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e and EngineeringNational Sun Yat-Sen UniversityKaohsiung, Taiwan, R.O.CE-mail: fshenjh, 
hangyig�
se.nsysu.edu.twAbstra
tWireless broad
asting is an eÆ
ient way to deliver in-formation to mobile 
lients. Due to power limit for theportable units, how to design an energy-saving orga-nization is a key issue. Imielinski et al. have proposedtwo hashing-based s
hemes, Hashing A and HashingB, to save energy in the progress of getting data ofinterest. However, these two hashing-based s
hemeshave the dire
tory miss phenomenon. To improve thedire
tory miss phenomenon further, in this paper, wepropose the TopK s
heme whi
h is a multiple-hashing-fun
tion-based s
heme. From our simulation study,we show that the performan
e of TopK is better thanthat of Hashing B in terms of the average a

ess timeand the average tuning time.keywords: data broad
ast, power 
onservation, sele
-tive tuning, wireless network.1 Introdu
tionDue to the feature of asymmetry in 
ommuni
ations,it is an eÆ
ient way to deliver information to mobile
lients via wireless broad
ast [1℄, e.g., sto
k quotesand weather information. The main advantage of thismethod is that it is independent of the number of
lients tuning to the 
hannel, i.e., s
alability [1, 8℄.By broad
asting the �le periodi
ally, mobile 
lients
an spe
ify prede�ned 
ondition to �lter out the datathey wanted [4℄.Due to the feature of power limits, power 
onserva-tion is a key issue for the portable units (e.g., palm-tops). When a palmtop is listening to the 
hannel,its CPU must be in the a
tive mode for examining�This resear
h was supported in part by the National S
ien
eCoun
il of Republi
 of China under Grant No. NSC94-2213-E-110-003 and by National Sun Yat-Sen University.

data pa
kets. This is a waste of energy, sin
e on anaverage, only a very few data pa
kets are of inter-est to the parti
ular unit. It is de�nitely bene�
ial ifthe palmtop 
an slip into the doze mode most of thetime and \wake up" only when the data of interestis expe
ted to arrive [4, 5℄, i.e., sele
tive tuning. Asa 
onsequen
e, it is advantageous to use some spe-
ial data organizations, say indexed (or hash-basedor signature-based) data organizations, to broad
astdata over wireless 
hannels to guide mobile units toget the relevant information.For a �le being broad
asted on a 
hannel, the fol-lowing two parameters are of 
on
ern [4℄: (1) A
-
ess time: The average waiting time for 
lients to getthe required data (2) Tuning time: The amount oftime spent by a portable unit listening to the 
han-nel, whi
h will determine its power 
onsumption.There have been many strategies for redu
ing power
onsumption. For the uniform broad
ast in whi
hthe same data re
ord appears on
e in a broad
ast
y
le, the 
exible indexing [4℄, the hashing-baseds
hemes [4℄, the tree-based indexing [3, 5℄, signatures
hemes, the mixture of the index tree and the signa-ture s
heme, and the mixture of the hashing and theindex tree s
heme [10℄ have been proposed. A skewedindex tree based on data popularity patterns was 
on-sidered in [2℄. For energy eÆ
ient �ltering of nonuni-form broad
ast in whi
h data re
ords are broad
asta

ording to the a

ess frequen
y, [8℄ proposed index-ing s
hemes. The above s
hemes 
onsidered that thereis only one broad
ast 
hannel. However, broad
astingdata 
an be over multiple 
hannels; therefore, [7℄ fo-
used on index and data allo
ation.Sin
e in the wireless broad
ast, the a

ess time is af-fe
ted by the size of the �le, adding the index in-
reases the a

ess time. If the size of the index is too
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(b)Figure 1: A 
omparison of Hashing A and Hashing B(for K = 15): (a) Hashing A; (b) Hashing B.large, the whole broad
ast �le in
reases largely. Inthis 
ase, using the hashing-based s
heme is a better
hoi
e than using the index-based s
heme. For power
onservation, Imielinski et al. [4℄ have proposed twohashing-based s
hemes, Hashing A and Hashing B.Hashing B improves the dire
tory miss in Hashing Aby taking the minimum over
ow into 
onsideration,where the dire
tory miss is that 
lient's initial probe
omes before the requested data item but after thebu
ket that has its 
orresponding o�set.However, in Imielinski et al.'s two hashing-baseds
hemes [4℄, if the di�eren
es between the minimumover
ow and the other over
ows are large extremelyor the small over
ows appear near the rear part of thebroad
ast �le, both s
hemes have a poor performan
e.Therefore, in this paper, we propose the TopK s
heme,whi
h is a multiple-hashing-fun
tion-based s
heme, toredu
e the probability of the dire
tory miss further.From our simulation study, we show that the perfor-man
e of TopK is better than that of Hashing B interms of the average a

