
  

  
Abstract—In this paper, a novel approach for Controller Area 

Network (CAN) message scheduling control is proposed. The 
proposed method utilizes a single hidden layer neural network, i.e. 
Radial Basis Function Network (RBFN), such that the CAN’s 
bandwidth can be shared properly among different messages. 
CAN was initially developed for the automotive industry to solve 
the cabling problems found in some kinds of vehicles. However, 
CAN is not able to satisfy all the communication needs of the 
industrial automation and process control scenarios. In particular, 
the basic protocol in CAN can neither ensure deterministically 
bounded transmission times for RT (real-time) data exchanges 
nor a fair share out of the network bandwidth among non-RT 
application processes. Therefore, CAN must carry both RT 
messages as well as non-RT messages in order to meet the 
requirements of a dynamic distributed system. All these messages 
must be properly scheduled on the network so that RT messages 
meet their deadlines while co-existing with non-RT messages. To 
solve these problems, we present a neural network approach to 
dynamically schedule and distribute the system bandwidth. At the 
same time, the transmission time can meet the basic requirements. 
The experimental results clearly show the effectiveness of the 
proposed technique in solving the message scheduling problems in 
CAN. 
  

Index Terms—Neural Networks, Controller Area Network, 
Message Scheduling Controller, Radial Basis Function Network, 
Backward Through Time 

I. INTRODUCTION 
CAN [1][2] is a bus protocol with many desirable properties 

for embedded and real-time systems. It is a priority-based 
mechanism where collisions are avoided by using priorities for 
bus arbitration. The priority-based arbitration mechanism 
requires that different CAN nodes never simultaneously send 
messages with equal identifiers. According to this mechanism, 
as soon as the bus is idle, each node competing for the bus 
begins to send the arbitration field of its message. At the end of 
the arbitration field, only the node which is sending the 
message with the lowest arbitration field value, will be 
transmitting. 

CAN must carry both periodic and sporadic real-time 
messages, as well as non real-time messages. All these messages 
must be properly scheduled on the network so that real-time 
messages meet their deadlines while co-existing with non 
real-time messages. Previous work regarding scheduling such 
messages on CAN focused on fixed-priority mechanisms [3][4]. 
The Fixed-priority deadline-monotonic (DM) scheduling 

 
 

[5][6][7]achieves meeting deadlines as guaranteed by an 
off-line feasibility test for a static system with periodic tasks. 
Due to the tight relationship between the identifier and the 
priority of CAN messages, the fixed priority assignment has 
been applied in the most common CAN-based communication 
systems implicitly. Although static systems can be scheduled 
easily by DM scheduling, it does not allow scheduling of 
dynamic systems, where an offline feasibility test has 
incomplete knowledge about the future behavior of the system. 
In general, fixed-priority schemes give lower utilization than 
other schemes such as nonpreemptive earliest deadline first 
(EDF) [8]. Livani introduced a mechanism to assign dynamic 
priorities to CAN messages, in order to achieve an EDF 
resource access consensus among the participating nodes. 
Based on the EDF access mechanism, soft real-time 
communication will be scheduled optimally with EDF 
approach. To guarantee deadlines of hard real-time communi-
cation, calendar-based resource reservation is applied. An 
application of this scheduling approach in a distributed 
object-oriented real-time control system has been introduced 
by [10]. The drawback of EDF is its high overhead which 
makes EDF impractical for CAN. On the other hand, a 
scheduling mechanism for the CAN bus, based on a mixture 
of dynamic and static priorities, has been approached by [9]. 
However, this approach makes unrealistic assumptions about 
CAN (10 Mbits/s) and exhibits a rather restricted scheduling 
ability due to a short time horizon. 

In this paper, we propose a controller-plant model to schedule 
different types of messages on CAN. These messages are 
classified into three broad categories, (1) hard real-time (HRT) 
messages, (2) soft real-time (SRT) messages, and (3) non 
real-time (NRT) messages, respectively. The allocation of the 
higher priority class of HRT messages must be made for the 
time-critical events and the lower priority class for the NRT 
messages. The message buffer, containing messages in queue, 
can be regarded as a plant to be controlled by controller. We 
take advantage of the learning capability of neural networks 
and present a messenger scheduling controller (MSC), which is 
implemented by Radial Basis Function Network (RBFN) [11]. 
The MSC can be treated as a message dispatcher, which 
decides a proper message type to be sent. Moreover, a novel 
on-line Backward Through Time (BTT) algorithm is suggested 
such that the supervised learning method can be applied to 
RBFN. Fig. 1 shows the complete framework of the proposed 
controller-plant model. In the following, we introduce the basic 
structure of RBFN and its modeling training technique in 
section II. However, the supervised learning method is 
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inadequate to apply for the CAN message scheduling. We, 
therefore, devise a BTT algorithm to extract the desired outputs 
for supervised training in section III. In section IV, simulation 

result is demonstrated by applying RBFN and the BTT 
algorithm. Finally, the conclusions are drawn in section V. 

