goes on, the HRT messages can only
transmit using the residual bandwidth that is left after SRT and
NRT messages have been allocated. Therefore, HRT messages
become less and less competed with others since HRT
messages have the smallest allowable transmission time.
Consequently, the transmission time of HRT message can not
fulfill with the requirement of timely transmission. On the
contrary, the transmission time of SRT and NRT are far below
Dmax(SRT) and Dmax(NRT). However, in this time interval,
MSC continuously activate the on line BTT algorithm as
mentioned in section III. The behaviors of the RBFN intend to
give a higher priority to the HRT messages and allocate more
system bandwidth for HRT messages while keep the SRT and
NRT messages meet the basic requirements. Fig. 5 reveals this
fact.

Yes

BTT Algorithm

Initialization of
RBFN

Forward stage
of RBFN

Training stage
of RBFN

Update
Schedule Table

δ(Ωi,kT) > 0

Extract {x,z} for
supervised learning

No

Θ

Fig. 5. Simulation results of message scheduling under
the conditions of Table 3. The dotted lines denote the
maximum allowable transmission time.

We also calculate the ratio γ(Ωi) of message Ωi that fail to
accomplish its transmission before Dmax(Ωi) versus total
number of that type message being transmitted. In Fig. 6,
γ(Ωi) is recorded from Fig. 5. As was expected, the curves of
γ(Ωi) are gradually improved and become level off when the
system is stable.

Fig. 6. Curves of γ(Ωi) versus t.

V. CONCLUSION
The CAN is a network protocol that supports

communication among field devices in the control and
distributed systems. This study introduces a bandwidth
allocation algorithm in the CAN bus such that different types
of messages, hard real-time, soft real-time, and nonreal-time
messages, can satisfy their basic requirements for timely
transmission. The proposed MSC is implemented by radial
basis function networks which dynamically decide the
proper type of message to be served in the next time instant.
Simulation results demonstrate the effectiveness of the
proposed method. In out current work, the number of RBFs
is fixed during training phase. For modeling dynamical time
varying systems, the number of RBFs should be adaptively
changed in order to capture the dynamics of the CAN bus

system. That means the proposed algorithm should not only
tune the parameters of RBFN but also add or delete some
RBFs. In this way, the MSC or the RBFN can retain a
reasonable size, but at the same time describe well of the
system at any time instant. This involves the so-called
structure learning strategy with the parameter learning
method. This research topics is still under investigation and
will be our future works.

ACKNOWLEDGMENT
This research was supported by the National Science

Council under contract number NSC94-2213-E-212-036.

REFERENCES
[1] Robert Bosch, “CAN Specification Version 2.0”, Bosch,

Sep. 1991.
[2] Farsi, M., Ratcliff, K., and Barbosa, M, “An overview of

controller area network,” Computing & Control
Engineering Journal Vol. 10(3), P. 113-120, June 1999.

[3] Zuberi, K.M., & Shin, K.G., “Non-preemptive scheduling
of messages on controller area network for real-time
control applications,” Proc.of the first IEEE real-time
technology and applications symposium, pp. 240-249,
1995.

[4] K. Tindell, A. Burns, and A. J. Wellings, “Calculating
controller area network (CAN) message response times,”
Contr. Eng. Practice, vol. 3, no. 8, pp. 1163–1169, 1995.

[5] Audsley, N.C., A. Burns, M.F. Richardson, A.J. Wellings
(1991). Hard Real-Time Scheduling : The Deadline
Monotonic Approach. Proceedings of 8th IEEE
Workshop on Real-Time Operating Systems and
Software.

[6] Tindell, K. and A. Burns (1994). Guaranteeing Message
Latencies on Control Area Network (CAN). First
International CAN Conference 94.

[7] Tindell, K., A. Burns, A. Wellings (1995). Calculating
Controller Area Network (CAN) Message Response
Times. Control Engineering Practice, 3(8):1163-1169.

[8] Livani, M.A. and J. Kaiser (1998). EDF Consensus on
CAN Bus Access for Dynamic Real-Time Applications.
Lecture Notes in Computer Science 1388 (Jose Rolim
Ed.), pp. 1088-1097, Springer Verlag Berlin, 1998.

[9] Zuberi, K.M. and K.G. Shin (1995). Non-Preemptive
Scheduling of messages on Controller Area Network for
Real-Time Control Applications. Proc. Real-Time Techn.
and Appl. Symposium.

[10] Kaiser, J. and M.A. Livani, “Invocation of Real-Time
Objects in a CAN Bus-System,” First Int’l Symposium on
Object-Oriented Distributed Real-Time Computing
Systems, Kyoto, 1998.

[11] Uykan, Z., Guzelis, C., Celebi, M.E. and Koivo,
H.N, ”Analysis of input-output clustering for determining
centers of RBFN” IEEE Trans. on Neural Networks, Vol.
11(4), pp. 851-858, July 2000.

[12] S. Haykin. Neural Networks: A Comprehensive
Foundation. Macmillan College Publishing Company,
New York, 1994.

0

200

400

600

D

HRT message

0

100

200

D

SRT message

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

D

NRT message

t

0 2000 4000 6000 8000 10000

0

0.1

0.2

0.3

0.4

t

HRT
SRT
NRT

γ(
Ω

i)

Table 4. Schedule Table
t input vector output vector output class transmission delay

kT x(kT) y(kT) Ωi((k+1)T) = NRT δ(NRT,(k+1)T) ≤ 0
(k+1)T x((k+1)T) y((k+1)T) Ωi((k+2)T) = SRT δ(SRT,(k+2)T) ≤ 0

(k-r-1)T x((k -r-1)T) y((k -r-1)T) Ωi((k -r-1))T) = ??? δ(SRT, (k-r-1))T) ≤ 0

(k-1)T x((k-1)T) y((k -1)T) Ωi(kT) = HRT δ(HRT,kT) = rT > 0