ess time and the average tun-ing time.The rest of paper is organized as follows. In se
tion 2,we give a brief survey of the hashing-based s
hemes.In se
tion 3, we present our proposed TopK s
heme.In se
tion 4, we study the performan
e of TopK bysimulation. Finally, a 
on
lusion is given in se
tion 5.2 Ba
kgroundIn [4℄, Imielinski et al. have proposed two hashings
hemes, Hashing A and Hashing B, to help 
lientsget data of interest. The smallest logi
al unit of thebroad
ast in those s
hemes is 
alled a bu
ket 
om-posed of pa
kets, the physi
al unit of the broad
ast.Figure 1 shows Hashing A and Hashing B, in whi
hall of the broad
ast �les are hashed by h(K) =

(K mod 4) + 1 and have the same size. Ea
h of the�rst 4 physi
al bu
kets (
alled the designated bu
ket)in Hashing A stores the o�set to the logi
al bu
ket inthe h(K)th physi
al bu
ket as shown in Figure 1-(a).For example, in Figure 1-(a), physi
al bu
ket 4 storesan o�set, 5, to logi
al bu
ket 4, whi
h 
ontains thedata item of key 15. The remaining bu
kets 
ontainan o�set to the beginning of the next 
y
le. Moreover,Dis(h;K) is the di�eren
e between the address of thephysi
al bu
ket in whi
hK resides and the designatedbu
ket for K, for a given hash fun
tion h. If 
lientstune into the broad
ast 
hannel in the range 
overedby Dis(h;K), a dire
tory miss o

urs. Therefore, thesmaller the Dis(h;K) is, the lower the probability ofthe dire
tory miss is, and the shorter the a

ess timeis. In fa
t, it is the same as that the smaller the totalo�set is, the shorter the a

ess time is.To redu
e the probability of the dire
tory miss,Hashing B modi�es the hashing fun
tion h(K) toh0(K) as follows:h0(K) = n h(K) if h(K) = 1(h(K)� 1)(1 +MO) + 1 if h(K) > 1;whereMO denotes the minimum number of over
owsin the whole �le. The h0(K)th physi
al bu
ket 
on-tains the o�set of the logi
al bu
ket h(K). Figure 1-(b) shows Hashing B, whereMO = 1. In Figure 1-(a)and Figure 1-(b), Dis(h; 15) (= 5) > Dis(h0; 15) (=2); therefore, the probability of the dire
tory miss ofHashing A is higher than that of Hashing B. Conse-quently, Hashing B has improved the performan
e ofHashing A.3 The TopK S
hemeTo redu
e the probability of the dire
tory miss in thehashing s
hemes, we propose the TopK s
heme, whi
his a multiple-hashing-fun
tion-based s
heme.3.1 AssumptionsThis paper fo
uses on the wireless environment. Someassumptions should be restri
ted in order to makeour work feasible [1℄. These assumptions in
lude: (1)Data appears on
e in the whole broad
ast �le, andis broad
ast over a reliably single 
hannel. (2) Datawill not updated during the 
urrent broad
ast 
y
le.(3) When a 
lient swit
hes to the publi
 
hannel, it
an retrieve bu
kets immediately. (4) A query result
ontains only one bu
ket.