Fig. 1.  The proposed controller-plant model for CAN message scheduling.

Fig. 2.  A multi-input multi-output Radial Basis 
Function network. 

II. RADIAL BASIS FUNCTION NETWORK 
Radial Basis Function network (RBFN) [12] is a special 

neural network architecture that consists of three layers, i.e. 
input layer, hidden layer, and output layer. Fig. 2 depicts a 
multi-input multi-output RBFN. The values of the input 
variables formulate an input vector, which is forwarded from 
the input layer to the hidden layer. The hidden layer is 
comprised of a number of nonlinear processing nodes, which 
are characterized by the center locations and the nonlinear 
radial basis function. Each hidden node receives the input 
vector, calculates the (Euclidean) distance ||x - ci|| between the 
center vector ci and the input vector x, and finally performs a 
nonlinear transformation of the distance, using the radial basis 
function. The output of each hidden node is then multiplied by 
a particular synaptic weight, while the final output of the 
network is a simple summation of all the weighted hidden 
node activations. In this paper, we employ Gaussian function 

as the basis function 

(1)  

where ci and Σi are center vector and covariance matrix, 
respectively. In Fig. 2, Wo are connection weights from hidden 
layer to output layer. In this way, the free parameter vector in 
RBFN can be defined by 

(2)  

Instead of solving all the network parameters Θ  in one 
step, the optimization problem is divided into two phases, 
where the locations of the RBF’s center and covariance 
matrix are computed first, and the weighting connections are 
calculated in the second phase. 

With a predefined error function (3) 

(3)  

Θ  in (2) can be modified according to gradient descent 
algorithm iteratively, i.e. 

(4)  

where θ∈ Θ . In (5) and (6), we summarize the iterative 
formula of the steepest descent method 

(5)  

(6)  
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In the next section, we will discuss message scheduling 
control and how the training data can be generated for 
supervised learning. 

III. Message Scheduling Control and Backward Through 
Time (BTT) Algorithm 

In this section, we present a complete framework for online 
adaptation of RBF networks that can be used for dynamical 
message scheduling control. In our CAN model, the 
transmission time D(Ωi) 

(7)  

is defined as the time which elapses from an application 
process making a transmission request (i.e. TS(Ωi)) to the 
reception of the last bit of the frame by the intended receiver(s) 
(i.e. TE(Ωi)). The subscript i of Ωi denotes one of predefined 
messages, Ωi∈{HRT,SRT,NRT}. If each class of message Ωi 
has its own predefined maximum predefined transmission time 
Dmax(Ωi), then the most effective index to evaluate the 
performance of message scheduling is the transmission delay 
δ(Ωi), defined as the time elapsing from the transmission 
request to the successful transmission of the first bit of the 
frame over the network. In formula, 

(8)  

According to the definition of transmission delay δ(Ωi), 
message Ωi is said to be timely transmitted if δ(Ωi) ≤ 0 (or 
Dmax(Ωi) ≥ D(Ωi)). If δ(Ωi) is greater than zero, however, 
message Ωi can’t guarantee its deadline requirement or is 
notified of the deadline failure. In Fig. 3(a), message Ωi can’t 
complete its transmission until TE(Ωi), which exceeds the 
predefined limit for message Ωi. In this case, message Ωi fails 
to fulfill the requirements of timely transmission. This causes 
performance degradation and even instability of real-time 
application systems interconnected into the CAN bus. On the 
contrary, Fig. 3(b) is the case of timely transmission. 

Fig. 3.  (a). Message Ωi can’t complete its transmission 
before 

max
( )D iT Ω  (b). case of timely transmission. 

