TAENG International Journal of Computer Science, 33:1, IJCS 33 1 8

The TopK Scheme for the Energy-Saving Data Organization
in Broadcast-Based Wireless Environments*

Jun-Hong Shen, and Ye-In Chang

Dept. of Computer Science and Engineering

National Sun Yat-Sen University
Kaohsiung, Taiwan, R.0O.C
E-mail: {shenjh, changyi}@cse.nsysu.edu.tw

Abstract

Wireless broadcasting is an efficient way to deliver in-
formation to mobile clients. Due to power limit for the
portable units, how to design an energy-saving orga-
nization is a key issue. Imielinski et al. have proposed
two hashing-based schemes, Hashing A and Hashing
B, to save energy in the progress of getting data of
interest. However, these two hashing-based schemes
have the directory miss phenomenon. To improve the
directory miss phenomenon further, in this paper, we
propose the TopK scheme which is a multiple-hashing-
function-based scheme. From our simulation study,
we show that the performance of TopK is better than
that of Hashing B in terms of the average access time
and the average tuning time.

keywords: data broadcast, power conservation, selec-
tive tuning, wireless network.

1 Introduction

Due to the feature of asymmetry in communications,
it is an efficient way to deliver information to mobile
clients via wireless broadcast [1], e.g., stock quotes
and weather information. The main advantage of this
method is that it is independent of the number of
clients tuning to the channel, i.e., scalability [1, 8§].
By broadcasting the file periodically, mobile clients
can specify predefined condition to filter out the data
they wanted [4].

Due to the feature of power limits, power conserva-
tion is a key issue for the portable units (e.g., palm-
tops). When a palmtop is listening to the channel,
its CPU must be in the active mode for examining

*This research was supported in part by the National Science
Council of Republic of China under Grant No. NSC94-2213-E-
110-003 and by National Sun Yat-Sen University.

data packets. This is a waste of energy, since on an
average, only a very few data packets are of inter-
est to the particular unit. It is definitely beneficial if
the palmtop can slip into the doze mode most of the
time and “wake up” only when the data of interest
is expected to arrive [4, 5], i.e., selective tuning. As
a consequence, it is advantageous to use some spe-
cial data organizations, say indexed (or hash-based
or signature-based) data organizations, to broadcast
data over wireless channels to guide mobile units to
get the relevant information.

For a file being broadcasted on a channel, the fol-
lowing two parameters are of concern [4]: (1) Ac-
cess time: The average waiting time for clients to get
the required data (2) Tuning time: The amount of
time spent by a portable unit listening to the chan-
nel, which will determine its power consumption.

There have been many strategies for reducing power
consumption. For the uniform broadcast in which
the same data record appears once in a broadcast
cycle, the flexible indexing [4], the hashing-based
schemes [4], the tree-based indexing [3, 5], signature
schemes, the mixture of the index tree and the signa-
ture scheme, and the mixture of the hashing and the
index tree scheme [10] have been proposed. A skewed
index tree based on data popularity patterns was con-
sidered in [2]. For energy efficient filtering of nonuni-
form broadcast in which data records are broadcast
according to the access frequency, [8] proposed index-
ing schemes. The above schemes considered that there
is only one broadcast channel. However, broadcasting
data can be over multiple channels; therefore, [7] fo-
cused on index and data allocation.

Since in the wireless broadcast, the access time is af-
fected by the size of the file, adding the index in-
creases the access time. If the size of the index is too

(Advance online publication: 13 February 2007)

ical Dis(h, 15) =5
logical ’ =
bucket 2 3 44K=15

AT LTI 17

physical) 2 3 4 5 6 7 8 9 10
bucket Initial Probe

(a)

| +0| 2 +2

|+1

Dis(h', 15) = 2

| 7
|:| : the logical bucket |:, the overflow bucket

(b)

Figure 1: A comparison of Hashing A and Hashing B
(for K = 15): (a) Hashing A; (b) Hashing B.

large, the whole broadcast file increases largely. In
this case, using the hashing-based scheme is a better
choice than using the index-based scheme. For power
conservation, Imielinski et al. [4] have proposed two
hashing-based schemes, Hashing A and Hashing B.
Hashing B improves the directory miss in Hashing A
by taking the minimum overflow into consideration,
where the directory miss is that client’s initial probe
comes before the requested data item but after the
bucket that has its corresponding offset.