3.2 The Basi
 IdeaThe basi
 idea of TopK is to use the 
utlines to dividethe broad
ast �le into several regions, whi
h 
an havethe di�erent value of the minimum over
ow. There-fore, ea
h region 
an have the di�erent hashing fun
-tion to determine the positions of the designated bu
k-ets.The basi
 steps of TopK are des
ribed as follows.Given a parameter, t (t < N), whi
h determinesthe number of the 
utlines, we then divide thewhole �le with N logi
al bu
kets into (t + 1) regions(R1; R2; : : : ; Rt+1) by 
onsidering the des
ending or-der of di�eren
es of over
ows. For ea
h region Ri(1 � i � t + 1), we design the related hashing fun
-tion by using the value ofMOi in this regionRi, whereMOi is the value of the minimum over
ow in the ithregion. Sin
e the value of MOi in ea
h region Ri 
anbe di�erent, we 
an have di�erent hashing fun
tionsfor those (t + 1) regions. (Note that in Hashing B,there is only one value of MO.)3.3 The TopK S
hemeFor our illustrations 
learly, we let Oi be the numberof over
ows whi
h follow the related logi
al bu
ketand D[i℄ = jOi+1 � Oij, 1 � i < N . Moreover, welet 
i denote the logi
al bu
ket of the ith 
utline and
0 = 1.Formally, the algorithm of this s
heme is shown inFigure 2. From lines 01{05, the di�eren
es of over-
ows between two adja
ent logi
al bu
kets for N logi-
al bu
kets are 
al
ulated out. (Note thatD stores thedi�eren
es of over
ows for N logi
al bu
kets and DIstores the 
orresponding indi
es of D.) And then wesort those di�eren
es in a des
ending order (line 06).(Note that in the SortI pro
edure, when the swap ofD[i℄; D[j℄ o

urs, the 
orrespondingDI [i℄; DI [j℄ mustalso be swapped.) Finally, we �nd t 
utlines by 
onsid-ering the des
ending order of the di�eren
es of over-
ows (lines 07{11), where CS[i℄ stores the positionof the ith 
utline. (Note that CS may be in disor-der after a for loop, be
ause the algorithm of TopKdoes not determine the 
utlines in a 
ertain dire
tion.Therefore, CS must be sorted in line 09.)Let's use one example to illustrate this s
heme. Figure3 shows an example ofHashing B, whereO1 = O2 = 8,O3 = O4 = 4, O5 = O6 = 2, O7 = O8 = 1, MO = 1,h(K) = (K mod 8) + 1, TShift (= P8i=1 Shifti =0 + 7 + 14 + 17 + 20 + 21 + 22 + 22) = 123, MO isthe minimum number of over
ows in the whole �le,

01 for i := 1 to (N � 1) do02 begin03 DI[i℄ := i;04 D[i℄ := jOi+1 �Oij;05 end;06 SortI(D;DI); (* in a des
ending order *)07 for i:= 1 to t do08 CS[i℄ := DI[i℄ + 1;09 Sort(CS); (* in an as
ending order *)10 for i := 1 to t do11 
i := CS[i℄;Figure 2: The algorithm of TopK
1


8


2


8


3


4


4


4


5


2


6


2


7


1


8


1


1
2
 3
4
 5
6
 7
8
 9
 1

0


1

1


1

2


1

3


1

4


1

5


1

6


1

7


1

8


1

9


2

0


2

1


2

2


2

3


2

4


2

5


2

6


2

7


2

8


2

9


3

0


3

1


3

2


3

3


3

4


3

5


3

6


3

7


3

8


0
 4
 0
 2
 0
 1
 0


+0
 +7
 +14
 +17
+20
 +21
+22
 +22


MO
=1


(


(


(


(


(


(


(


(


(


(


(


(


(


(


(


(


: the logical bucket
 : the overflow bucket


D


P

L


O


B


(


(
D: the di�eren
e of over
ows between two adja
ent logi
al bu
ketsP: the o�set to the designated logi
al bu
ketL: the logi
al bu
ket numberO: the number of over
ows whi
h follow the related logi
al bu
ketB: the physi
al bu
ket numberFigure 3: An example of Hashing BTShift is the total summation of Shifti and Shiftiis the o�set to logi
al bu
ket i.For the same input, Figure 4 shows the result of TopK,where t = 2 and TShift = 5. Following the algorithmfrom lines 01{05, di�eren
es of over
ows are D[1℄ =0; D[2℄ = 4; D[3℄ = 0; D[4℄ = 2; D[5℄ = 0; D[6℄ = 1and D[7℄ = 0 , and the 
orresponding indi
es of D areDI [1℄ = 1; DI [2℄ = 2; DI [3℄ = 3; DI [4℄ = 4; DI [5℄ =5; DI [6℄ = 6 and DI [7℄ = 7. (Note that after sortingD in a des
ending order, we have D[1℄ = 4; D[2℄ =2; D[3℄ = 1; D[4℄ = 0; D[5℄ = 0; D[6℄ = 0; D[7℄ = 0and DI [1℄ = 2; DI [2℄ = 4; DI [3℄ = 6; DI [4℄ =7; DI [5℄ = 1; DI [6℄ = 5; DI [7℄ = 3.) From lines 07{09,we then have CS[1℄ = 3 and CS[2℄ = 5. A