To avoid starvation for the low-priorities objects, we did a 

experiment by forcing a fixed delay L(Ωi) after any 
transmission requests for different priority classes. This 
method, however, simply limits in advance the bandwidth 
allocated to each type of message, thus, decreasing the 
wasted network bandwidth. In this way, the delay vector is L 
= [L(HRT) L(SRT) L(NRT)]T = [n1T n2T n3T]T. Moreover, it 
requires also a certain degree of a priori knowledge of the 
maximum allowable transmission time and the network 
traffic load. Therefore, we assumed that Dmax = [Dmax(HRT) 
Dmax(SRT) Dmax(NRT)]T = [100T 150T 200T]T and the traffic 
loads are F(Ωi) = 30 for Ωi∈{HRT,SRT,NRT}. Table 1 and 
Table 2 illustrate the transmission time under different 
conditions of vector n = [n1,n2,n3]T. In Table 1, all messages 
are timely transmitted (i.e. δ(Ωi) < 0). However, too large of 
the value of n2 in Table 2 is notified of the deadline failure 
for SRT message (i.e. δ(SRT) > 0). The simulation results 
reveal the fact that values of ni affects the performance of 
message scheduling significantly. We therefore reasonably 
assume that there exists  

Table 1. Transmission time v.s (n1,n2,n3)=(60,85,0). 
D(Ωi) Min Mean Max δ(Ωi) 

D(HRT
) 61T 61.45T 90T δ(HRT) < 0

D(SRT) 86T 102.33T 120T δ(SRT) < 0
D(NRT

) 1T 124.07T 180T δ(NRT) < 0

Table 2. Transmission time v.s (n1,n2,n3)=(50,140,0). 
D(Ωi) Min Mean Max δ(Ωi) 

D(HRT
) 51T 51.37T 80T δ(HRT) < 0

D(SRT) 141T 154.36T 200T δ(SRT) > 0
D(NRT

) 1T 122.53T 162T δ(NRT) < 0

 
We strongly believe that there exists some implicit 

relationships between traffic load F, delay vector L, and δ(Ωi). 
If n or L is chosen properly in advance, δ(Ωi) can be 
completely decided. In fact, vector n or L can only be selected 
by trial-and-error. Moreover, the network traffic load is 
usually time-varying, values of (n1,n2,n3) has to be changed 
accordingly. It implies F and L are time-dependent, F = F(t) 
and L = L(t). If we consider the competing time between 
heterogeneous and homogeneous classes, the implicit function 
between F, D, and δ(Ωi) can be reasonably expressed as 

(9)  

In (9), F(t) = [F(HRT,t) F(SRT,t) F(NRT,t)]T and D(t) = 
[D(HRT,t) D(SRT,t) D(NRT,t)]T. Unfortunately, the function 
Φ is highly complex and the explicit solution is almost 
impossible to find or doesn’t exist. To optimally utilize the 
system resources for different types of messages while 
guaranteeing timely transmission, we are not intended to find 
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the exact solution. Instead, we propose a neural network 
approach for message scheduling control. The controller is 
realized by several radial basis functions and forms a radial 
basis function network. The purpose of the RBFN is to reveal 
the implicit relationship between the input vectors x(t) = [D(t) 
F(t)]T and a proper output vector y(t), which features resource 
reservation as well as dynamic message scheduling such that 
an appropriate class of message to be served in the next time 
instant. Since the proposed MSC is implemented by the RBFN 
network, in the rest of the paper MSC and RBFN will be used 
interchangeably. 

At any time instant t, the input vector x(t) = [D(t) F(t)]T of 
the MSC consists of transmission time and the current network 
flow rate, where D(t) = [D(HRT,t) D(SRT,t) D(NRT,t)]T and 
F(t) = [F(HRT,t) F(SRT,t) F(NRT,t)]T. Consequently, the 
inferred output y after WTA (Winner Takes All) identifies the 
message to be served in the next time instant. For optimal 
message scheduling, the parameters of the MSC of the RBFN 
have to be designed by the so-called supervised learning. The 
learning employs two levels of adaptation, namely, adaptation 
of the connection weights between the hidden layer and the 
output layer and adaptation of the parameters of the radial 
basis functions. Unfortunately, the optimal message 
scheduling is impossible to predict in advance. Consequently, 
without complete knowledge about the target vector z, the 
parameter learning method in (5) and (6) can’t proceed. 
Moreover, in many applications, it would also be desirable 
for an online training algorithm to be able to provide stable 
outputs, whenever the system dynamics change. 

Fig. 4.  On line Backward Through Time (BTT) 
algorithm. 