However, in Imielinski et al.’s two hashing-based
schemes [4], if the differences between the minimum
overflow and the other overflows are large extremely
or the small overflows appear near the rear part of the
broadcast file, both schemes have a poor performance.
Therefore, in this paper, we propose the TopK scheme,
which is a multiple-hashing-function-based scheme, to
reduce the probability of the directory miss further.
From our simulation study, we show that the perfor-
mance of TopK is better than that of Hashing B in
terms of the average access time and the average tun-
ing time.

The rest of paper is organized as follows. In section 2,
we give a brief survey of the hashing-based schemes.
In section 3, we present our proposed TopK scheme.
In section 4, we study the performance of TopK by
simulation. Finally, a conclusion is given in section 5.

2 Background

In [4], Imielinski et al. have proposed two hashing
schemes, Hashing A and Hashing B, to help clients
get data of interest. The smallest logical unit of the
broadcast in those schemes is called a bucket com-
posed of packets, the physical unit of the broadcast.

Figure 1 shows Hashing A and Hashing B, in which
all of the broadcast files are hashed by h(K) =

(K mod 4) + 1 and have the same size. Each of the
first 4 physical buckets (called the designated bucket)
in Hashing A stores the offset to the logical bucket in
the h(K)th physical bucket as shown in Figure 1-(a).
For example, in Figure 1-(a), physical bucket 4 stores
an offset, 5, to logical bucket 4, which contains the
data item of key 15. The remaining buckets contain
an offset to the beginning of the next cycle. Moreover,
Dis(h, K) is the difference between the address of the
physical bucket in which K resides and the designated
bucket for K, for a given hash function h. If clients
tune into the broadcast channel in the range covered
by Dis(h, K), a directory miss occurs. Therefore, the
smaller the Dis(h, K) is, the lower the probability of
the directory miss is, and the shorter the access time
is. In fact, it is the same as that the smaller the total
offset is, the shorter the access time is.

To reduce the probability of the directory miss,
Hashing B modifies the hashing function h(K) to

h'(K) as follows:

/ WK ifR(K)=1
h(K):{ (;5([())71)(1+MO)+1 ifth§>1,

where M O denotes the minimum number of overflows
in the whole file. The h'(K)th physical bucket con-
tains the offset of the logical bucket h(K). Figure 1-
(b) shows Hashing B, where MO = 1. In Figure 1-(a)
and Figure 1-(b), Dis(h,15) (= 5) > Dis(h',15) (=
2); therefore, the probability of the directory miss of
Hashing A is higher than that of Hashing B. Conse-
quently, Hashing B has improved the performance of
Hashing A.

3 The TopK Scheme

To reduce the probability of the directory miss in the
hashing schemes, we propose the TopK scheme, which
is a multiple-hashing-function-based scheme.

3.1 Assumptions

This paper focuses on the wireless environment. Some
assumptions should be restricted in order to make
our work feasible [1]. These assumptions include: (1)
Data appears once in the whole broadcast file, and
is broadcast over a reliably single channel. (2) Data
will not updated during the current broadcast cycle.
(3) When a client switches to the public channel, it
can retrieve buckets immediately. (4) A query result
contains only one bucket.

3.2 The Basic Idea

The basic idea of TopK is to use the cutlines to divide
the broadcast file into several regions, which can have
the different value of the minimum overflow. There-
fore, each region can have the different hashing func-
tion to determine the positions of the designated buck-
ets.

The basic steps of TopK are described as follows.
Given a parameter, t (t < N), which determines
the number of the cutlines, we then divide the
whole file with N logical buckets into (¢ + 1) regions
(R1,Ra,...,Rty1) by considering the descending or-
der of differences of overflows. For each region R;
(1 <i<t+1), we design the related hashing func-
tion by using the value of M O; in this region R;, where
MO; is the value of the minimum overflow in the ith
region. Since the value of M O; in each region R; can
be different, we can have different hashing functions
for those (t + 1) regions. (Note that in Hashing B,
there is only one value of MO.)

3.3 The TopK Scheme

For our illustrations clearly, we let O; be the number
of overflows which follow the related logical bucket
and D[i] = |Oi+1 — O;], 1 < i < N. Moreover, we
let ¢; denote the logical bucket of the ith cutline and
Co = 1.