ordingly,from lines 10{11, it turns out that 
1 = 3 and 
2 = 5.Therefore, given t = 2, we have divided the whole �leinto 3 regions. The region before 
1 is R1 andMO1 =8. The region starting from 
1 and ending before 
2is R2 and MO2 = 4. The region starting from 
2to the end of the �le is R3 and MO3 = 1. Then, weuseMO1 (= 8) to determine whi
h physi
al bu
ket tostore Shift, when 1 < h1(K) � 
1 (= 3). MO2 (= 4)andMO3 (= 1) are used, when 
1 < h1(K) � 
2 (= 5)and 
2 < h1(K) � 8, respe
tively.
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Table 1: The hashing fun
tions in TopKHashing Fun
tion Conditionh1(K) = (K mod N) + 1 h1(K) = 1= (K mod 8) + 1;h2(K) = (h1(K)� 
0)� (1 +MO1) + 1 1 < h1(K) � 3= (h1(K)� 1)� (1 + 8) + 1= (h1(K)� 1)� 9 + 1;h3(K) = (
1 � 
0)� (1 +MO1)+ 3 < h1(K) � 5(h1(K)� 
1)� (1 +MO2) + 1= (3� 1)� (1 + 8)+(h1(K)� 3)� (1 + 4) + 1= 18 + (h1(K)� 3)� 5 + 1;h4(K) = (
1 � 
0)� (1 +MO1)+ 5 < h1(K) � 8(
2 � 
1) � (1 +MO2)+(h1(K)� 
2)� (1 +MO3) + 1= (3� 1)� (1 + 8) + (5� 3)� (1 + 4)+(h1(K)� 5) � (1 + 1) + 1= 18 + 10 + (h1(K)� 5)� 2 + 1;* 
0 = 1
Table 1 lists all hashing fun
tions for TopK used inFigure 4. The part (1 +MO1) of h2(K) means thatin this region (1 < h1(K) � 
1), we store the valueof Shift for every (1+MO1) bu
kets. (Note that wemust add one more 1 in ea
h hi, sin
e the physi
albu
ket is numbered from 1.) In h3(K), the �rst part(
1 � 
0) � (1 +MO1) + 1 (as shown in Figure 4) isthe total bu
kets from the beginning of the broad
ast
y
le to the designated bu
ket (= 19) of 
1 (= 3), andthe se
ond part (h1(K)� 
1)� (1 +MO2) is used tostore the value of Shift for every (1 +MO2) bu
ketsafter the designated bu
ket of 
1 and ending at thedesignated bu
ket (= 29) of 
2 (= 5). In h4(K), the�rst part (
1 � 
0) � (1 +MO1) + (
2 � 
1) � (1 +MO2) + 1 is the total bu
kets from the beginning ofthe broad
ast 
y
le to the designated bu
ket of 
2, andthe se
ond part (h1(K)� 
2)� (1 +MO3) is used tostore the value of Shift for every (1 +MO3) bu
ketsafter the designated bu
ket of 
2. In general, for Nlogi
al bu
kets and t 
utlines, there are (t+2) hashingfun
tions for (t+1) regions, whi
h are listed in Table2.In Figure 4, there are 2 
utlines (t = 2), and therelated 4 hashing fun
tions are listed in Table 1. Forexample, in Figure 4, h1(K) = 2 falls in the range of1 < h1(K) � 3; therefore, the physi
al bu
ket whi
hstores Shift2 to logi
al bu
ket 2 is (2�1)�9+1 = 10(by h2(K)). For logi
al bu
ket 4, we use h3(K) to
al
ulate the physi
al bu
ket whi
h stores Shift4 andthe result is 18 + (4 � 3) � 5 + 1 = 24. Obviously,the 
omparison of Hashing B and TopK shows thatTShift (= 5) of TopK is less than that (= 123) ofHashing B, so we 
an 
on
lude that TopK performsbetter than Hashing B.