Therefore, in this paper we devise an on-line Backward 
Through Time (BTT) learning algorithm which continuously 
monitors δ(Ωi,t) for message Ωi and constructs a schedule 

table sequentially as shown in Table 4. In the beginning, the 
schedule table records both input vector x and the 
corresponding vector y (and Ωi), based on the default 
parameter Θ  in the RBFN. If at any time instant t, δ(Ωi,t)= rT 
is greater than zero, it implies that the transmission time for the 
corresponding message is unacceptable or the bandwidth 
allocation in the previous time instant is improper. At this 
point, we retrieve the vector x(t – (r-1)T) from the schedule 
table and reassign its corresponding output class (or target) by 
the current type of message. Consequently, the desired target 
vector z can be extracted. This vector {x z} sets up the 
necessary information for on line supervised learning and the 
parameters of RBFN can be tuned accordingly. Fig. 4 shows 
the complete framework for online BTT adaptation algorithm 
of RBF networks. 

In the following, we conduct some experiments to evaluate 
the performance of the proposed BTT method in CAN 
message scheduling. 

IV. EXPERIMENTAL RESULTS 
In the simulation of message scheduling, we assume the 

number of radial basis functions for the MSC is fixed and 
known in advance. The messages generated at each node by 
the user are inserted according to a FIFO (First In First Out). 
The message is generated randomly in a predefined range and 
is defined as the traffic load F(Ωi). Table 3 summarizes these 
necessary information, including Dmax(Ωi), F(Ωi), and the 
number of RBFs. 

Table 3. Simulation parameters. 
Maximum 

transmission time
Dmax(HRT) = 120, Dmax(SRT) = 200,

Dmax(NRT) = 400 
Traffic load F(HRT) = 30~50, F(SRT) = 30~50,

F(NRT) = 30~50 
# of RBFs 7 

 
In the beginning, the parameters of MSC are initialized 

randomly. The MSC shares out the system bandwidth among 
three different messages fairly and all messages are timely 
transmitted. As time goes on, the HRT messages can only 
transmit using the residual bandwidth that is left after SRT and 
NRT messages have been allocated. Therefore, HRT messages 
become less and less competed with others since HRT 
messages have the smallest allowable transmission time. 
Consequently, the transmission time of HRT message can not 
fulfill with the requirement of timely transmission. On the 
contrary, the transmission time of SRT and NRT are far below 
Dmax(SRT) and Dmax(NRT). However, in this time interval, 
MSC continuously activate the on line BTT algorithm as 
mentioned in section  III. The behaviors of the RBFN intend to 
give a higher priority to the HRT messages and allocate more 
system bandwidth for HRT messages while keep the SRT and 
NRT messages meet the basic requirements. Fig. 5 reveals this 
fact. 
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Update 
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Fig. 5.  Simulation results of message scheduling under 
the conditions of Table 3. The dotted lines denote the 
maximum allowable transmission time. 

We also calculate the ratio γ(Ωi) of message Ωi that fail to 
accomplish its transmission before Dmax(Ωi) versus total 
number of that type message being transmitted. In Fig. 6, 
γ(Ωi) is recorded from Fig. 5. As was expected, the curves of 
γ(Ωi) are gradually improved and become level off when the 
system is stable. 

Fig. 6. Curves of γ(Ωi) versus t. 

V. CONCLUSION 
The CAN is a network protocol that supports 

communication among field devices in the control and 
distributed systems. This study introduces a bandwidth 
allocation algorithm in the CAN bus such that different types 
of messages, hard real-time, soft real-time, and nonreal-time 
messages, can satisfy their basic requirements for timely 
transmission. The proposed MSC is implemented by radial 
basis function networks which dynamically decide the 
proper type of message to be served in the next time instant. 
Simulation results demonstrate the effectiveness of the 
proposed method. In out current work, the number of RBFs 
is fixed during training phase. For modeling dynamical time 
varying systems, the number of RBFs should be adaptively 
changed in order to capture the dynamics of the CAN bus 

system. That means the proposed algorithm should not only 
tune the parameters of RBFN but also add or delete some 
RBFs. In this way, the MSC or the RBFN can retain a 
reasonable size, but at the same time describe well of the 
system at any time instant. This involves the so-called 
structure learning strategy with the parameter learning 
method. This research topics is still under investigation and 
will be our future works. 
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Table 4. Schedule Table 
t input vector output vector output class transmission delay 

kT x(kT) y(kT) Ωi((k+1)T) = NRT δ(NRT,(k+1)T) ≤ 0 
(k+1)T x((k+1)T) y((k+1)T) Ωi((k+2)T) = SRT δ(SRT,(k+2)T) ≤ 0 

     

(k-r-1)T x((k -r-1)T) y((k -r-1)T) Ωi((k -r-1))T) = ??? δ(SRT, (k-r-1))T) ≤ 0
     

(k-1)T x((k-1)T) y((k -1)T) Ωi(kT) = HRT δ(HRT,kT) = rT > 0 
 