Formally, the algorithm of this scheme is shown in
Figure 2. From lines 01-05, the differences of over-
flows between two adjacent logical buckets for N logi-
cal buckets are calculated out. (Note that D stores the
differences of overflows for N logical buckets and DI
stores the corresponding indices of D.) And then we
sort those differences in a descending order (line 06).
(Note that in the SortI procedure, when the swap of
DJi], D[j] occurs, the corresponding DI[i], DI[j] must
also be swapped.) Finally, we find ¢ cutlines by consid-
ering the descending order of the differences of over-
flows (lines 07-11), where CS[i] stores the position
of the ith cutline. (Note that C'S may be in disor-
der after a for loop, because the algorithm of TopK
does not determine the cutlines in a certain direction.
Therefore, C'S must be sorted in line 09.)

Let’s use one example to illustrate this scheme. Figure
3 shows an example of Hashing B, where O; = Oy = 8,
O3=04=4,0=0=2,0, =05 =1, MO =1,
WK) = (K mod 8) + 1, TShift (= Y_, Shift; =
0+ 7+ 14417+ 20+ 21 + 22 4+ 22) = 123, MO is
the minimum number of overflows in the whole file,

01 fori:=1to (N —1)do
02 begin

03 DI[i] :=1;

04 D[i] := 041 — O;;
05 end;

06 Sortl(D,DI);
07 fori:=1tot do
08 CS[i]:= DI[i] + 1;

09 Sort(CS); (* in an ascending order *)
10 fori:=1to t do

11 ¢ := CS[i];

(* in a descending order *)

Figure 2: The algorithm of TopK

D : the logical bucket I : the overflow bucket

D: the difference of overflows between two adjacent logical buckets
P: the offset to the designated logical bucket

L: the logical bucket number

O: the number of overflows which follow the related logical bucket
B: the physical bucket number

Figure 3: An example of Hashing B

TShift is the total summation of Shift; and Shift;
is the offset to logical bucket i.

For the same input, Figure 4 shows the result of TopK,
where ¢t = 2 and T'Shi ft = 5. Following the algorithm
from lines 01-05, differences of overflows are D[1] =
0,D[2] = 4,D[3] = 0,D[4] = 2,D[5] = 0,D[6] = 1
and D[7] = 0, and the corresponding indices of D are
DI1] = 1,DI]2] = 2,DI[3] = 3,DI[4] = 4,DI[5] =
5,DI[6] = 6 and DI[7] = 7. (Note that after sorting
D in a descending order, we have D[1] = 4,D[2] =
2,D[3] = 1,D[4] = 0,D[5] = 0,D[6] = 0,D[7] =0
and DI[1] = 2,DI[2] = 4,DI[3] = 6,DI[4] =
7,DI[5] =1,DI[6] = 5,DI[7] = 3.) From lines 07-09,
we then have CS[1] = 3 and C'S[2] = 5. Accordingly,
from lines 10-11, it turns out that ¢; = 3 and ¢y = 5.

Therefore, given t = 2, we have divided the whole file
into 3 regions. The region before ¢y is Ry and MO =
8. The region starting from ¢; and ending before ¢,
is Ry and MOy = 4. The region starting from ¢
to the end of the file is R3 and M O3 = 1. Then, we
use M O; (= 8) to determine which physical bucket to
store Shift, when 1 < hy(K) < ¢ (=3). MOy (=4)
and M O3 (= 1) are used, when ¢; < hy(K) < ¢3 (= 5)
and ¢y < hy(K) < 8, respectively.

123456789
M
1 c
el

e

2
e 5
3|

T

e
A

1 (€, - o) * (1 + MOy T e, -cpr @@+ MOy

Figure 4. An example of TopK (c; = 3 and ¢z = 5)

Table 1: The hashing functions in TopK

Hashing Function Condition

h1(K) = (K mod N) + 1
= (K mod 8) + 1;

hl(K) =1

hQ(K):(hl(K)fcg)X(1+M01)+1 1<h1(K)S3
= (h1(K)—1)x (14+8)+1
— (h1(K) —1) x 9+ 15

hg(K :(Cl—CO)X(1+MO1)+ 3<h1(K)§5
(hl(K)fcl) ><(1+MOQ)+1
Z(3-1) x (1+8)+
(hi(K)—=3)x (14+4)+1
=18+ (h1(K) —3) x5+ 1;