Table 2: The (t+2) hashing fun
tions for (t+1) regionsand t 
utlinesh1(K) = (K mod N) + 1; if h1(K) = 1h2(K) = if 1 < h1(K) � 
1(h1(K) � 
0) � (1 +MO1) + 1;h3(K) = (
1 � 
0) � (1 +MO1)+ if 
1 < h1(K) � 
2(h1(K) � 
1) � (1 +MO2) + 1;� � �hi(K) = if 
i�2 < h1(K) � 
i�1i�2Xx=1((
x � 
x�1) � (1 +MOx))+(h1(K) � 
i�2) � (1 +MOi�1) + 1;� � �ht+1(K) = if 
t�1 < h1(K) � 
tt�1Xx=1((
x � 
x�1) � (1 +MOx))+(h1(K) � 
t�1) � (1 +MOt) + 1;ht+2(K) = if 
t < h1(K) � NtXx=1((
x � 
x�1) � (1 +MOx))+(h1(K) � 
t) � (1 +MOt+1) + 1;3.4 A

ess Proto
olWhen tuning into the 
hannel for sear
hing the dataitem of key K, a 
lient retrieves the 
orrespondinghashing fun
tion from the 
urrent bu
ket a

ordingto key K [4℄. The 
lient then waits for the designatedbu
ket of key K. After getting the designated bu
ket,the 
lient has the o�set to rea
h the requested data.4 Performan
eIn this se
tion, we study the performan
e of the pro-posed TopK s
heme. We �rst make a 
omparison ofTopK and Hashing B [4℄, and then make a 
omparisonof TopK and a tree-based approa
h, SL [3℄.4.1 Generation of Over
owsFirst, given LB, the amount of logi
al bu
kets, wegenerate the over
ow patterns for LB logi
al bu
ketsby the uniform distribution with the range betweenOmin and OMax. Omin and OMax denote the mini-mum size of over
ows and the maximum one, respe
-tively. Based on the result of the above generationof the over
ow patterns for LB logi
al bu
kets, wethen 
onsider four kinds of distributions of those LBover
ow patterns, in
luding the in
reasing, de
reas-ing, 
onvex and 
on
ave distributions. Obviously, wehave the hashing fun
tion h(K) = (K mod LB) + 1,and the amount of total physi
al bu
kets, B, equalsLB +PLBK=1OK .The parameter, t, is given to determine the numberof 
utlines. Sin
e the number (= t + 2) of hashingfun
tions is more than that (= 2) of Hashing B, thebu
ket size of our TopK is somewhat larger than that



of Hashing B. Therefore, as 
ompared to Hashing B,the average a

ess time and the average tuning timeof TopK are multiplied by the fa
tor f (= DH+ (t+2)2DH+1 ).(DH denotes the ratio of the data part to the part ofstoring hashing fun
tions in a bu
ket.)4.2 Performan
e Analysis of A

ess Timeand Tuning TimeIn our simulation, we assume that the whole logi
albu
kets (= LB) are requested. (Note that sin
e thedistribution of the over
ows for TopK and HashingB is the same, we do not 
onsider the a

ess of theover
ow bu
kets in our experiment.) The a

ess timeATK \per key" K, 1 � K � LB, is as follows [4℄.ATK = Dis(h;K)B � �B + 12 �Dis(h;K)�+�1� Dis(h;K)B �� �B�Dis(h;K)2 +Dis(h;K)�= Dis(h;K)B � �B + 12 �Dis(h;K)�+�1� Dis(h;K)B �� B+Dis(h;K)2 , (1)where B�Dis(h;K)2 is the mean probing position out-side the displa
ement area. In equation (1), the �rstterm is for the 
ase of the dire
tory miss, and the se
-ond one is for the 
ase of the non-dire
tory miss. Theaverage a

ess time for the broad
ast is PLBK=1 ATKLB[4℄.On the other hand, the tuning time TTK \per key"K, 1 � K � LB, is 
al
ulated as follows [9℄.TTK = 3� Pos(K)B + 4� �1� Pos(K)B �,where Pos(K) is the di�eren
e between the beginningof the broad
ast 
y
le and the physi
al bu
ket 
on-taining the o�set to the logi
al bu
ket whi
h 
ontainskey K. The average tuning time for the broad
ast isPLBK=1 TTKLB .4.3 Simulation Results: TopK vs. Hash-ing BIn this 
omparison, we let LB = 100, Omin = 1,OMax = 50, and DC = 50, resulting in B = 2608.Moreover, we give t = 2 and t = 3, resulting inf = 1:01961 and f = 1:02941, respe
tively. The sim-ulation results dis
ussed later are the average of 100
ases. We will 
onsider t = 2 and t = 3 for those fourkinds of over
ow distributions.Figure 5 shows the average a

ess time of TopK andHashing B. In Figure 5, under these four 
ases ofthe distributions, the average a

ess time of TopK isshorter than that of Hashing B no matter t = 2 ort = 3. This is be
ause the minimum over
ow in Hash-ing B is always a 
onstant (
alled MOf ) for a given
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ave distributionFigure 5: A 
omparison of the average a

ess time ofTopK and Hashing Bover
ow pattern no matter under what kinds of dis-tributions. However, in TopK, sin
e the values of theminimum over
ows are dependent on the positions ofthe 
utlines, they 
an be larger thanMOf . Moreover,the average a

ess time is a�e
ted by Dis(h;K) andDis(h;K) is a�e
ted by the value of the minimumover
ow in the region where h(K) lo
ates. Therefore,TopK has the adaptability to redu
e the average a
-
ess time.In the 
ase of the de
reasing distribution, there is thelargest di�eren
e of the average a

ess time betweenHashing B and TopK. This is be
ause TopK uses the
utlines to redu
e the average a

ess time. Moreover,Hashing B has the worst performan
e in this 
ase.Therefore, in the 
ase of the de
reasing distribution,there is the largest di�eren
e of the average a

esstime between Hashing B and TopK.Note that when the number of 
utlines is in
reased,the size of a bu
ket is in
reased as well. In general,as long as the bene�t resulting from the in
rease ofthe number of 
utlines ex
eeds the 
ost resulting fromthe in
rease of the size of a bu
ket, the in
rease ofthe number of 
utlines is bene�
ial on redu
ing theaverage a

ess time. As shown in Figure 5, while inthe 
ase of the in
reasing distribution, the averagea

ess time is in
reased from t = 2 to t = 3 in TopK.In addition, we observe that the average a

ess timeof TopK is always shorter than that of Hashing B inany kind of these four 
ases of di�erent distributions,no matter t = 2 or t = 3.Figure 6 shows the 
omparison of the average tun-ing time. Based on the analysis of the tuning time,we observe that as the value of Pos(K) is in
reased,the tuning time is de
reased. Sin
e the positions ofthe logi
al bu
kets are �xed under a 
ase of distri-butions, the less the displa
ement between the desig-nated bu
ket and the logi
al bu
ket is, the larger the
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Figure 6: A 
omparison of the average tuning time ofTopK and Hashing Bvalue of Pos(K) is, and the shorter the tuning time is.Therefore, the average tuning time of TopK is shorterthan that of Hashing B, no matter t = 2 or t = 3.Note that in fa
t, we have tried another threemultiple-hashing-fun
tion-based s
hemes in [9℄ to de-termine the positions of 
utlines. However, from oursimulation study, we have observed that TopK out-performs the other s
hemes.4.4 Simulation Results: TopK vs. SLIn this simulation, we assume that the whole keysare requested; that is, the whole bu
kets are a

essed.We assume that the number of real data items of abu
ket in TopK is the same as that in SL, and thatthe storage size of ea
h hashing fun
tion is equal tothat of a data item. While 
omparing TopK withSL, we multiply the a