ha(K) = (c1 —co) X (1 4+ MO1)+ 5< hi(K)<8

(62761) 1+M02)+

Table 1 lists all hashing functions for TopK used in
Figure 4. The part (1 + MO;) of hy(K) means that
in this region (1 < hi(K) < ¢1), we store the value
of Shift for every (1 + MO;) buckets. (Note that we
must add one more 1 in each h;, since the physical
bucket is numbered from 1.) In hs(K), the first part
(c1 —¢o) x (1 4+ MO;) + 1 (as shown in Figure 4) is
the total buckets from the beginning of the broadcast
cycle to the designated bucket (= 19) of ¢; (= 3), and
the second part (hy(K) —¢1) x (1 4+ MO-) is used to
store the value of Shift for every (1 + MO,) buckets
after the designated bucket of ¢; and ending at the
designated bucket (= 29) of ¢y (= 5). In hqe(K), the
first part (c; —co) X (1 + MO1) + (c2 —e1) x (1 +
MO-) + 1 is the total buckets from the beginning of
the broadcast cycle to the designated bucket of ¢z, and
the second part (hy(K) — ¢2) x (1 4+ MO3) is used to
store the value of Shift for every (1 4+ MO3) buckets
after the designated bucket of cs. In general, for N
logical buckets and ¢ cutlines, there are (¢+2) hashing
functions for (¢ + 1) regions, which are listed in Table
2.

In Figure 4, there are 2 cutlines (¢t = 2), and the
related 4 hashing functions are listed in Table 1. For
example, in Figure 4, hy(K) = 2 falls in the range of
1 < hy(K) < 3; therefore, the physical bucket which
stores Shi fts to logical bucket 2is (2—1)x9+1 =10
(by ho(K)). For logical bucket 4, we use h3(K) to
calculate the physical bucket which stores Shifts and
the result is 18 + (4 — 3) x 5 + 1 = 24. Obviously,
the comparison of Hashing B and TopK shows that
TShift (= 5) of TopK is less than that (= 123) of
Hashing B, so we can conclude that TopK performs
better than Hashing B.

Table 2: The (t+2) hashing functions for (¢ +1) regions
and ¢ cutlines

hi(K) = (K mod N) + 1; if h(K) =1

ho(K) = if1< hi(K)<eq
(h1(K) —eqg) x (1 +MO1) +1;
h3(K) = (eq —cg) x (1 + MOq)+ if e < hy(K) < eg

(h1(K) — 1) x (1 + MO3) +1;

hi(K) = ifc;_o < h1(K)<ci_q
i—2

E ((ex —eqp—1) X (1 + MOgz))+

z=

1
(h1(K) —cj_9) X (1+MO;_1)+1;

hiy1(K) =
t—1

E ((ex —eqp—1) X (1 + MOgz))+

z=1
(h1(K) —c; 1) x (1+ MO¢) + 1;
hiyo(K) =
t

E ((ca = ep—1) X (1 4+ MO2))+
x=1

(h1(K) = e) X (14 MO;41) + 1;

ifcpq < hyp(K) <cy

if ey < hi(K) < N

3.4 Access Protocol

When tuning into the channel for searching the data
item of key K, a client retrieves the corresponding
hashing function from the current bucket according
to key K [4]. The client then waits for the designated
bucket of key K. After getting the designated bucket,
the client has the offset to reach the requested data.

4 Performance

In this section, we study the performance of the pro-
posed TopK scheme. We first make a comparison of
TopK and Hashing B [4], and then make a comparison
of TopK and a tree-based approach, SL [3].

4.1 Generation of Overflows

First, given LB, the amount of logical buckets, we
generate the overflow patterns for LB logical buckets
by the uniform distribution with the range between
Omin and Opraz. Omin and Oprq, denote the mini-
mum size of overflows and the maximum one, respec-
tively. Based on the result of the above generation
of the overflow patterns for LB logical buckets, we
then consider four kinds of distributions of those LB
overflow patterns, including the increasing, decreas-
ing, convex and concave distributions. Obviously, we
have the hashing function h(K) = (K mod LB) + 1,
and the amount of total physical buckets, B, equals
LB + Zf(le Ok.

The parameter, ¢, is given to determine the number
of cutlines. Since the number (= ¢ + 2) of hashing
functions is more than that (= 2) of Hashing B, the
bucket size of our TopK is somewhat larger than that

of Hashing B. Therefore, as compared to Hashing B,
the average access time and the average tuning time

. DH4 32
of TopK are multiplied by the factor f (= —pz—
(DH denotes the ratio of the data part to the part of

storing hashing functions in a bucket.)