ess time of TopK by n+(t+2)nto normalize, where n is the 
apa
ity of a bu
ket.In SL, we 
onsider a balan
ed index tree and assumethat ea
h node has the same number of 
hildren. Theindex tree of SL has two parts: (1) The repli
atedpart 
onstitutes the top r levels of the index tree;(2) the non-repli
ated part 
onsists of the rest levels[3℄. In the broad
ast 
y
le, the number of appearan
etimes of ea
h node in (1) equals the number of its
hildren. On the other hand, the remaining indexnodes will appear only on
e in the broad
ast 
y
le.We assume that the 
lients uniformly tune into thebroad
ast 
hannel. Sin
e the number of the repli
atedlevels of the index tree a�e
ts the a

ess time, weuse the optimal value of r from [3, 5℄. The formulafor 
al
ulating the average a

ess time for SL is from[3, 5℄.Figure 7 shows the 
omparison of the average a

esstime of TopK and SL, where LB = 150, t = 3, Omin =40, OMax = 50, B is between 6795 and 6921, and theaverage of Bs is 6852. In Figure 7, we 
an observethat the average a

ess time of TopK is shorter than
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Figure 7: A 
omparison of the average a

ess time ofTopK and SL under the uniform distributionthat of SL with in
reasing the 
apa
ity of a bu
ket.5 Con
lusionIn this paper, we have proposed the TopK s
hemeto improve the dire
tory miss phenomenon in hash-ing s
hemes over wireless broad
ast, whi
h in
reasesthe a

ess time and the tuning time. In our simu-lation study, we have 
onsidered four distributions ofover
ows, in
luding the in
reasing, de
reasing, 
onvexand 
on
ave distributions. From our experimental re-sults, we have shown that TopK performs better thanHashing B in terms of the average a

ess time and theaverage tuning time in ea
h of these four distributionsof over
ows.Referen
es[1℄ Y. I. Chang and C. N. Yang, \A Complementary Ap-proa
h to Data Broad
asting in Mobile InformationSystems," Data and Knowledge Eng., Vol. 40, No. 2,pp. 181{194, Feb. 2002.[2℄ M. S. Chen, K. L. Wu and P. S. Yu, \Optimiz-ing Index Allo
ation for Sequential Data Broad
ast-ing in Wireless Mobile Computing," IEEE Trans. onKnowledge and Data Eng., Vol. 15, No. 1, pp. 161{173, Jan./Feb. 2003.[3℄ Y. D. Chung and M. H. Kim, \An Index Repli
ationS
heme for Wireless Data Broad
asting," Journal ofSystems and Software, Vol. 51, No. 3, pp. 191{199,May 2000.[4℄ T. Imielinski, S. Viswanathan and B. R. Badrinath,\Power EÆ
ient Filtering of Data on Air," Pro
. ofthe 4th Int. Conf. on EDBT (Extending DataBaseTe
hnology), Cambridge-U.K, pp. 245{258, 1994.[5℄ T. Imielinski, S. Viswanathan and B. R. Badrinath,\Energy EÆ
ient Indexing on Air," Pro
. of ACM-SIGMOD Int. Conf. on Data Management, pp. 25{36, 1994.



[6℄ S. Jung, B. Lee and S. Pramanik, \A Tree-Stru
turedIndex Allo
ation Method with Repli
ation over Mul-tiple Broad
ast Channels in Wireless Environments,"IEEE Trans. on Knowledge and Data Eng., Vol. 17,No. 3, pp. 311{325, Mar
h 2005.[7℄ S. C. Lo and A. L. P. Chen, \Optimal Index and DataAllo
ation in Multiple Broad
ast Channels," Pro
. ofthe 16th IEEE Int. Conf. on Data Eng., pp. 293-302,2000.[8℄ K. L. Tan and B. C. Ooi, \On Sele
tive Tuning inUnreliable Wireless Channels," Data and KnowledgeEng., Vol. 28, No. 2, pp. 209{231, Nov. 1998.[9℄ J. H. Shen, \The Multiple-Hashing-Fun
tion-BasedS
hemes for Energy-Saving Data Organization in theWireless Broad
ast," Master Thesis, Dept. of Com-puter S
ien
e and Eng., National Sun Yat-Sen Uni-versity, June 2001.[10℄ X. Yang and A. Bouguettaya, \Adaptive Data A

essin Broad
ast-Based Wireless Environments," IEEETrans. on Knowledge and Data Eng., Vol. 17, No. 3,pp. 326{338, Mar
h 2005.