4.2 Performance Analysis of Access Time
and Tuning Time

In our simulation, we assume that the whole logical
buckets (= LB) are requested. (Note that since the
distribution of the overflows for TopK and Hashing
B is the same, we do not consider the access of the
overflow buckets in our experiment.) The access time
ATk “per key” K, 1< K < LB, is as follows [4].
ATy = 2208 o (B + 1 x Dis(h, K)) +

(1 _ Disg,K)) y (B—DiQs(h,K) —I—Dis(h,K))

= DB o (B + L x Dis(h, K)) +
1— Dis(sz,K)) y B+Di;(h,K)’ (1)

where %S(’L’K) is the mean probing position out-

side the displacement area. In equation (1), the first
term is for the case of the directory miss, and the sec-
ond one is for the case of the non-directory miss. The

E:ILB [47}(

K=1

average access time for the broadcast is Sz]

[4].

On the other hand, the tuning time TTk “per key”
K, 1< K < LB, is calculated as follows [9].

TTk =3 x 22T0 4 g x (1 - Dosti)),
where Pos(K) is the difference between the beginning
of the broadcast cycle and the physical bucket con-
taining the offset to the logical bucket which contains
key K. The average tuning time for the broadcast is
Zf{il TTx

LB -

4.3 Simulation Results: TopK wvs. Hash-

ing B

In this comparison, we let LB = 100, Opmin = 1,
Onrae = 50, and DC = 50, resulting in B = 2608.
Moreover, we give t = 2 and t = 3, resulting in
f =1.01961 and f = 1.02941, respectively. The sim-
ulation results discussed later are the average of 100
cases. We will consider t = 2 and ¢ = 3 for those four
kinds of overflow distributions.

Figure 5 shows the average access time of TopK and
Hashing B. In Figure 5, under these four cases of
the distributions, the average access time of TopK is
shorter than that of Hashing B no matter ¢ = 2 or
t = 3. This is because the minimum overflow in Hash-
ing B is always a constant (called MOy) for a given

O Hashing B W TopK (t=2) O TopK (t=3)

3000

- 2500
2000
1500

Distribution

Average Access Time
(bucket

the convex distribution
the concave distribution

I: the increasing distribution Cv:
D: the decreasing distribution Ca:

Figure 5: A comparison of the average access time of
TopK and Hashing B

overflow pattern no matter under what kinds of dis-
tributions. However, in TopK, since the values of the
minimum overflows are dependent on the positions of
the cutlines, they can be larger than M O¢. Moreover,
the average access time is affected by Dis(h, K) and
Dis(h,K) is affected by the value of the minimum
overflow in the region where h(K) locates. Therefore,
TopK has the adaptability to reduce the average ac-
cess time.

In the case of the decreasing distribution, there is the
largest difference of the average access time between
Hashing B and TopK. This is because TopK uses the
cutlines to reduce the average access time. Moreover,
Hashing B has the worst performance in this case.
Therefore, in the case of the decreasing distribution,
there is the largest difference of the average access
time between Hashing B and TopK.

Note that when the number of cutlines is increased,
the size of a bucket is increased as well. In general,
as long as the benefit resulting from the increase of
the number of cutlines exceeds the cost resulting from
the increase of the size of a bucket, the increase of
the number of cutlines is beneficial on reducing the
average access time. As shown in Figure 5, while in
the case of the increasing distribution, the average
access time is increased from t = 2 to t = 3 in TopK.
In addition, we observe that the average access time
of TopK is always shorter than that of Hashing B in
any kind of these four cases of different distributions,
no matter t =2 or t = 3.

Figure 6 shows the comparison of the average tun-
ing time. Based on the analysis of the tuning time,
we observe that as the value of Pos(K) is increased,
the tuning time is decreased. Since the positions of
the logical buckets are fixed under a case of distri-
butions, the less the displacement between the desig-
nated bucket and the logical bucket is, the larger the

O Hashing B ®TopK (t=2) O TopK (t=3)

a

N

Distribution

(buckets)

Average Tuning Time

Figure 6: A comparison of the average tuning time of
TopK and Hashing B

value of Pos(K) is, and the shorter the tuning time is.
Therefore, the average tuning time of TopK is shorter
than that of Hashing B, no matter t =2 or t = 3.

Note that in fact, we have tried another three
multiple-hashing-function-based schemes in [9] to de-
termine the positions of cutlines. However, from our
simulation study, we have observed that TopK out-
performs the other schemes.

4.4 Simulation Results: TopK wvs. SL

In this simulation, we assume that the whole keys
are requested; that is, the whole buckets are accessed.
We assume that the number of real data items of a
bucket in TopK is the same as that in SL, and that
the storage size of each hashing function is equal to
that of a data item. While comparing TopK with
SL, we multiply the access time of TopK by W
to normalize, where n is the capacity of a bucket.

In SL, we consider a balanced index tree and assume
that each node has the same number of children. The
index tree of SL has two parts: (1) The replicated
part constitutes the top r levels of the index tree;
(2) the non-replicated part consists of the rest levels
[3]. In the broadcast cycle, the number of appearance
times of each node in (1) equals the number of its
children. On the other hand, the remaining index
nodes will appear only once in the broadcast cycle.
We assume that the clients uniformly tune into the
broadcast channel. Since the number of the replicated
levels of the index tree affects the access time, we
use the optimal value of r from [3, 5]. The formula
for calculating the average access time for SL is from
[3, 5].

Figure 7 shows the comparison of the average access
time of TopK and SL, where LB = 150,t = 3, Oin =
40, Opraz = 50, B is between 6795 and 6921, and the
average of Bs is 6852. In Figure 7, we can observe
that the average access time of TopK is shorter than

——TopK —{—SL

7000

6000 |

5000 |

(buckets)

4000

3000

Average Access Time

50 60 70 80
Bucket Capacity (n)

Figure 7: A comparison of the average access time of
TopK and SL under the uniform distribution

that of SL with increasing the capacity of a bucket.

5 Conclusion

In this paper, we have proposed the TopK scheme
to improve the directory miss phenomenon in hash-
ing schemes over wireless broadcast, which increases
the access time and the tuning time. In our simu-
lation study, we have considered four distributions of
overflows, including the increasing, decreasing, convex
and concave distributions. From our experimental re-
sults, we have shown that TopK performs better than
Hashing B in terms of the average access time and the
average tuning time in each of these four distributions
of overflows.

References

[1] Y. 1. Chang and C. N. Yang, “A Complementary Ap-
proach to Data Broadcasting in Mobile Information
Systems,” Data and Knowledge Eng., Vol. 40, No. 2,
pp. 181-194, Feb. 2002.

[2] M. S. Chen, K. L. Wu and P. S. Yu, “Optimiz-
ing Index Allocation for Sequential Data Broadcast-
ing in Wireless Mobile Computing,” IEEE Trans. on
Knowledge and Data Eng., Vol. 15, No. 1, pp. 161-
173, Jan./Feb. 2003.

[3] Y. D. Chung and M. H. Kim, “An Index Replication
Scheme for Wireless Data Broadcasting,” Journal of
Systems and Software, Vol. 51, No. 3, pp. 191-199,
May 2000.

[4] T. Imielinski, S. Viswanathan and B. R. Badrinath,
“Power Efficient Filtering of Data on Air,” Proc. of
the 4th Int. Conf. on EDBT (Extending DataBase
Technology), Cambridge-U.K, pp. 245-258, 1994.

[5] T. Imielinski, S. Viswanathan and B. R. Badrinath,
“Energy Efficient Indexing on Air,” Proc. of ACM-
SIGMOD Int. Conf. on Data Management, pp. 25—
36, 1994.

[6]

[10]

S. Jung, B. Lee and S. Pramanik, “A Tree-Structured
Index Allocation Method with Replication over Mul-
tiple Broadcast Channels in Wireless Environments,”
IEEE Trans. on Knowledge and Data Eng., Vol. 17,
No. 3, pp. 311-325, March 2005.

S. C. Lo and A. L. P. Chen, “Optimal Index and Data
Allocation in Multiple Broadcast Channels,” Proc. of
the 16th IEEE Int. Conf. on Data Eng., pp. 293-302,
2000.

K. L. Tan and B. C. Ooi, “On Selective Tuning in
Unreliable Wireless Channels,” Data and Knowledge
Eng., Vol. 28, No. 2, pp. 209-231, Nov. 1998.

J. H. Shen, “The Multiple-Hashing-Function-Based
Schemes for Energy-Saving Data Organization in the
Wireless Broadcast,” Master Thesis, Dept. of Com-
puter Science and Eng., National Sun Yat-Sen Uni-
versity, June 2001.

X. Yang and A. Bouguettaya, “Adaptive Data Access
in Broadcast-Based Wireless Environments,” IEEE
Trans. on Knowledge and Data Eng., Vol. 17, No. 3,
pp. 326-338, March 2005.

